
Outline
Method OverLoading

printf method

Arrays

 Declaring and Using Arrays

 Arrays of Objects

 Array as Parameters

 Variable Length Parameter Lists

split() Method from String Class

Integer & Double Wrapper Classes

Two-Dimensional Arrays

Copyright © 2012 Pearson Education, Inc.

Method Overloading

• Method overloading is the process of giving a
single method name multiple definitions in a class

• If a method is overloaded, the method name is not
sufficient to determine which method is being called

• The signature of each overloaded method must be
unique

• The signature includes the number, type, and order
of the parameters

Copyright © 2012 Pearson Education, Inc.

Method Overloading

• The indexOf method of String class is overloaded

Copyright © 2012 Pearson Education, Inc.

int indexOf(char ch)

 Returns the index of the first occurrence of char ch in this string.

 Returns -1 if not matched.

int indexOf(char ch, int fromIndex)

 Returns the index of the first occurrence of char ch in this string

 after fromIndex. Returns -1 if not matched.

int indexOf(String s)

 Returns the index of the first occurrence of String cs in this string.

 Returns -1 if not matched.

int indexOf(String s, int fromIndex)

 Returns the index of the first occurrence of String s in this string

 after fromIndex. Returns -1 if not matched.

Method Overloading

• The abs method of Math class is overloaded

Copyright © 2012 Pearson Education, Inc.

double abs(double d)

float abs(float f)

int abs(int i)

long abs(long l)

Method Overloading

• The compiler determines which method is being invoked by
analyzing the parameters

float tryMe(int x)

{

 return x + .375;

}

float tryMe(int x, float y)

{

 return x*y;

}

result = tryMe(25, 4.32)

Invocation

Copyright © 2012 Pearson Education, Inc.

Overloading Methods

• The return type of the method is not part of the signature.

• That is, overloaded methods cannot differ only by their

return type

• Constructors can be overloaded

• Overloaded constructors provide multiple ways to initialize a

new object

– Recall PrintWriter constructors

Copyright © 2012 Pearson Education, Inc.

Overloading Example

• See MyMaxOverloaded.java

Copyright © 2012 Pearson Education, Inc.

MyMaxOverloaded.java

Outline
Method OverLoading

printf method

Arrays

 Declaring and Using Arrays

 Arrays of Objects

 Array as Parameters

 Variable Length Parameter Lists

split() Method from String Class

Integer & Double Wrapper Classes

Two-Dimensional Arrays

Copyright © 2012 Pearson Education, Inc.

System.out.printf ("format string", data)

• The PrintWriter class has a printf method

compatible with the fprintf method in C or Matlab.

• In the format string you can use format specifiers

as well as leading text for the data you want to

print.

• There should be exactly one data for each format

specifier other than %n

Copyright © 2012 Pearson Education, Inc.

Common Format Specifiers

• %d for integers

• %f for floating-point numbers

• %e for floating-point numbers (scientific

notation)

• %s for string

• %c for char

• %b for boolean

• %n to advance to next line
Copyright © 2012 Pearson

Education, Inc.

Additional characters for format specifiers

• First of all, you can specify the length of data. If

data doesn't fit, the space reserved is extended.

Otherwise, numbers are aligned right, and strings

are aligned left. To override this, you can

additionally use a minus character.

• For numbers you can use zero character to fill the

gap with 0's instead of blanks.

• For floating-point numbers you can use .digit to

specify decimal places to digit.

• See Example_printf.java

Copyright © 2012 Pearson Education, Inc.

Example_printf.java

Outline
Method OverLoading

printf method

Arrays

 Declaring and Using Arrays

 Arrays of Objects

 Array as Parameters

 Variable Length Parameter Lists

split() Method from String Class

Integer & Double Wrapper Classes

Two-Dimensional Arrays

Copyright © 2012 Pearson Education, Inc.

Arrays
• Let’s say we need to hold the temperature values of each

day in Ankara in the past year

• Hard way: Create 365 different variables to hold each day’s

temperature

 double tempDay1, tempDay2, …, …,tempDay365;

 Ughhhhh!!!

