
Outline
Using Classes and Objects

Creating Objects

The String Class

The Character Class

The Random Class

The Math Classes

Formatting Output

Copyright © 2012 Pearson Education, Inc.

Creating Objects

• A variable holds either a primitive value or a
reference to an object

• A class name can be used as a type to declare an
object reference variable

Copyright © 2012 Pearson Education, Inc.

Creating Objects
• Consider the following two declarations:

• The first declaration creates a variable that holds an integer

value.

• The second declaration creates a String variable that holds

a reference to a String object.

 Copyright © 2012 Pearson Education, Inc.

int num;

 // integer variable exists

 // but it is not initialized

String name; // No String object actually

 // exists yet!

References

• A primitive variable contains the value itself, but an object variable
contains the address of the object

• An object reference can be thought of as a pointer to the location of the
object

• Consider the following two declarations:

int num1 = 38;

String name1 = new String("Billy Joe");

"Billy Joe" name1

num1 38

Copyright © 2012 Pearson Education, Inc.

Memory for a String object
• Suppose that name1 contains the memory address AAA1000 in

hexadecimal representation. Then, the following memory allocation

is true:

Copyright © 2012 Pearson

Education, Inc.

5

AAA1000 'B'

AAA1002 'i'

AAA1004 'l'

AAA1006 'l'

AAA1008 'y'

AAA100A ' '

AAA100C 'J'

AAA100E 'o'

AAA1010 'e'

Each

character in

Java is

stored in 2

bytes

Creating Objects

• We use the new operator to create an object

• Creating an object is called instantiation

• An object is an instance of a particular class

name1 = new String ("Billy Joe");

This calls the String constructor, which is

a special method that sets up the object

Copyright © 2012 Pearson Education, Inc.

Assignment Revisited

• The act of assignment takes a copy of a value and
stores it in a variable

• For primitive types:

num1 38

num2 96
Before:

num2 = num1;

num1 38

num2 38
After:

Copyright © 2012 Pearson Education, Inc.

Reference Assignment

• For object references, assignment copies the

address:

name2 = name1;

name1

name2
Before:

"Billy Joe"

"Steve Wozniak"

name1

name2
After:

"Billy Joe"

Copyright © 2012 Pearson Education, Inc.

Aliases

• Two or more references that refer to the same
object are called aliases of each other

• That creates an interesting situation: one object
can be accessed using multiple reference variables

• Aliases can be useful, but should be managed
carefully

• Changing an object through one reference
changes it for all of its aliases, because there is
really only one object

Copyright © 2012 Pearson Education, Inc.

Outline
Using Classes and Objects

Creating Objects

The String Class

The Character Class

The Random Class

The Math Classes

Formatting Output

Copyright © 2012 Pearson Education, Inc.

Class Libraries

• A class library is a collection of classes that we can

use when developing programs

• The Java standard class library is part of any Java

development environment

• Various classes we've already used (System ,

String) are part of the Java standard class library

Copyright © 2012 Pearson Education, Inc.

The Java API

• The Java class library is sometimes referred to as

the Java API

• API stands for Application Programming Interface

Copyright © 2012 Pearson Education, Inc.

The Java API
• Get comfortable navigating the online Java API

documentation

Copyright © 2012 Pearson Education, Inc.

The Import Declaration

• When you want to use a class from a package, you
could use its fully qualified name

java.util.Scanner

• Or you can import the class, and then use just the
class name

import java.util.Scanner;

• To import all classes in a particular package, you
can use the * wildcard character

import java.util.*;

Copyright © 2012 Pearson Education, Inc.

The String Class
• Because strings are so commonly used, Java treats

a string literal as a String object. Thus the

following statement is valid:

String title = "Billy Joe";

 instead of

 String title = new String ("Billy Joe");

• This is a special syntax that works only for strings

• Each string literal (enclosed in double quotes)
represents a String object

Copyright © 2012 Pearson Education, Inc.

String Objects

• A String object is immutable; its contents cannot
be changed. Does the following code change the
contents of the string?

