Topic 3
Distributed Objects

Part A

Overview

= Early Distribution — RPC

* CORBA - Common Object Request
Broker Architecture

e RMI —Remote Method Invocation

Distributed Computing

* The search for ways to unify multiple
networked machines so that they can
— share information
- share resources

= Driving force:

— workstations and local area networks

« But, progress has been slow

Difficulties in distributed
computing
. Heterogeneous environments
- different operating systems, languages

« Network reliability
— life is easier on a single machine

The Goal of Distributed
Object Computing

foo()

Objects in a single address space

The Goal of Distributed
Object Computing

foo() @ foo()

talk to objects
in a different address space
as if the object is local

Remote Procedure Call
(RPC)

« Available in pre-Java era

= Allows a procedure call to be made
from one machine to another

e To the programmer it looks like a
local call

* RPC requires programmers to register
their programs with Port Mapper

Remote Procedure Call

« Allows a thread of control in one
process to call a function in another
process — perhaps on another machine

foo(data)

<« data returned

if (x> 3)

foo (), __ — Lives on local machine
else

bar(); Lives on remote machine —

193.164.1.20 on port 2345

Vocabulary

remote object

— an object that can be called from
another machine

— implements a remote interface
— also called a server
 client
— an object that talks to a remote object;

the call can come from an applet or
application

Programming with Sockets
and Streams
= PRO
— Efficient, programmer is in control
= CON
— Programmer must be in control

— Some object must “know” about the
sockets and streams

m@?

Ideal World
(no Sockets or Streams)

object A object B

Atalks to B
as if B were local

General architecture for
distributed object systems

Registration Object Object
Service Skeletons Storage

)

Server
Implemey/(
Object Manager
Client stub

interface

Object
Interface
Specification

IDL Compilers

Client Application

Object Interface
Specification
= Consider a truly open system for
distributing objects:
— clients should be able to access
regardless of their impl. details

« hardware platform, software language

— server should be able to implement an
object in whatever way it needs to

= option of wrapping existing services with
object interfaces

Object manager

« manages the object skeletons and
object references on an object
server

= Its role (object creation, call/result
routing, destruction) is similar to

— CORBAS Object Request Broker (ORB)
— RMI 5 registry system

Remote object transactions
at runtime

Server Object
Implementations

'y
2. Resolve—
object Object 4. Object
\ Sleletons / interactions
Shared .)]
w [Object Manager Naming Serwce]

[—

Environment may be also
used in
a peer-to-peer manner!

K 3. Object .
handle Object
1. Request Stubs
object \
v
Client Application

« Platform-independent means for
specifying object interfaces:
— Interface Definition Language (IDL) in
CORBA
— Interface Specification Language (I1SL) in
Xerox’ Inter-Language Unification (1LU)
system

— Component Model Language (COM) in
Microsofts DCOM system

« Further roles:
— dynamic object activation/deactivation
= via corresponding registered methods
— persistent objects

= via a method for storing/retrieving state
after de/activation

= Where to put object manager?

Registration/Naming Service

= Implementation of an interface needs
to be registered so that it can be
addressed by clients
- routes clients’requests/method
invocations to proper object server
— helps OM in supporting object
de/activation, and persistent objects

Object Communication
Protocol

= A general protocol for handling
remote object requests
— a means for transmitting and receiving
object references, method references,

and data in the form of objects of basic
data types.

