
Last time

We covered:

– primitive data types

– declaration, initialization, assignment of variables

– expressions and operator precedence

– data conversions

– accepting input from the user

Copyright © 2012 Pearson

Education, Inc.

Review: Primitive Data Types

Of the following types, which one cannot store a
numeric value?

A) int

B) byte

C) float

D) char

E) all of these can store numeric values

Copyright © 2012 Pearson

Education, Inc.

Review: Primitive Data Types

Of the following types, which one cannot store a
numeric value?

A) int

B) byte

C) float

D) char

E) all of these can store numeric values

Copyright © 2012 Pearson

Education, Inc.

Correct Mistakes

• // The following program has several errors
• Fix these errors

public class CorrectMe

 public static main(String[] args) {

 System.out.println(Hello world);

 system.out.Pritnln("Do you like this program"?);

 System.out. println()

 System.println("I wrote it myself.";

 {

}

See CorrectMe.java

Copyright © 2012 Pearson

Education, Inc.

CorrectMe.java

Review: What is the result of these?

 int z = 5 / 2;

 float z = 5 / 2;

 double z = 5 / 2;

Copyright © 2012 Pearson

Education, Inc.

Review: Remainder

Copyright © 2012 Pearson Education, Inc.

• The remainder operator (%) returns the remainder after
dividing the first operand by the second

14 % 3 equals 2

8 % 12 equals 8

What do the following expressions evaluate to?

3.0 / 2.0 + 4.1

"hi" + (1 + 1) + "u“

12 / 5 + 8 / 4

42 % 5 + 16 % 3

"cs“ + 2 + 6

 2 + 6 + "cs"

Copyright © 2012 Pearson

Education, Inc.

Review of Type Casting

• See Char.java

Copyright © 2012 Pearson

Education, Inc.

Char.java

Conditionals and Loops
• Now we will examine programming statements

that allow us to:

– make decisions
– repeat processing steps in a loop

Copyright © 2012 Pearson

Education, Inc.

Outline

Copyright © 2012 Pearson

Education, Inc.

Boolean Expressions

The if Statement

The Conditional Operator (? :)

The switch Statement

Flow of Control
• The order of statement execution is called the flow

of control

• Unless specified otherwise, the order of statement
execution through a method is linear: one after
another

• Some programming statements allow us to make
decisions and perform repetitions

• These decisions are based on boolean expressions
(also called conditions) that evaluate to true or false

Copyright © 2012 Pearson

Education, Inc.

Conditional Statements
• A conditional statement lets us choose which

statement will be executed next

• The Java conditional statements are the:

– if and if-else statement

– switch statement

Copyright © 2012 Pearson

Education, Inc.

Boolean expression

• Boolean expression is just a test for a
condition

– Eventually, evaluates to true or false

Copyright © 2012 Pearson

Education, Inc.

Value comparisons
• A condition often uses one of Java's equality

operators or relational operators, which all
return boolean results:

== equal to

!= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

• Note the difference between the equality
operator (==) and the assignment operator (=)

Copyright © 2012 Pearson

Education, Inc.

Relational Operators

• Note that these relational operators are for comparing
primitive data types only.

• char values are compared according to their positions
in the UNICODE table

• You can only use == or != for boolean data type
• Since computations may generate a round-off error in

15th decimal place in a double value, use
 Math.abs(calculated-expected) <=1E-15

Instead of
 calculated == expected

• See BoolTest.java

Copyright © 2012 Pearson

Education, Inc.

BoolTest.java

Logical Operators
• Boolean expressions can also use the following

logical operators:

 ! Logical NOT

 && Logical AND

 || Logical OR

• They all take boolean operands and produce
boolean results

Copyright © 2012 Pearson

Education, Inc.

Logical NOT
• The logical NOT operation is also called logical

negation or logical complement

• If some boolean condition a is true, then !a is false;
if a is false, then !a is true

• Logical expressions can be shown using a truth table:

Copyright © 2012 Pearson

Education, Inc.

a !a

true false

false true

Logical AND and Logical OR
• A truth table shows all possible true-false

combinations of the terms

• Since && and || each have two operands, there are
four possible combinations of conditions a and b

Copyright © 2012 Pearson

Education, Inc.

a b a && b a || b

true true true true

true false false true

false true false true

false false false false

Logical Operators
• Expressions that use logical operators can form

complex conditions

 if (total < MAX+5 && !found)

 System.out.println ("Processing…");

• All logical operators have lower precedence than
the relational operators

• The ! operator has higher precedence than &&
and ||

Copyright © 2012 Pearson

Education, Inc.

