
Recursion

• In computer science, some problems are more

easily solved by using recursive methods.

World’s Simplest Recursion Program
public class Recursion
{
 public static void main (String args[])
 {
 count(0);
 System.out.println();
 }

 public static void count (int index)
 {
 System.out.print (index);
 if (index < 2)
 count(index+1);
 }
}

This program simply counts from 0-2:

012

This is where the recursion occurs.

You can see that the count() method

calls itself.

3

First two rules of recursion

• Base case: You must always have some base

case which can be solved without recursion

• Making Progress: For cases that are to be solved

recursively, the recursive call must always be a

case that makes progress toward the base case.

From Data Structures and Algorithms by Mark Allen Weiss

Factorials

• Computing factorials are a classic problem for

examining recursion.

• A factorial is defined as follows:

n! = n * (n-1) * (n-2) …. * 1;

• For example:

1! = 1

2! = 2 * 1 = 2

3! = 3 * 2 * 1 = 6

4! = 4 * 3 * 2 * 1 = 24

5! = 5 * 4 * 3 * 2 * 1 = 120

If you study this table closely, you

will start to see a pattern.

Seeing the Pattern

• Seeing the pattern in the factorial example is

difficult at first.

• But, once you see the pattern, you can apply this

pattern to create a recursive solution to the

problem.

• Divide a problem up into:

– What we know (call this the base case)

– Making progress towards the base

• Each step resembles original problem

• The method launches a new copy of itself (recursion

step) to make the progress.

Recursive Solution
public class FindFactorialRecursive

{

 public static void main (String args[])

 {

 for (int i = 1; i < 10; i++)

 System.out.println (i + "! = " +
findFactorial(i));

 }

 public static int findFactorial (int number)

 {

 if ((number == 1) || (number == 0))

 return 1;

 else

 return (number * findFactorial (number-1));

 }

}

Base Case.

Making

progress

7

Recursion pros and cons
• All recursive solutions can be implemented without

recursion.

• Recursion is "expensive". The expense of recursion lies in

the fact that we have multiple activation frames and the fact

that there is overhead involved with calling a method.

• If both of the above statements are true, why would we ever

use recursion?

• In many cases, the extra "expense" of recursion is far

outweighed by a simpler, clearer algorithm which leads to

an implementation that is easier to code.

Recursive Solution
public class FindFactorialRecursive

{

 public static void main (String args[])

 {

 for (int i = 1; i < 10; i++)

 System.out.println (i + "! = " +
findFactorial(i));

 }

 public static int findFactorial (int number)

 {

 if ((number == 1) || (number == 0))

 return 1;

 else

 return (number * findFactorial (number-1));

 }

}

Base Case.

Making

progress