Development Tools

e Object i/f editors

* Project managers

= Language cross-compilers
« Symbolic debuggers

« Tools for monitoring and diagnosing
object systems

« Load simulation and testing tools

Security

« Agents making requests of the object
broker

— authentication, authorization, access
control

* Transactions between agents and the
remote objects
— encryption

Distributed object schemes
for Java

* To be explained using an Example
involving a generic problem solver,
which we will distributed using both
CORBA and RMI
— Sol ver : acts as a generic computing

engine that solves numerical problems
— Probl enBet : holds all information

describing a problem and fields for
solution

package dcj .exanpl es;
inport java. io.CutputStream;
public interface Solver {
/1 Solve the current problem set
public bool ean solve();

/1 Solve the given problem set
public bool ean sol ve(ProblenBSet s, int nunmiters);

Il Get/set the current problem set
public Probl enBet getProblem();
public void setProbl em(ProblenSet s);

/1 Get/set the current iteration setting
public int getlterations();
public void setlterations(int nunmter);

/1 Print solution results to the output stream
public void printResults(QutputStreamos);

A Problem Set Class

package dcj .exanpl es;

public class ProblenSet {
protected doubl e value = 47.0;
protected double solution = -1.0;

public double getValue() { return value; }
public double getSolution() { return solution; }
public void setValue(double v) { value = v; }
public void setSolution(double s) { solution = s;

}

CORBA (Common Object
Request Broker Adapter)

object A object B

Atalks to B
as if B were local

CORBA

« Based on a consortium of over 700
companies called the Object
Management Group (OMG)

— except Microsoft which has its own
Distributed Component Object Model
(DCOM)

= Designed to allow components to find

and talk to each other on an Object
BUS

CORBA

« 1991 - Specification for object interaction
— based on IDL - Interface Definition Language
* 1994 -CORBA 2.0

— defined interoperability between objects in
heterogeneous systems

« 110OP - Internet Inter-ORB Protocol
— for interoperability over the Internet

CORBA

= meant to be platform- and language-
independent
— client stub interfaces to the objects

— the server implementations of these
object interfaces

can be specified in any programming language

Elements of CORBA
framework

« An Object Request Broker (ORB)
— means to make/receive requests

« Methods for specifying interfaces
that objects in the system support
— IDL (static) and D11 (dynamic)

= Inter-ORB Protocol (110P)

— a binary protocol for communication
between ORBs

C COBOL Smalltalk

{

\ ORB |

i

IDL

« Interface Definition
Language

 The CORBA “glue”

= Language
independent
interfaces to the
ORB (the BUS)

\ ORB |

ORB

* The object “BUS” =
middleware

« Allows objects make
requests to —and
receive responses
from other objects
on the bus

\ ORB |

CORBA% ORB is an interface
specification

« Different vendor ORBs may
make very different
implementation choices

= Each vendor supplies their own
IDL compiler

« How object references are
passed on an ORB is up to each
vendor

\ ORB |

110P
Internet Inter-ORB Protocol

« Defines interface for passing
object references across
different vendor ORBs

\ ORB |
I liop
\ ORB |

CORBA Services

« CORBA provides services to
support component
communication

\ ORB |

‘ Naming ‘ ‘ Persistence ‘ ‘Transaction ‘ ‘ Security ‘

CORBA ORB Vendors

= Visigenic
= lona
« Inprise

CORBA Development

Ideal World
(No Sockets of Streams)

Local

object A object B

Atalks to B
as if B were local

CORBA World

skeleton

talks to a

object A object B
proxy for B

ORB

Example: Remote Object
Count

int sum

int increnent() nt sum

/1 increnents and returns sum int increment()

need to define an IDL interface

IDL Types vs Java Types

IDL Type Java Mapping
« long e int

« short « short

« float « float

« double « double

e char e char

« boolean « boolean

* octet * byte

Count IDL

module Counter {
interface Count {
attribute long sum;
long increment()

J5
Y Uses IDL datatypes

modul e DCJ { Uses IDL datatypes
nodul e exanpl es { No constructors
interface ProblenBet { No method overloading
doubl e getVal ue();
doubl e getSolution();
void setValue(in double v);
void setSolution(in double s);

}
interface Sol ver {
bool ean sol veCurrent ();
bool ean sol ve(inout Problenstet s,
inlong numters);
Probl enSet get Probl em();
voi d setProbl em(inout Problentet s);
unsigned long getlterations();
void setlterations(in unsigned long numter);

