
Outline
Reading Files

Writing Files

Methods

Copyright © 2012 Pearson Education, Inc.

Scanner
• In our examples Scanner was reading input from System.in

• Example:

 Scanner scan = new Scanner (System.in);

 int i = scan.nextInt();

 This example reads a single int from System.in

 We will now change the parameter, System.in

Reading File: The File Class

• How are we going to get a reference to a file on our

disk?

 // Need to import to use File class

 import java.io.*;

String myFilename = "example.txt“;

File myfile = new File(myFilename);

Copyright © 2012 Pearson Education, Inc.

The Scanner class

 Pass the File object as a parameter to the Scanner class

String myFilename = "example.txt“;

File myFile = new File(myFilename);

Scanner input = new Scanner(myFile);

Compiler Error with Files
• Would the following program compile?

 import java.io.*; // for File

 import java.util.Scanner; // for Scanner

 public class ReadFile {

 public static void main(String[] args) {

 String myFilename = “data.txt”;

 File myFile = new File(myFilename);

 Scanner input = new Scanner(myFile);

 String text = input.next();

 System.out.println(text);

 input.close();

 }

}

Compiler Error with Files
• The following program does not compile:

 import java.io.*; // for File

 import java.util.Scanner; // for Scanner

 public class ReadFile {

 public static void main(String[] args) {

 String myFilename = “data.txt”;

 File myFile = new File(myFilename);

 Scanner input = new Scanner(myFile);

 String text = input.next();

 System.out.println(text);

 input.close();

 }

}

• The following error occurs:

ReadFile.java:6: unreported exception java.io.FileNotFoundException;

must be caught or declared to be thrown

 Scanner input = new Scanner(new File("data.txt"));

 ^

Exceptions
• Exception: An object representing a runtime error.

• dividing an integer by 0

• calling charAt on a String with a large index

• trying to read the wrong type of value from a Scanner

• trying to read a file that does not exist

• A program with an error "throws" an exception.

• It is also possible to "catch" (handle or fix) an exception.

The throws Clause

• throws clause: Keywords on a method's header that state

that it may generate an exception.

• Like saying, "I hereby announce that this method might

throw an exception, and I accept the consequences if it

happens."

• Syntax:

 public static type name(params) throws type {

• Example:

 public class ReadFile {

 public static void main(String[] args)

 throws IOException{

Reading an Entire File
• Suppose we want our program to process the entire file; for

instance find the sum of all numbers stored in a file

regardless of the number of values stored in a file.

• How can we achieve this?

Testing for Valid Input: hasNext Methods
• Scanner hasNext Methods are useful to see what input is

coming, and to avoid crashes

• These methods do not consume input; they just give

information about the next token.

Method Description

boolean

hasNext()

returns true if there are any more tokens of

input to read (always true for console

input)

boolean

hasNextInt()

returns true if there is a next token

and it can be read as an int

boolean

hasNextDouble()

returns true if there is a next token

and it can be read as a double

boolean

hasNextLine()

returns true if there is a next line of input

How to iterate until the end of file?

EchoFile2.java

EchoFileNumbers.txt

EchoFile2.java
EchoFile2.java
echoFileNumbers.txt

• Find the number of lines in a given input file

• See FindNumberOfLines.java

Copyright © 2012 Pearson Education, Inc.

FindNumberOfLines.java

File Reading Example

Find the number of space (' '), comma (',') and dot ('.')

in each line and in the file and report it to the user.

• Check out CountPunctuationSpace.java

CountPunctuationSpace.java

Example

• Check this one at home: SearchFile.java

SearchFile.java

Outline
Reading Files

Writing Files

Methods

Copyright © 2012 Pearson Education, Inc.

Writing Text Files

• We have to create PrintWriter objects for
writing text to any file using print, println and
printf methods.

• The close() method of the PrintWriter class
must be used to close the file. If this method is not
invoked the data may not be saved properly in the
file.

Copyright © 2012 Pearson Education, Inc.

Writing Text Files

Write a Java program that generates 10 random
numbers per line for 10 lines and stores these
numbers in a text file.

• See TestData.java

Copyright © 2012 Pearson Education, Inc.

TestData.java
TestData.java

Copyright © 2012 Pearson Education, Inc.

//**

// TestData.java Author: Lewis/Loftus

//

// Demonstrates I/O exceptions and the use of a character file

// output stream.

//**

import java.util.Random;

import java.io.*;

public class TestData

{

 //---

 // Creates a file of test data that consists of ten lines each

 // containing ten integer values in the range 10 to 99.