Boolean Expressions
• Specific expressions can be evaluated using truth

tables

Copyright © 2012 Pearson

Education, Inc.

total < MAX found !found total < MAX && !found

false false true false

false true false false

true false true true

true true false false

Short-Circuit Evaluations
• The processing of && and || is “short-circuited”

• Stop evaluating the boolean expression as soon
as we know the answer

• Consider:

 boolean flag = true, p;

 p = 5 > 3 || flag;

 The second test, flag, is not evaluated at all

Copyright © 2012 Pearson

Education, Inc.

A useful example
• If the left operand is sufficient to determine the

result, the right operand is not evaluated

 p = (count != 0) && (total/count > MAX)

Copyright © 2012 Pearson

Education, Inc.

Outline

Copyright © 2012 Pearson

Education, Inc.

Boolean Expressions

The if Statement

The Conditional Operator (? :)

The switch Statement

The if Statement

Copyright © 2012 Pearson

Education, Inc.

if (condition){

 statements;

}

if (condition) // can omit braces

 statement; // if there is one statement

The if Statement
• Let's now look at the if statement in more detail

• The if statement has the following syntax:

Copyright © 2012 Pearson

Education, Inc.

if (condition)

 statement;

if is a Java

reserved word

The condition must be a

boolean expression. It must

evaluate to either true or false.

If the condition is true, the statement is executed.

If it is false, the statement is skipped.

If statement

 if((num % 2) == 0){

 System.out.println (“num is

even”);

}

Copyright © 2012 Pearson

Education, Inc.

Logic of an if statement

Copyright © 2012 Pearson

Education, Inc.

condition

evaluated

statement

true

false

Indentation
• The statement controlled by the if statement is

indented to indicate that relationship

• The use of a consistent indentation style makes a
program easier to read and understand

Copyright © 2012 Pearson Education, Inc.

"Always code as if the person who ends up maintaining

your code will be a violent psychopath who knows

where you live."

 -- Martin Golding

Quick Check

Copyright © 2012 Pearson

Education, Inc.

What do the following statements do?

if (total != (stock + warehouse))

 inventoryError = true;

if (found || !done)

 System.out.println("Ok");

Quick Check

Copyright © 2012 Pearson

Education, Inc.

What do the following statements do?

if (total != (stock + warehouse))

 inventoryError = true;

if (found || !done)

 System.out.println("Ok");

Sets the boolean variable to true if the value of total

is not equal to the sum of stock and warehouse

Prints "Ok" if found is true or done is false

If Statement
• See Age.java

Copyright © 2012 Pearson

Education, Inc.

Age.java

Copyright © 2012 Pearson

Education, Inc.

//**

// Age.java Author: Lewis/Loftus

//

// Demonstrates the use of an if statement.

//**

import java.util.Scanner;

public class Age

{

 //---

 // Reads the user's age and prints comments accordingly.

 //---

 public static void main (String[] args)

 {

 final int MINOR = 21;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter your age: ");

 int age = scan.nextInt();

continue

Copyright © 2012 Pearson

Education, Inc.

continue

 System.out.println ("You entered: " + age);

 if (age < MINOR)

 System.out.println ("Youth is a wonderful thing. Enjoy.");

 System.out.println ("Age is a state of mind.");

 }

}

Copyright © 2012 Pearson

Education, Inc.

continue

 System.out.println ("You entered: " + age);

 if (age < MINOR)

 System.out.println ("Youth is a wonderful thing. Enjoy.");

 System.out.println ("Age is a state of mind.");

 }

}

Sample Run

Enter your age: 47

You entered: 47

Age is a state of mind.

Another Sample Run

Enter your age: 12

You entered: 12

Youth is a wonderful thing. Enjoy.

Age is a state of mind.