String s = "Java";

s = "html";

The answer is NO. Variable s now points to the
new string object as shown:

Copyright © 2012 Pearson Education, Inc.

s "Java"

"html"

s "Java"

String Objects

s

The unreferenced String object becomes a garbage.
Luckily Java collects its own garbage. The 8 bytes
occupied by "Java" is brought back to free memory
space.

Copyright © 2012 Pearson Education, Inc.

"Java"

"html"

Some Useful Methods in String Class

Copyright © 2012 Pearson Education, Inc.

Other String Class Methods in Java

Copyright © 2012 Pearson Education, Inc.

int lastIndexOf(char ch) or lastIndexOf(String str)
Returns the index of the last match of the argument, or -1 if none exists.

boolean startsWith(String str)

Returns true if this string starts with str.

boolean endsWith(String str)
Returns true if this string starts with str.

String trim()

Returns a copy of this string with leading and trailing whitespace

removed. String toLowerCase()

Returns a copy of this string with all uppercase characters changed to lowercase.

String toUpperCase()
Returns a copy of this string with all lowercase characters changed to uppercase

Checking Strings for Equality

Copyright © 2012 Pearson Education, Inc.

• Many applications will require you to test whether two strings are
equal, in the sense that they contain the same characters.

• Although it seems natural to do so, you cannot use the == operator
for this purpose. While it is legal to write

if (s1 == s2) . . .

 the if test will not have the desired effect. When you use ==
on two objects, it checks whether the objects are identical,
which means that the references point to the same address.

• What you need to do instead is call the equals method:

if (s1.equals(s2)) . . .

String Class equals

 Checking equality of two Strings

Copyright © 2012 Pearson Education, Inc.

import java.util.*;

public class Program {

 public static void main(String[] args) {

 String physicist1 = "Albert Einstein";

 String physicist2 = "Max Planck";

 String physicist3 = "Albert Einstein";

 // Are any of the above Strings equal to one another?

 boolean equals1 = physicist1.equals(physicist2);

 boolean equals2 = physicist1.equals(physicist3);

 // Display the results of the equality checks.

 System.out.println("\"" + physicist1 + "\" equals \"" + physicist2 + "\"? "

 + equals1);

 System.out.println("\"" + physicist1 + "\" equals \"" + physicist3 + "\"? "

 + equals2);

 // Compare == with equals method

 Scanner scan = new Scanner (System.in);

 String physicist4 = scan.nextLine();

 System.out.println("\"" + physicist1 + "\" == \"" + physicist3 + "\"? " +

 (physicist1 == physicist3));

 System.out.println("\"" + physicist1 + "\" == \"" + physicist4 + "\"? " + (

 physicist1 == physicist4));

 }

}

String Class equals

 Checking equality of two Strings

Copyright © 2012 Pearson Education, Inc.

import java.util.*;

public class Program {

 public static void main(String[] args) {

 String physicist1 = "Albert Einstein";

 String physicist2 = "Max Planck";

 String physicist3 = "Albert Einstein";

 // Are any of the above Strings equal to one another?

 boolean equals1 = physicist1.equals(physicist2);

 boolean equals2 = physicist1.equals(physicist3);

 // Display the results of the equality checks.

 System.out.println("\"" + physicist1 + "\" equals \"" + physicist2 + "\"? "

 + equals1);

 System.out.println("\"" + physicist1 + "\" equals \"" + physicist3 + "\"? "

 + equals2);

 // Compare == with equals method

 Scanner scan = new Scanner (System.in);

 String physicist4 = scan.nextLine();

 System.out.println("\"" + physicist1 + "\" == \"" + physicist3 + "\"? " +

 (physicist1 == physicist3));

 System.out.println("\"" + physicist1 + "\" == \"" + physicist4 + "\"? " + (

 physicist1 == physicist4));