 //---

 public static void main (String[] args) throws IOException

 {

 final int MAX = 10;

 int value;

 String file = "ourtest.dat";

 Random rand = new Random();

continue

Copyright © 2012 Pearson Education, Inc.

continue
 PrintWriter outFile = new PrintWriter (file);

 for (int line=1; line <= MAX; line++)

 {

 for (int num=1; num <= MAX; num++)

 {

 value = rand.nextInt (90) + 10;

 outFile.print (value + " ");

 }

 outFile.println ();

 }

 outFile.close();

 System.out.println ("Output file has been created: " + file);

 }

}

Copyright © 2012 Pearson Education, Inc.

continue

 FileWriter fw = new FileWriter (file);

 PrintWriter outFile = new PrintWriter (fw);

 for (int line=1; line <= MAX; line++)

 {

 for (int num=1; num <= MAX; num++)

 {

 value = rand.nextInt (90) + 10;

 outFile.print (value + " ");

 }

 outFile.println ();

 }

 outFile.close();

 System.out.println ("Output file has been created: " + file);

 }

}

Output

Output file has been created: test.dat

Sample ourtest.dat File

77 46 24 67 45 37 32 40 39

10

90 91 71 64 82 80 68 18 83

89

25 80 45 75 74 40 15 90 79

59

44 43 95 85 93 61 15 20 52

86

60 85 18 73 56 41 35 67 21

42

93 25 89 47 13 27 51 94 76

13

33 25 48 42 27 24 88 18 32

17

71 10 90 88 60 19 89 54 21

92

45 26 47 68 55 98 34 38 98

38

48 59 90 12 86 36 11 65 41

62

File Read and Write

Modify the CountPunctuationSpace.java such

that the output is written on file

• Check out CountPunctuationSpace2.java

CountPunctuationSpace2.java

Outline
Reading Files

Writing Files

Methods

Copyright © 2012 Pearson Education, Inc.

We used many methods up to now

Copyright © 2012 Pearson Education, Inc.

int lastIndexOf(char ch) or lastIndexOf(String str)
Returns the index of the last match of the argument, or -1 if none exists.

boolean equalsIgnoreCase(String str)

Returns true if this string and str are the same, ignoring differences in

case.
boolean startsWith(String str)

Returns true if this string starts with str.

boolean endsWith(String str)

Returns true if this string starts with str.

String replace(char c1, char c2)

Returns a copy of this string with all instances of c1 replaced by c2.

String trim()

Returns a copy of this string with leading and trailing whitespace

removed. String toLowerCase()

Returns a copy of this string with all uppercase characters changed to

lowercase. String toUpperCase()

Returns a copy of this string with all lowercase characters changed to

uppercase

Useful Methods in the Math Class

Math.abs(x) Returns the absolute value of x

Math.min(x, y) Returns the smaller of x and y

Math.max(x, y) Returns the larger of x and y

Math.sqrt(x) Returns the square root of x

Math.log(x) Returns the natural logarithm of x (loge x)

Math.exp(x) Returns the inverse logarithm of x (e

x
)

Math.pow(x, y) Returns the value of x raised to the y power (x
y

)

Math.sin(theta) Returns the sine of theta, measured in radians

Math.cos(theta) Returns the cosine of theta

Math.tan(theta) Returns the tangent of theta

Math.asin(x) Returns the angle whose sine is x

Math.acos(x) Returns the angle whose cosine is x

Math.atan(x) Returns the angle whose tangent is x

Math.toRadians(degrees) Converts an angle from degrees to radians

Math.toDegrees(radians) Converts an angle from radians to degrees

Divide and Conquer

• Break large programs into a series of smaller

methods:

– Helps manage complexity

– Makes it easier to build large programs

– Makes is easier to debug programs

– Reusability

26

Methods

• Local variables

– Declared in method declaration

• Parameters

– Communicates information into the methods

• Return value

– Communicates information to the outside of the method

Methods

Write a java method, maximum instead of using

Math.max(x,y)

See MyMax.java

Now we’ll learn how to write such methods.

Copyright © 2012 Pearson Education, Inc.