 Very difficult to even declare, use and manipulate!

• Easy way: use an array to hold all days temperatures

 Copyright © 2012 Pearson Education, Inc.

How to Declare an Array
• Create an array variable called temperatures

• Declared as follows:

double[] temperatures = new double[365];

• This sets up a location in memory for 365 double variables

at once

Copyright © 2012 Pearson Education, Inc.

Arrays Key Features
• Arrays provide an easy way to hold related variables at once

(for example, temperature for the past year, gas prices for

the last 30 days)

• It has some ordering, we can refer to array elements based

on that ordering

• Homogenous, all data within a single array must share the

same data type (for example, you can create an array of

integer or boolean values, but not both)

• The size of an array is fixed once it is created.

 Copyright © 2012 Pearson Education, Inc.

Array Elements Type

• The element type can be a primitive type or an object

reference

• Therefore, we can create an array of integers, an

array of characters, an array of boolean, an array of
String objects

Copyright © 2012 Pearson Education, Inc.

Declaring Arrays
• First you declare an array reference variable

 int [] myFirstArray; //declares an array

 //variable for ints

• Then you instantiate the array, that is allocate the necessary
amount of memory for the array and let the variable hold the
starting address of the array.

myFirstArray = new int [10]; //allocates memory

• We can combine the declaration and instantiation lines into
one line as follows:

 int [] myFirstArray = new int [10];

Declaring Arrays

• The scores array could be declared as follows:

int[] scores = new int[10];

• The type is int (an array of integers)

• The name of the array is scores

• The size of the array is 10

• All positions of the new array will automatically be initialized

to the default value for the array’s type.

Copyright © 2012 Pearson Education, Inc.

 0 0 0 0 0 0 0 0 0 0

Declaring Arrays

• Some other examples of array declarations:

 int[] weights = new int[2000];

 double[] prices = new double[500];

 boolean[] flags;

 flags = new boolean[20];

 char[] codes = new char[1750];

Copyright © 2012 Pearson Education, Inc.

Arrays are Objects
• In Java, the array itself is an object that must be

instantiated

• Another way to depict the scores array:

scores 79

87

94

82

67

98

87

81

74

91
Copyright © 2012 Pearson Education, Inc.

The name of the array

is an object reference

variable

Array Basics

Array1.java

Copyright © 2012 Pearson Education, Inc.

Array1.java

Array Elements

• Refers to the individual items represented by the

array. For example,

– an array of 10 integers is said to have 10 elements

– an array of 5 characters has 5 elements

– and so on…

Array Index
• Refers to one particular element’s position number in the array or

more formally, as a subscript

 int[] scores = new int[10];

Copyright © 2012 Pearson Education, Inc.

0 1 2 3 4 5 6 7 8 9

89 91 84 62 67 98 87 81 74 91

An array of size N is indexed from 0 (zero) to N-1

scores

The entire array

has a single name

Each value has a numeric index

This array holds 10 values that are indexed from 0 to 9

Array Element

• A particular value in an array is referenced using the array
name followed by the index in brackets

scores[2]

 refers to the value 94 (the 3rd value in the array)

Copyright © 2012 Pearson Education, Inc.

0 1 2 3 4 5 6 7 8 9

79 87 94 82 67 98 87 81 74 91

BasicArray.java

The following example demonstrates the use of

indices.

See BasicArray.java

Copyright © 2012 Pearson Education, Inc.

BasicArray.java

Arrays

• An array element can be assigned a value, printed,
or used in a calculation:

 scores[2] = 89;

 scores[first] = scores[first] + 2;

 mean = (scores[0] + scores[1])/2;

 System.out.println ("Top = " + scores[5]);

Copyright © 2012 Pearson Education, Inc.

See Array2.java

Array2.java

Array Naming Considerations
• The rules for naming variables apply when selecting array

variable names

– Composed of letter, digit, $ and underscore characters

– Cannot start with a digit

– Begins with a smallcase letter by convention

Copyright © 2012 Pearson Education, Inc.