 }

}

Sample Run

"Albert Einstein" equals "Max Planck"? false

"Albert Einstein" equals "Albert Einstein"? true

Albert Einstein

"Albert Einstein" == "Albert Einstein"? true

"Albert Einstein" == "Albert Einstein"? false

String Class equalsIgnoreCase

Copyright © 2012 Pearson Education, Inc.

public class Program2 {

public static void main(String[] args) {

 String physicist1 = "Albert Einstein";

 String physicist2 = "Max Planck";

 String physicist3 = "albert einstein";

 // Are any of the above Strings equal to one another?

 boolean equals1 = physicist1.equalsIgnoreCase(physicist2);

 boolean equals2 = physicist1.equalsIgnoreCase(physicist3);

 // Display the results of the equality checks

 System.out.println("\"" + physicist1 + "\" equals \"" +

 physicist2 + "\"? " + equals1);

 System.out.println("\"" + physicist1 + "\" equals \"" +

 physicist3 + "\"? " + equals2);

}

}

String Class equalsIgnoreCase

The char at the given index within the String.

Copyright © 2012 Pearson Education, Inc.

public class Program2 {

public static void main(String[] args) {

 String physicist1 = "Albert Einstein";

 String physicist2 = "Max Planck";

 String physicist3 = "albert einstein";

 // Are any of the above Strings equal to one another?

 boolean equals1 = physicist1.equalsIgnoreCase(physicist2);

 boolean equals2 = physicist1.equalsIgnoreCase(physicist3);

 // Display the results of the equality checks

 System.out.println("\"" + physicist1 + "\" equals \"" +

 physicist2 + "\"? " + equals1);

 System.out.println("\"" + physicist1 + "\" equals \"" +

 physicist3 + "\"? " + equals2);

}

}

Sample Run

"Albert Einstein" equals "Max Planck"? false
"Albert Einstein" equals "albert einstein"? true

Comparing Two Strings

• The compareTo method can also be used to

compare two strings:

s1.compareTo(s2)

returns:

 0 if s1 is equal to s2

 <0 if s1 is lexicographically less than s2

 >0 if s1 is lexicographically greater than s2

Copyright © 2012 Pearson Education, Inc.

Converting, Replacing

"Welcome".toLowerCase() returns a new string, "welcome"

"Welcome".toUpperCase() returns a new string, "WELCOME"

" Welcome ".trim() returns a new string, "Welcome"

"Welcome".replace('e','A') returns a new string, "WAlcomA"

"Welcome".replaceFirst("e","AB") returns a new string,

"WABlcome"

"Welcome".replace("e","AB") returns a new string, "WABlcomAB"

"Welcome".replace("el","AB") returns a new string, "WABcome"

Copyright © 2012 Pearson Education, Inc.

String Indexes

• It is helpful to refer to a particular character within a
string

• This can be done by specifying the character's
numeric index

• The indexes begin at zero in each string

• In the string "Hello", the character 'H' is at
index 0 and the 'o' is at index 4

Copyright © 2012 Pearson Education, Inc.

String Class charAt

The char at the given index within the String.

Copyright © 2012 Pearson Education, Inc.

public class Program3

{

 public static void main(String[] args)

 {

 String str = "Hello, World!";

 // Get the character at positions 0 and 12.

 char ch1 = str.charAt(0);

 char ch2 = str.charAt(12);

 // Print out the results

 System.out.println("The character at position 0 is " + ch1);

 System.out.println("The character at position 12 is " + ch2);

 }

}

String Class charAt

The char at the given index within the String.

Copyright © 2012 Pearson Education, Inc.

public class Program3

{

 public static void main(String[] args)

 {

 String str = "Hello, World!";

 // Get the character at positions 0 and 12.

 char ch1 = str.charAt(0);

 char ch2 = str.charAt(12);

 // Print out the results

 System.out.println("The character at position 0 is " + ch1);

 System.out.println("The character at position 12 is " + ch2);

 }

}

Sample Run

The character at position 0 is H
The character at position 12 is !

How to get a char from the user using

Scanner class?