The if-else Statement
• An else clause can be added to an if statement

to make an if-else statement

 if (condition)

 statement1;

 else

 statement2;

• If the condition is true, statement1 is executed; if
the condition is false, statement2 is executed

• One or the other will be executed, but not both

• See Wages.java

Copyright © 2012 Pearson

Education, Inc.

Wages.java

Logic of an if-else statement

Copyright © 2012 Pearson

Education, Inc.

condition

evaluated

statement1

true false

statement2

Copyright © 2012 Pearson

Education, Inc.

//**

// Wages.java Author: Lewis/Loftus

//

// Demonstrates the use of an if-else statement.

//**

import java.util.Scanner;

public class Wages

{

 //---

 // Reads the number of hours worked and calculates wages.

 //---

 public static void main (String[] args)

 {

 final double RATE = 8.25; // regular pay rate

 final int STANDARD = 40; // standard hours in a work week

 Scanner scan = new Scanner (System.in);

 double pay = 0.0;

continue

Copyright © 2012 Pearson

Education, Inc.

continue

 System.out.print ("Enter the number of hours worked: ");

 int hours = scan.nextInt();

 System.out.println ();

 // Pay overtime at "time and a half"

 if (hours > STANDARD)

 pay = STANDARD * RATE + (hours-STANDARD) * (RATE * 1.5);

 else

 pay = hours * RATE;

 System.out.println ("Gross earnings: $" + pay);

 }

}

Copyright © 2012 Pearson

Education, Inc.

continue

 System.out.print ("Enter the number of hours worked: ");

 int hours = scan.nextInt();

 System.out.println ();

 // Pay overtime at "time and a half"

 if (hours > STANDARD)

 pay = STANDARD * RATE + (hours-STANDARD) * (RATE * 1.5);

 else

 pay = hours * RATE;

 System.out.println ("Gross earnings: $" + pay)

 }

}

Sample Run

Enter the number of hours worked: 46

Gross earnings: $404.25

If statement

 if ((num % 2) == 0)

 {

 System.out.println (“num is

even”);

 }

 else

 {

 System.out.println (“num is odd”);

 }

Copyright © 2012 Pearson

Education, Inc.

NOTICE
• Remember that indentation is for the human

reader, and is ignored by the compiler

 if (depth >= UPPER_LIMIT)

 delta = 100;

 else

 System.out.println("Reseting Delta");

 delta = 0;

• Despite what the indentation implies, delta
will be set to 0 no matter what

Copyright © 2012 Pearson

Education, Inc.

Block Statements
• Several statements can be grouped together into

a block statement delimited by braces

• A block statement can be used wherever a
statement is called for in the Java syntax rules

Copyright © 2012 Pearson

Education, Inc.

if (total > MAX)

{

 System.out.println ("Error!!");

 errorCount++;

}

Block Statements
• The if clause, or the else clause, or both, could

govern block statements

• See Guessing.java

Copyright © 2012 Pearson

Education, Inc.

if (total > MAX)

{

 System.out.println ("Error!!");

 errorCount++;

}

else

{

 System.out.println ("Total: " + total);

 current = total*2;

}

Guessing.java

Copyright © 2012 Pearson

Education, Inc.

//**

// Guessing.java Author: Lewis/Loftus

// Modified by Oznur Tastan

// Demonstrates the use of a block statement in an if-else.

//**

import java.util.*;

public class Guessing

{

 //---

 // Plays a simple guessing game with the user.

 //---

 public static void main (String[] args)

 {

 final int MAX = 10;

 int answer, guess;

 answer = 9;

 Scanner scan = new Scanner (System.in);

continue

Copyright © 2012 Pearson

Education, Inc.

continue

 System.out.print ("I'm thinking of a number between 1 and "

 + MAX + ". Guess what it is: ");

 guess = scan.nextInt();

 if (guess == answer)

 System.out.println ("You got it! Good guessing!");

 else

 {

 System.out.println ("That is not correct, sorry.");

 System.out.println ("The number was " + answer);

 }

 }

}

Copyright © 2012 Pearson

Education, Inc.

continue

 System.out.print ("I'm thinking of a number between 1 and "

 + MAX + ". Guess what it is: ");

 guess = scan.nextInt();

 if (guess == answer)

 System.out.println ("You got it! Good guessing!");

 else

 {

 System.out.println ("That is not correct, sorry.");

 System.out.println ("The number was " + answer);

 }

 }

}

Sample Run

I'm thinking of a number between 1 and 10. Guess what it is: 6

That is not correct, sorry.