Array Length and Bounds

• Once an array is created, it has a fixed size

• An index used in an array reference must specify a valid
element.

• That is, if the array length is N, the index value must be in
range 0 to N-1

• You will get the run-time error,
ArrayIndexOutOfBoundsException if you use an
invalid index

Copyright © 2012 Pearson Education, Inc.

Bounds Checking

• For example, if the array codes can hold 100

values, it can be indexed from 0 to 99

• It’s common to introduce off-by-one errors when

using arrays:

for (int index=0; index <= 100; index++)

codes[index] = index*50 + epsilon;

problem

Copyright © 2012 Pearson Education, Inc.

Array Length
• Each array object has a public constant (not a method)

called length that stores the size of the array

• It is referenced using the array name:

scores.length

• length holds the number of elements (not the largest
index!)

• Length is not a method so there is no parenthesis at the end
unlike String class length() method

Copyright © 2012 Pearson Education, Inc.

Basic Array Examples

Array3.java

ReverseOrder.java

Copyright © 2012 Pearson Education, Inc.

Array3.java
ReverseOrder.java

Copyright © 2012 Pearson Education, Inc.

//**

// ReverseOrder.java Author: Lewis/Loftus

//

// Demonstrates array index processing.

//**

import java.util.Scanner;

public class ReverseOrder

{

 //---

 // Reads a list of numbers from the user, storing them in an

 // array, then prints them in the opposite order.

 //---

 public static void main (String[] args)

 {

 Scanner scan = new Scanner (System.in);

 double[] numbers = new double[10];

 System.out.println ("The size of the array: " + numbers.length);

continue

Copyright © 2012 Pearson Education, Inc.

continue

 for (int index = 0; index < numbers.length; index++)

 {

 System.out.print ("Enter number " + (index+1) + ": ");

 numbers[index] = scan.nextDouble();

 }

 System.out.println ("The numbers in reverse order:");

 for (int index = numbers.length-1; index >= 0; index--)

 System.out.print (numbers[index] + " ");

 System.out.println ();

 }

}

Copyright © 2012 Pearson Education, Inc.

continue

 for (int index = 0; index < numbers.length; index++)

 {

 System.out.print ("Enter number " + (index+1) + ": ");

 numbers[index] = scan.nextDouble();

 }

 System.out.println ("The numbers in reverse order:");

 for (int index = numbers.length-1; index >= 0; index--)

 System.out.print (numbers[index] + " ");

 }

}

Sample Run

The size of the array: 10

Enter number 1: 18.36

Enter number 2: 48.9

Enter number 3: 53.5

Enter number 4: 29.06

Enter number 5: 72.404

Enter number 6: 34.8

Enter number 7: 63.41

Enter number 8: 45.55

Enter number 9: 69.0

Enter number 10: 99.18

The numbers in reverse order:

99.18 69.0 45.55 63.41 34.8 72.404 29.06 53.5 48.9 18.36

Array Initializers

• An array initializer combines the declaration,

creation, and initialization of an array in one

statement using the following syntax:

elementType [] arrayReferenceVariable = {value0, value1,... , valueK};

Copyright © 2012 Pearson Education, Inc.

Initializer Lists
• An initializer list can be used to instantiate and fill an

array in one step

• The values are delimited by braces and separated
by commas

• Examples:

int[] units = {147, 323, 89, 933, 540,

 269, 97, 114, 298, 476};

char[] grades = {'A', 'B', 'C', 'D', ’F'};

Copyright © 2012 Pearson Education, Inc.

Initializer Lists
• Note that when an initializer list is used:

– the new operator is not used

– no size value is specified

• The size of the array is determined by the number of items
in the list

• An initializer list can be used only in the array declaration

• See Primes.java

Copyright © 2012 Pearson Education, Inc.

Primes.java

Copyright © 2012 Pearson Education, Inc.