As mentioned earlier, the Scanner class does not

have a method that returns a char alone. Use the

following to extract the first character from a String of

1 (or more..) characters:

Copyright © 2012 Pearson Education, Inc.

char ch = scan.next().charAt(0);

• See StringMutation.java

Copyright © 2012 Pearson Education, Inc.

StringMutation.java

Copyright © 2012 Pearson Education, Inc.

//**

// StringMutation.java Author: Lewis/Loftus

//

// Demonstrates the use of the String class and its methods.

//**

public class StringMutation

{

 //---

 // Prints a string and various mutations of it.

 //---

 public static void main (String[] args)

 {

 String phrase = "Change is inevitable";

 String mutation1, mutation2, mutation3, mutation4;

 System.out.println ("Original string: \"" + phrase + "\"");

 System.out.println ("Length of string: " + phrase.length());

 mutation1 = phrase.concat (", except from vending machines.");

 mutation2 = mutation1.toUpperCase();

 mutation3 = mutation2.replace ('E', 'X');

 mutation4 = mutation3.substring (3, 30);

continued

Copyright © 2012 Pearson Education, Inc.

continued

 // Print each mutated string

 System.out.println ("Mutation #1: " + mutation1);

 System.out.println ("Mutation #2: " + mutation2);

 System.out.println ("Mutation #3: " + mutation3);

 System.out.println ("Mutation #4: " + mutation4);

 System.out.println ("Mutated length: " + mutation4.length());

 }

}

Copyright © 2012 Pearson Education, Inc.

continued

 // Print each mutated string

 System.out.println ("Mutation #1: " + mutation1);

 System.out.println ("Mutation #2: " + mutation2);

 System.out.println ("Mutation #3: " + mutation3);

 System.out.println ("Mutation #4: " + mutation4);

 System.out.println ("Mutated length: " + mutation4.length());

 }

}

Output

Original string: "Change is inevitable"

Length of string: 20

Mutation #1: Change is inevitable, except from vending machines.

Mutation #2: CHANGE IS INEVITABLE, EXCEPT FROM VENDING MACHINES.

Mutation #3: CHANGX IS INXVITABLX, XXCXPT FROM VXNDING MACHINXS.

Mutation #4: NGX IS INXVITABLX, XXCXPT F

Mutated length: 27

Quick Check

Copyright © 2012 Pearson Education, Inc.

What output is produced by the following?

String str = "Space, the final frontier.";

System.out.println (str.length());

System.out.println (str.substring(7));

System.out.println (str.toUpperCase());

System.out.println (str.length());

Quick Check

Copyright © 2012 Pearson Education, Inc.

What output is produced by the following?

String str = "Space, the final frontier.";

System.out.println (str.length());

System.out.println (str.substring(7));

System.out.println (str.toUpperCase());

System.out.println (str.length());

26

the final frontier.

SPACE, THE FINAL FRONTIER.

26

Extracting Substring

Copyright © 2012 Pearson Education, Inc.

• The substring method makes it possible to extract a
piece of a larger string by providing index numbers that
determine the extent of the substring.

 where p1 is the first index position in the desired
substring and p2 is the index position immediately
following the last position in the substring.

• The general form of the substring call is

str.substring(p1, p2);

• As an example, if you wanted to select the substring
"ell" from a string variable str containing
"hello, world" you would make the following call:

str.substring(1, 4);

String Example
• Reverse a string

– Take input from the user

– Reverse the input

– Print out the user input and the reversed version of the

string

Copyright © 2012 Pearson Education, Inc.

Output

Please type the original text: Cs114

The reversed text: 411sC

See ReverseString.java

ReverseString.java

Searching within a String: indexOf

Copyright © 2012 Pearson Education, Inc.

int indexOf(char ch)

 Returns the index of the first occurrence of char ch in this string.

 Returns -1 if not matched.

int indexOf(char ch, int fromIndex)

 Returns the index of the first occurrence of char ch in this string

 after fromIndex. Returns -1 if not matched.

int indexOf(String s)

 Returns the index of the first occurrence of String cs in this string.