The number was 9

Nested if Statements
• The statement executed as a result of an if or
else clause could be another if statement

• These are called nested if statements

• An else clause is matched to the last unmatched
if (no matter what the indentation implies)

• Braces can be used to specify the if statement to
which an else clause belongs

• See MinOfThree.java

Copyright © 2012 Pearson

Education, Inc.

MinOfThree.java

Copyright © 2012 Pearson

Education, Inc.

//**

// MinOfThree.java Author: Lewis/Loftus

//

// Demonstrates the use of nested if statements.

//**

import java.util.Scanner;

public class MinOfThree

{

 //---

 // Reads three integers from the user and determines the smallest

 // value.

 //---

 public static void main (String[] args)

 {

 int num1, num2, num3, min = 0;

 Scanner scan = new Scanner (System.in);

 System.out.println ("Enter three integers: ");

 num1 = scan.nextInt();

 num2 = scan.nextInt();

 num3 = scan.nextInt();

continue

Copyright © 2012 Pearson

Education, Inc.

continue

 if (num1 < num2)

 if (num1 < num3)

 min = num1;

 else

 min = num3;

 else

 if (num2 < num3)

 min = num2;

 else

 min = num3;

 System.out.println ("Minimum value: " + min);

 }

}

Copyright © 2012 Pearson

Education, Inc.

continue

 if (num1 < num2)

 if (num1 < num3)

 min = num1;

 else

 min = num3;

 else

 if (num2 < num3)

 min = num2;

 else

 min = num3;

 System.out.println ("Minimum value: " + min);

 }

}

Sample Run

Enter three integers:

84 69 90

Minimum value: 69

Finding the minimum of 3 integers

• Do we really need a nested if statement to
find the minimum of 3 integer numbers?

• The answer is no, see MinOfThree2.java

Copyright © 2012 Pearson

Education, Inc.

// Assume num1 is the minimum
 min = num1;

// Test if num2 is less than min, and update min if necessary
 if (num2 < min)
 min = num2;

// Test if num3 is less than min, and update min if necessary
 if (num3 < min)
 min = num3;

MinOfThree2.java

Question

Write a Java program to input the overall grade of a
student and output his/her letter grade according
to the criteria below:

90-100 A

80-89 B

70-79 C

60-69 D

0-59 F

Copyright © 2012 Pearson

Education, Inc.

Solution

• ComputeLetterGrade1.java uses if-statement
only

• ComputeLetterGrade2.java uses nested-if

• ComputeLetterGrade3.java uses switch (NEXT
TOPIC!)

Copyright © 2012 Pearson

Education, Inc.

ComputeLetterGrade1.java
ComputeLetterGrade2.java
ComputeLetterGrade3.java

Outline

Copyright © 2012 Pearson

Education, Inc.

Boolean Expressions

The if Statement

The Conditional Operator (? :)

The switch Statement

Conditional Operator (? :)

• Conditional operator is also known as the
ternary operator. Another name is arithmetic
if. This operator consists of three operands
and is used to evaluate boolean expressions.
The goal of the operator is to decide which
value should be assigned to the variable. The
operator is written as :

• (expression) ? value if true : value if false

Copyright © 2012 Pearson

Education, Inc.

Conditional Operator (? :) Example

• Test.java

Copyright © 2012 Pearson

Education, Inc.

Test.java

Copyright © 2012 Pearson

Education, Inc.

public class Test {

 public static void main(String args[]){

 int a , b;

 a = 10;

 b = (a == 1) ? 20: 30;

 System.out.println("Value of b is : " + b);

 b = (a == 10) ? 20: 30;

 System.out.println("Value of b is : " + b);

 System.out.println ((a>5) ? a%2 : -a);

 }

}

Copyright © 2012 Pearson

Education, Inc.

public class Test {

 public static void main(String args[]){

 int a , b;

 a = 10;

 b = (a == 1) ? 20: 30;

 System.out.println("Value of b is : " + b);

 b = (a == 10) ? 20: 30;

 System.out.println("Value of b is : " + b);

 System.out.println ((a>5) ? a%2 : -a);

 }

}

Sample Run

Value of b is : 30

Value of b is : 20

0

Outline

Copyright © 2012 Pearson

Education, Inc.