//**

// Primes.java Author: Lewis/Loftus

//

// Demonstrates the use of an initializer list for an array.

//**

public class Primes

{

 //---

 // Stores some prime numbers in an array and prints them.

 //---

 public static void main (String[] args)

 {

 int[] primeNums = {2, 3, 5, 7, 11, 13, 17, 19};

 System.out.println ("Array length: " + primeNums.length);

 System.out.println ("The first few prime numbers are:");

 for(int i=0; i < primeNums.length; i++){

 System.out.print (primeNums[i] + " ");

 }

 }

}

Copyright © 2012 Pearson Education, Inc.

//**

// Primes.java Author: Lewis/Loftus

//

// Demonstrates the use of an initializer list for an array.

//**

public class Primes

{

 //---

 // Stores some prime numbers in an array and prints them.

 //---

 public static void main (String[] args)

 {

 int[] primeNums = {2, 3, 5, 7, 11, 13, 17, 19};

 System.out.println ("Array length: " + primeNums.length);

 System.out.println ("The first few prime numbers are:");

 for(int i=0; i < primeNums.length; i++){

 System.out.print (primeNums[i] + " ");

 }

 }

}

Output

Array length: 8

The first few prime numbers are:

2 3 5 7 11 13 17 19

Example:
Find the frequency of the result of throwing a dice 6000 times

• See RollDice.java

Copyright © 2012 Pearson Education, Inc.

RollDice.java

for-each loops
• for-each loop (enhanced for loop) enables you to traverse

the array sequentially without using an index variable

 for (double d: array)

 System.out.println(d);

 is equivalent to

 for (int i = 0; i < array.length; i++){

 double d = array [i];

 System.out.println(d);

}

Copyright © 2012 Pearson Education, Inc.

Another example

int sum = 0;

int[] list = {1, 2, 3};

for (int value : list){

 sum += value;

 }

Copyright © 2012 Pearson Education, Inc.

sum

list

value

0
1 2 3

1

Another example

int sum = 0;

int[] list = {1, 2, 3};

for (int value : list){

 sum += value;

 }

Copyright © 2012 Pearson Education, Inc.

sum

list

value

1
1 2 3

2

Another example

int sum = 0;

int[] list = {1, 2, 3};

for (int value : list){

 sum += value;

 }

Copyright © 2012 Pearson Education, Inc.

sum

list

value

3
1 2 3

3

Another example

int sum = 0;

int[] list = {1, 2, 3};

for (int value : list){

 sum += value;

 }

Copyright © 2012 Pearson Education, Inc.

sum

list

6
1 2 3

Example

• InitializerList.java demonstrates the

usage of array initializers and for-each loops.

Copyright © 2012 Pearson Education, Inc.

InitializerList.java

Outline
Method OverLoading

printf method

Arrays

 Declaring and Using Arrays

 Arrays of Objects

 Array as Parameters

 Variable Length Parameter Lists

split() Method from String Class

Integer & Double Wrapper Classes

Two-Dimensional Arrays

Copyright © 2012 Pearson Education, Inc.

Arrays of Objects

• The elements of an array can be object references

• The following declaration reserves space to store 5
references to String objects

String[] array = new String[5];

• It does NOT create the String objects themselves

• Initially an array of objects holds null references

• Each object stored in an array must be instantiated
separately

Copyright © 2012 Pearson Education, Inc.

Arrays of Objects

• The array array when initially declared:

• At this point, the following line of code would throw a
NullPointerException:

System.out.println(array[0].length());

• See ArrayOfStrings.java

array -

-

-

-

-

Copyright © 2012 Pearson Education, Inc.

ArrayOfStrings.java

Arrays of Objects

• Keep in mind that String objects can be created

using literals

• The following declaration creates an array object
called verbs and fills it with five String objects

created using string literals

String[] verbs = {"play", "work", "eat",

 "sleep", "run"};

See StringArr.java

Copyright © 2012 Pearson Education, Inc.

StringArr.java