CORBA IDL

idl2 java
compiler \

stub skeleton interface

Client java files Server java source files

skeleton

Java Interface
(generated by idl2.java)

public interface Count extends CORBA. Object

{
public int sun{) throws CORBA. SystenException;
public void sum(int val) throws CORBA. SystenException;
public int increment() throws CORBA. SystentException;

}

modules converted to packages
inout method args -> holder types|

idlI2java JavalDL

package DCJ. exanpl es;
public interface Sol ver extends org. ong. CORBA (bject
{

bool ean sol veCurrent ();

bool ean sol ve(DCJ. exanpl es. Probl enBet Hol der s,
int numters);

DCJ. exanpl es. Probl enfSet get Probl em();

voi d set Probl em(DCJ. exanpl es. Probl enBet Hol der p);
int getNumterations();

void setNumterations(int i);

The holder classes act as streamable versions of the main class;
ORB uses these to xmit instances of the i/f as remote method args

Client stubs

« The compiler also generates client stubs
for interfaces in IDL that implements
the Java base class for the object:

public class _SolverStub
extends org. ong. CORBA. portabl e. Object ! npl
i npl enents dcj . exanpl es. Sol ver {

ObjectImpl class provides the i/f used by client ORB
to un/marshal remote method args.

Server skeleton

« The compiler also generates a skeleton for

_ProblemSetImplBase class
is also generated

object implementation: ‘

public abstract class _Sol verlnpl Base
extends org. ong. CORBA. portabl e. Object ! npl
i npl enents dcj . exanpl es. Sol ver
i npl enents org. ong. CORBA. port abl e. Skel et on{

The server ORB will be looking for Skeleton interface
when invoking methods on the object implementation

* The last step in setting up our remote
object for business is:
— to extend the _Solver ImplBase class and
the _ProblemSetImplBase class

— and to implement the methods defined in
their base interfaces.

Template for
|mp|ementat|0n

\u

public void sum(int sum) throws
add CORBA.SystemException {
actual |:> // implement operation

idl2 j Java
compller

code }

Template for
|mp|ementat|0n

/i \I

idl2 j Java
compiler

public void sum(int sum) throws
add CORBA.SystemException {
actual] sum = val;

code }

Java Count Implementation
(generated by idl2java)

public class Countlnpl extends _sk_Count
i npl ements Count {

private int sum

public Countlnpl (String name) {
super (name); }

public int sun{) throws CORBA. Systentxception {
/linplenent attribute reader }

public void sun(int val) throws CORBA. SystenException {
/1 inplenent attribute witer }

public int increment() throws CORBA. SystenkException {
/'l inplenent operation }

Java Count Implementation
(modified by programmer)

public class Countlnpl extends _sk_Count
i npl ements Count {
private int sum

public Countlnpl (String name) {
super (name); sum= 0; }

public int sun{) throws CORBA. Systentxception {
return sum }

public void sun(int val) throws CORBA. SystenException {
sum = val; }

public int increment() throws CORBA. SystenkException {
sumt+; return sum }

Server Program

public class CountServer
public static void main(String[] args)

Il initialize the server orb

CORBA. ORB orb = CORBA.ORB.init();

/1l initialize the BOA (Basic Object Adapter)
CORBA. BOA boa = orb.BOA_Init();

/1 init the Count object and connect to ORB
Count | npl count = new Count ! npl (“nyCount”);
orb. connect (count);

/1 export the ORB

boa. obj _i s_ready(count);

/1l ready to service requests ...

Object can also be registered
to ORBS naming service

Client Program

public class Countdient
public static void main(String[] args)

{
/1 initialize the orb
CORBA. ORB orb = CORBA.ORB.init();
/1 bind the Count object
/1 Count_var is class created by idl2java
Count counter = Count_var. bi nd(“ nyCount ");
/1 use the Count object
count er. sun{ 0); remote

counter.increment(); |:> @