Boolean Expressions

The if Statement

The Conditional Operator (? :)

The switch Statement

The switch Statement
• The switch statement provides another way to

decide which statement to execute next

• The switch statement evaluates an expression,
then attempts to match the result to one of
several possible cases

• Each case contains a value and a list of
statements

• The flow of control transfers to statement
associated with the first case value that matches

Copyright © 2012 Pearson

Education, Inc.

The switch Statement
• The general syntax of a switch statement is:

Copyright © 2012 Pearson

Education, Inc.

switch (expression)

{

 case value1 :

 statement-list1

 case value2 :

 statement-list2

 case value3 :

 statement-list3

 case ...

}

switch

and
case

are

reserved

words

If expression

matches value2,

control jumps

to here

The switch Statement
• Often a break statement is used as the last

statement in each case's statement list

• A break statement causes control to transfer to
the end of the switch statement

• If a break statement is not used, the flow of
control will continue into the next case

• Sometimes this may be appropriate, but often
we want to execute only the statements
associated with one case

Copyright © 2012 Pearson

Education, Inc.

The switch Statement
• An example of a switch statement:

Copyright © 2012 Pearson

Education, Inc.

switch (option)

{

 case 'A':

 aCount++;

 break;

 case 'B':

 bCount++;

 break;

 case 'C':

 cCount++;

 break;

}

The switch Statement
• A switch statement can have an optional

default case

• The default case has no associated value and
simply uses the reserved word default

• If the default case is present, control will transfer
to it if no other case value matches

• If there is no default case, and no other value
matches, control falls through to the statement
after the switch

Copyright © 2012 Pearson

Education, Inc.

The switch Statement
• The type of a switch expression must be integers,

characters, or enumerated types

• As of Java 7, a switch can also be used with strings

• You cannot use a switch with floating point values

• The implicit boolean condition in a switch
statement is equality

• You cannot perform relational checks with a
switch statement

• See GradeReport.java
Copyright © 2012 Pearson

Education, Inc.

GradeReport.java

Copyright © 2012 Pearson

Education, Inc.

//**

// GradeReport.java Author: Lewis/Loftus

//

// Demonstrates the use of a switch statement.

//**

import java.util.Scanner;

public class GradeReport

{

 //---

 // Reads a grade from the user and prints comments accordingly.

 //---

 public static void main (String[] args)

 {

 int grade, category;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter a numeric grade (0 to 100): ");

 grade = scan.nextInt();

 category = grade / 10;

 System.out.print ("That grade is ");

continue

Copyright © 2012 Pearson

Education, Inc.

continue

 switch (category)

 {

 case 10:

 System.out.println ("a perfect score. Well done.");

 break;

 case 9:

 System.out.println ("well above average. Excellent.");

 break;

 case 8:

 System.out.println ("above average. Nice job.");

 break;

 case 7:

 System.out.println ("average.");

 break;

 case 6:

 System.out.println ("below average. You should see the");

 System.out.println ("instructor to clarify the material "

 + "presented in class.");

 break;

 default:

 System.out.println ("not passing.");

 }

 }

}

Copyright © 2012 Pearson

Education, Inc.

continue

 switch (category)

 {

 case 10:

 System.out.println ("a perfect score. Well done.");

 break;

 case 9:

 System.out.println ("well above average. Excellent.");

 break;

 case 8:

 System.out.println ("above average. Nice job.");

 break;

 case 7:

 System.out.println ("average.");

 break;

 case 6:

 System.out.println ("below average. You should see the");

 System.out.println ("instructor to clarify the material "

 + "presented in class.");

 break;

 default:

 System.out.println ("not passing.");

 }

 }

}

Sample Run

Enter a numeric grade (0 to 100): 91

That grade is well above average. Excellent.