 Returns -1 if not matched.

int indexOf(String s, int fromIndex)

 Returns the index of the first occurrence of String s in this string

 after fromIndex. Returns -1 if not matched.

Searching within a String: lastIndexOf

Copyright © 2012 Pearson Education, Inc.

int lastIndexOf(char ch)

 Returns the index of the last occurrence of char ch in this string.

 Returns -1 if not matched.

int lastIndexOf(char ch, int fromIndex)

 Returns the index of the last occurrence of char ch in this string

 before fromIndex. Returns -1 if not matched.

int lastIndexOf(String s)

 Returns the index of the last occurrence of String cs in this string.

 Returns -1 if not matched.

int lastIndexOf(String s, int fromIndex)

 Returns the index of the last occurrence of String s in this string

 before fromIndex. Returns -1 if not matched.

Searching within a string
 0 3 5 9 11

"Welcome to Java".indexOf('W') returns 0.

"Welcome to Java".indexOf('o') returns 4.

"Welcome to Java".indexOf('o', 5) returns 9.

"Welcome to Java".indexOf("come") returns 3.

"Welcome to Java".indexOf("Java", 5) returns 11.

"Welcome to Java".indexOf("java", 5) returns -1.

"Welcome to Java".lastIndexOf('W') returns 0.

"Welcome to Java".lastIndexOf('o') returns 9.

"Welcome to Java".lastIndexOf('o', 5) returns 4.

"Welcome to Java".lastIndexOf("come") returns 3.

"Welcome to Java".lastIndexOf("Java", 5) returns -1.

"Welcome to Java".lastIndexOf("Java") returns 11.

Copyright © 2012 Pearson Education, Inc.

String Class Example

• How would you replace a word within a String with

another one? (Without using replace method)

• See ReplaceOccurence.java

Copyright © 2012 Pearson Education, Inc.

ReplaceOccurence.java

String Class Examples

• How would you replace a word within a String with

another one? (Without using replace method)

• See ReplaceOccurence.java

• Or you could use the replace method of String

class:

str.replace(repFrom, repTo);

Copyright © 2012 Pearson Education, Inc.

ReplaceOccurence.java

Outline
Using Classes and Objects

Creating Objects

The String Class

The Character Class

The Random Class

The Math Classes

Formatting Output

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Useful Methods in the Character Class

static boolean isDigit(char ch)

Determines if the specified character is a digit.

static boolean isLetter(char ch)

Determines if the specified character is a letter.

static boolean isLetterOrDigit(char ch)

Determines if the specified character is a letter or a digit.

static boolean isLowerCase(char ch)

Determines if the specified character is a lowercase letter.

static boolean isUpperCase(char ch)

Determines if the specified character is an uppercase letter.

static boolean isWhitespace(char ch)

Determines if the specified character is whitespace (spaces and tabs).

static char toLowerCase(char ch)

Converts ch to its lowercase equivalent, if any. If not, ch is returned

unchanged. static char toUpperCase(char ch)

Converts ch to its uppercase equivalent, if any. If not, ch is returned

unchanged.

Character Class

See CharacterLowerCaseExample.java

CharacterLowerCaseExample.java

public class CharacterLowerCaseExample {

 public static void main(String[] args) {

 char c1 = 'A';

 char c2 = 'a';

 boolean b1 = Character.isLowerCase(c1);

 boolean b2 = Character.isLowerCase(c2);

 if(b1 == true){

 System.out.println(c1 + " is lowercase.");

 }

 else{

 System.out.println(c1 + " is not lowercase.");

 }

 if(b2 == true){

 System.out.println(c2 + " is lowercase.");

 }

 else{

 System.out.println(c2 + " is not lowercase.");

 }

 }

}

Character Class

Outline
Using Classes and Objects

Creating Objects

The String Class

The Character Class

The Random Class

The Math Classes

Formatting Output

Copyright © 2012 Pearson Education, Inc.

The Random Class

• The Random class is part of the java.util
package

• It provides methods that generate pseudorandom
numbers

• A Random object performs complicated calculations
based on a seed value to produce a stream of
seemingly random values

• See RandomNumbers.java

Copyright © 2012 Pearson Education, Inc.