MyMax.java

Method Declarations
• A method declaration specifies the code that will be

executed when the method is invoked (called)

• When a method is invoked, the flow of control jumps to the

method and executes its code

• When complete, the flow returns to the place where the

method was called and continues

• The invocation may or may not return a value, depending on

how the method is defined

Copyright © 2012 Pearson Education, Inc.

myMethod();

myMethod compute

Control Flow on Invoking a Method

• If the called method is in the same class, only the
method name is needed

Copyright © 2012 Pearson Education, Inc.

doIt

helpMe

helpMe();

obj.doIt();

main

Control Flow on Invoking a Method

• The called method is often part of another class or
object

Copyright © 2012 Pearson Education, Inc.

Methods Header

• What information can you learn about a method

from its header?

 public static void calc (int num1, String message)

Method Body
• The method header is followed by the method body

public static char calc (int num1, int num2, String message)

{

 int sum = num1 + num2;

 char result = '*';

 if (sum>=0 && sum < message.length())

 result = message.charAt (sum);

 return result;

}

The return expression
must be consistent with
the return type

sum and result

are local data

They are created
each time the
method is called, and
are destroyed when
it finishes executing

Copyright © 2012 Pearson Education, Inc.

Parameters

• When a method is called, the actual parameters in the

invocation are copied into the formal parameters in the

method header

char calc (int num1, int num2, String message)

{

.

.

.

}

ch = obj.calc (25, count, "Hello");

Copyright © 2012 Pearson Education, Inc.

Parameter Data Types
• You can pass as many parameters as you like.

• To pass more than one parameter, you need to separate the

parameters with commas.

public static int maximum (int x, int y)

{

 /*body*/

}

No Parameters

• You can also have a method that accepts no

parameters. The parameter list is empty:

public static int rollDie ()

public static void printIntro ()

The return Statement
• The return type of a method indicates the type of value that

the method sends back to the calling location

• A method that does not return a value has a void return
type

• A return statement specifies the value that will be returned
 return expression;

• Its expression must conform to the return type

Copyright © 2012 Pearson Education, Inc.

Return Value Types

• You may have multiple return statement expressions

(through if, nested if, switch etc)

• You can only return at most one value from a method.

Modify MyMax.java program to find the maximum

among 3 numbers.

• See MyMax3.java

Copyright © 2012 Pearson Education, Inc.

MyMax3.java

• Exercise: Modify the Palindrome.java such that

it includes a isPalindrome method

• See Palindrome2.java

Copyright © 2012 Pearson Education, Inc.

Palindrome.java
Palindrome2.java

Returning void
• void: means nothing

• A method that returns void returns nothing.

 public static void printIntro (int n)

• void methods can optionally use a return statement with no

value:

– return;

– There is no need for the optional return statement. But occasionally

you might need it to force the program for an early exit from the

method.

Copyright © 2012 Pearson Education, Inc.

Methods That Don’t Return Anything

public static void printIntro() {

 System.out.println("Welcome to CS114");

 System.out.println("It's the best part of my day :P");

}

Copyright © 2012 Pearson Education, Inc.

Local Data

• Local variables can be declared inside a method

• The formal parameters of a method create automatic local
variables when the method is invoked

• When the method finishes, all local variables are destroyed
(including the formal parameters)

Copyright © 2012 Pearson Education, Inc.

The static Modifier

• We declare static using the static modifie

• Static method is one that can be invoked through its

class name as opposed to an object of the class

• Static methods are sometimes called class methods

• For example, the methods of the Math class are

static:

result = Math.sqrt(25)

Copyright © 2012 Pearson Education, Inc.

Static Methods
• There is no need to instantiate an object of the class in

order to invoke the method.

 ClassName.methodName(args)

 Math.sqrt(28);

• All the methods of the Math class are static.

Copyright © 2012 Pearson Education, Inc.

Static Methods

Copyright © 2012 Pearson Education, Inc.

public static int max(int val1, int val2) {

if (val1 > val2) {

 return val1;

}

else {

 return val2;

}

}

Let’s say this belongs to a class named Calculator

 int myMax = Calculator.max(9, 2);

Static Methods

• Because it is declared as static, the cube method can be

invoked through the class name:

value = Helper.cube(4);

• By convention visibility modifiers come first (private, or

public determines visibility)

Copyright © 2012 Pearson Education, Inc.

public class Helper

{

 public static int cube (int num)

 {

 return num * num * num;

 }

}

Main Method
• Recall that the main method is static – it is invoked

by the Java interpreter without creating an object

 public static void main (String[] args)

Copyright © 2012 Pearson Education, Inc.

Exercise

• Modify the following code according to the

comments

• See Circle.java

Copyright © 2012 Pearson Education, Inc.

Circle.java