RandomNumbers.java

Copyright © 2012 Pearson Education, Inc.

//**

// RandomNumbers.java Author: Lewis/Loftus

//

// Demonstrates the creation of pseudo-random numbers using the

// Random class.

//**

import java.util.Random;

public class RandomNumbers

{

 //---

 // Generates random numbers in various ranges.

 //---

 public static void main (String[] args)

 {

 Random generator = new Random();

 int num1;

 float num2;

 num1 = generator.nextInt();

 System.out.println ("A random integer: " + num1);

 num1 = generator.nextInt(10);

 System.out.println ("From 0 to 9: " + num1);

continued

Copyright © 2012 Pearson Education, Inc.

continued

 num1 = generator.nextInt(10) + 1;

 System.out.println ("From 1 to 10: " + num1);

 num1 = generator.nextInt(15) + 20;

 System.out.println ("From 20 to 34: " + num1);

 num1 = generator.nextInt(20) - 10;

 System.out.println ("From -10 to 9: " + num1);

 num2 = generator.nextFloat();

 System.out.println ("A random float (between 0-1): " + num2);

 num2 = generator.nextFloat() * 6; // 0.0 to 5.999999

 num1 = (int)num2 + 1;

 System.out.println ("From 1 to 6: " + num1);

 }

}

Sample Run

A random integer: 672981683

From 0 to 9: 0

From 1 to 10: 3

From 20 to 34: 30

From -10 to 9: -4

A random float (between 0-1): 0.18538326

From 1 to 6: 3

Quick Check

Copyright © 2012 Pearson Education, Inc.

Given a Random object named gen, what range of

values are produced by the following expressions?

gen.nextInt(25)

gen.nextInt(6) + 1

gen.nextInt(100) + 10

gen.nextInt(50) + 100

gen.nextInt(10) – 5

gen.nextInt(22) + 12

Quick Check

Copyright © 2012 Pearson Education, Inc.

Given a Random object named gen, what range of

values are produced by the following expressions?

gen.nextInt(25)

gen.nextInt(6) + 1

gen.nextInt(100) + 10

gen.nextInt(50) + 100

gen.nextInt(10) – 5

gen.nextInt(22) + 12

Range

0 to 24

1 to 6

10 to 109

100 to 149

-5 to 4

12 to 33

Quick Check

Copyright © 2012 Pearson Education, Inc.

Write an expression that produces a random integer

in the following ranges:

Range

0 to 12

1 to 20

15 to 20

-10 to 0

Quick Check

Copyright © 2012 Pearson Education, Inc.

Write an expression that produces a random integer

in the following ranges:

gen.nextInt(13)

gen.nextInt(20) + 1

gen.nextInt(6) + 15

gen.nextInt(11) – 10

Range

0 to 12

1 to 20

15 to 20

-10 to 0

Outline
Using Classes and Objects

Creating Objects

The String Class

The Character Class

The Random Class

The Math Classes

Formatting Output

Copyright © 2012 Pearson Education, Inc.

The Math Class

• The Math class is part of the java.lang package

• The Math class contains methods that perform
various mathematical functions

• These include:

– absolute value

– square root

– exponentiation

– trigonometric functions

Copyright © 2012 Pearson Education, Inc.

The Math Class

• The methods of the Math class are static methods
(also called class methods)

• Static methods are invoked through the class name
– no object of the Math class is needed

value = Math.cos(90) + Math.sqrt(delta);

• We discuss static methods further in Chapter 7

• See Quadratic.java

Copyright © 2012 Pearson Education, Inc.

Lecture8/Quadratic.java

Copyright © 2012 Pearson Education, Inc.

//**

// Quadratic.java Author: Lewis/Loftus

//

// Demonstrates the use of the Math class to perform a calculation

// based on user input.

//**

import java.util.Scanner;

public class Quadratic

{

 //---

 // Determines the roots of a quadratic equation.

 //---

 public static void main (String[] args)

 {

 int a, b, c; // ax^2 + bx + c

 double discriminant, root1, root2;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter the coefficient of x squared: ");

 a = scan.nextInt();

continued

Copyright © 2012 Pearson Education, Inc.

 continued

 System.out.print ("Enter the coefficient of x: ");

 b = scan.nextInt();

 System.out.print ("Enter the constant: ");

 c = scan.nextInt();

 // Use the quadratic formula to compute the roots.

 // Assumes a positive discriminant.

 discriminant = Math.pow(b, 2) - (4 * a * c);

 root1 = ((-1 * b) + Math.sqrt(discriminant)) / (2 * a);

 root2 = ((-1 * b) - Math.sqrt(discriminant)) / (2 * a);

 System.out.println ("Root #1: " + root1);

 System.out.println ("Root #2: " + root2);

 }

}

Useful Methods in the Math Class

Math.abs(x) Returns the absolute value of x

Math.min(x, y) Returns the smaller of x and y

Math.max(x, y) Returns the larger of x and y

Math.sqrt(x) Returns the square root of x

Math.log(x) Returns the natural logarithm of x (loge x)

Math.exp(x) Returns the inverse logarithm of x (e

x
)

Math.pow(x, y) Returns the value of x raised to the y power (x
y

)

Math.sin(theta) Returns the sine of theta, measured in radians

Math.cos(theta) Returns the cosine of theta

Math.tan(theta) Returns the tangent of theta

Math.asin(x) Returns the angle whose sine is x

Math.acos(x) Returns the angle whose cosine is x

Math.atan(x) Returns the angle whose tangent is x

Math.toRadians(degrees) Converts an angle from degrees to radians

Math.toDegrees(radians) Converts an angle from radians to degrees

Math Example

• The following code provides examples on the use

of most of the Math methods.

• Notice how we invoke the methods (without using a

Math object)

Copyright © 2012 Pearson Education, Inc.

HW: Study MathExample.java

MathExample.java

Other Exercises

• See Converter.java

Copyright © 2012 Pearson Education, Inc.

Outline
Using Classes and Objects

Creating Objects

The String Class

The Character Class

The Random Class

The Math Classes

Formatting Output

Copyright © 2012 Pearson Education, Inc.

Formatting Output

• It is often necessary to format output values in
certain ways so that they can be presented properly

• The Java standard class library contains classes
that provide formatting capabilities

• The NumberFormat class allows you to format
values as currency or percentages

• The DecimalFormat class allows you to format
values based on a pattern

• Both are part of the java.text package

Copyright © 2012 Pearson Education, Inc.

Formatting Output

• The NumberFormat class has static methods that

return a formatter object

getCurrencyInstance()

getPercentInstance()

• Each formatter object has a method called
format that returns a string with the specified

information in the appropriate format

• See Purchase.java

Copyright © 2012 Pearson Education, Inc.

Purchase.java

Copyright © 2012 Pearson Education, Inc.

//**

// Purchase.java Author: Lewis/Loftus

//

// Demonstrates the use of the NumberFormat class to format output.

//**

import java.util.Scanner;

import java.text.NumberFormat;

public class Purchase

{

 //---

 // Calculates the final price of a purchased item using values

 // entered by the user.

 //---

 public static void main (String[] args)

 {

 final double TAX_RATE = 0.06; // 6% sales tax

 int quantity;

 double subtotal, tax, totalCost, unitPrice;

 Scanner scan = new Scanner (System.in);

continued

Copyright © 2012 Pearson Education, Inc.

continued

 NumberFormat fmt1 = NumberFormat.getCurrencyInstance();

 NumberFormat fmt2 = NumberFormat.getPercentInstance();

 System.out.print ("Enter the quantity: ");

 quantity = scan.nextInt();

 System.out.print ("Enter the unit price: ");

 unitPrice = scan.nextDouble();

 subtotal = quantity * unitPrice;

 tax = subtotal * TAX_RATE;

 totalCost = subtotal + tax;

 // Print output with appropriate formatting

 System.out.println ("Subtotal: " + fmt1.format(subtotal));

 System.out.println ("Tax: " + fmt1.format(tax) + " at "

 + fmt2.format(TAX_RATE));

 System.out.println ("Total: " + fmt1.format(totalCost));

 }

}

Copyright © 2012 Pearson Education, Inc.

continued

 NumberFormat fmt1 = NumberFormat.getCurrencyInstance();

 NumberFormat fmt2 = NumberFormat.getPercentInstance();

 System.out.print ("Enter the quantity: ");

 quantity = scan.nextInt();

 System.out.print ("Enter the unit price: ");

 unitPrice = scan.nextDouble();

 subtotal = quantity * unitPrice;

 tax = subtotal * TAX_RATE;

 totalCost = subtotal + tax;

 // Print output with appropriate formatting

 System.out.println ("Subtotal: " + fmt1.format(subtotal));

 System.out.println ("Tax: " + fmt1.format(tax) + " at "

 + fmt2.format(TAX_RATE));

 System.out.println ("Total: " + fmt1.format(totalCost));

 }

}

Sample Run

Enter the quantity: 5

Enter the unit price: 3.87

Subtotal: $19.35

Tax: $1.16 at 6%

Total: $20.51

Formatting Output

• The DecimalFormat class can be used to format
a floating point value in various ways

• For example, you can specify that the number
should be truncated to three decimal places

• The constructor of the DecimalFormat class
takes a string that represents a pattern for the
formatted number

• See CircleStats.java

Copyright © 2012 Pearson Education, Inc.

CircleStats.java

Copyright © 2012 Pearson Education, Inc.

//**

// CircleStats.java Author: Lewis/Loftus

//

// Demonstrates the formatting of decimal values using the

// DecimalFormat class.

//**

import java.util.Scanner;

import java.text.DecimalFormat;

public class CircleStats

{

 //---

 // Calculates the area and circumference of a circle given its

 // radius.

 //---

 public static void main (String[] args)

 {

 int radius;

 double area, circumference;

 Scanner scan = new Scanner (System.in);

continued

Copyright © 2012 Pearson Education, Inc.

continued

 System.out.print ("Enter the circle's radius: ");

 radius = scan.nextInt();

 area = Math.PI * Math.pow(radius, 2);

 circumference = 2 * Math.PI * radius;

 // Round the output to three decimal places

 DecimalFormat fmt = new DecimalFormat ("0.###");

 System.out.println ("The circle's area: " + fmt.format(area));

 System.out.println ("The circle's circumference: "

 + fmt.format(circumference));

 }

}

Copyright © 2012 Pearson Education, Inc.

continued

 System.out.print ("Enter the circle's radius: ");

 radius = scan.nextInt();

 area = Math.PI * Math.pow(radius, 2);

 circumference = 2 * Math.PI * radius;

 // Round the output to three decimal places

 DecimalFormat fmt = new DecimalFormat ("0.###");

 System.out.println ("The circle's area: " + fmt.format(area));

 System.out.println ("The circle's circumference: "

 + fmt.format(circumference));

 }

}

Sample Run

Enter the circle's radius: 5

The circle's area: 78.54

The circle's circumference: 31.416

Using Locale class

• What if you want to display Euro symbol, but not

the default money symbol on your computer?

• The answer is to use a country that uses Euro as

the currency symbol as the parameter for the

getCurrencyInstance method of the NumberFormat

class.

• You can also generete your own Locale like tr in

the following example

• See EuroSymbol.java

Copyright © 2012 Pearson Education, Inc.

EuroSymbol.java

Using useLocale() method

• Have you ever encountered the run-time error,

InputMismatchException when you have tried to

input a floating-point number with an incorrect

decimal point symbol?

• Would you not prefer to make sure that you can

use the . as the decimal point ?

• See ReadingInUSLocale.java

Copyright © 2012 Pearson Education, Inc.

ReadingInUSLocale.java

