
Chapter 3
RMI

Remote Method Invocation

Java Remote Method Invocation
• Based on the RPC model of cross-

platform communication
• GOAL: distributed applications are as

easy to program as non-distributed

b.foo()

a
b

a talks to b as if
it were local

b is a remote object

RMI Scenario

p

client server
(remote) object

Internet

p = . . . // RMI magic code …
String descr = p.getDescription();
System.out.println(descr); has method:

String getDescription()

Proxy Objects

p

client server
(remote) object

Internet

p = . . . // RMI magic code …
String descr = p.getDescription();
System.out.println(descr); has method:

String getDescription()

skeletonstub

Step 1. Define Interface

p

client

Internet

implements java.rmi.Remote interface

each method must throw RemoteException

defines the methods you want to access remotely

Step 2. Implement the Interface

p

client

Internet

implements java.rmi.Remote interface

extends java.rmi.UnicastRemoteObject

implements the methods you want to access remotely

(remote)
object

UnicastRemoteObject

provides code that
will keep your object
alive on the server
and reachable via TCP/IP

RemoteServer

UnicastRemoteObject

CountRMIImpl

CountRMI

(remote)
object

abstract

Step 3.Compile the server class
define interface

implement interface

javac

(.class)
server class

Step 3.Compile the server class
define interface

implement interface

javac
(.class)

server class

(.java)

rmic

client stub class server skeleton class

rmic in Action

client

stub

remote
object

skeleton

generated by rmic compiler

prompt> rmic classfile
• The server classfile must have been

compiled with javac
• rmic uses the CLASSPATH or

command line –classpath argument
• Compiled classes can be put in

another directory using the –d
argument

rmic
%rmic ProductImpl

ProductImpl_Stub.class

ProductImpl_Skel.class

Step 5.Start the RMI
Registry on your server

• RMI supports a non-persistent naming
service

• Allows you to retrieve and register
server objects

• prompt>start rmiregistry
– WIN95: start rmiregistry
– Unix: rmiregistry &

Step 6.Start Server Objects
• Load server class and create instances of your

remote objects
public class CountRMIServer {

public static void main(String[] args) {
System.setSecurityManager(new RMISecurityManager());
try {

CountRMIImpl myCount =new CountRMIImpl(“myCountRMI”);
System.out.println(“RMIServer ready”);

}
}

}

Step 7.Register Remote
Objects with the Registry

public CountRMIImpl(String name) throws RemoteException {
super();
try {

Naming.rebind(name, this);
sum = 0;

}
. . .

}

Step 8.Write Client Code
CountRMI myCount = (CountRMI)Naming.lookup(:rmi://”+args[0]

+ “/” + “myCountRMI”);
//set sum to initial value
System.out.println(“setting sum to zero”);
myCount.sum(0);

Step 9.Compile Client Code
• javac CountRMIClient.java

Step 10.Start the Client
• On client (or in separate DOS window

if using local host)
• java CountRMIClient

class: Naming
• An RMI class
• Must live on both client and server

machines
• Serves as Lookup service for remote

objects
• Remote objects must register with Naming

service
• Clients use client-side Naming object to

get the appropriate stub reference.

Naming

proxyclient

Internet

remote objects

Naming

“toaster”

ref

RMI Architecture
client Remote Objectskeletonstub

remote
reference

layer

transport
layer

capable of
supporting different
protocols

i.e., unicast or
multicast

uses TCP/IP but can be UDP/IP

Parameter passing in Remote
Methods

client

Remote Objectskeleton

(remo)
stub

socket and stream connection via TCP/IP

String s=“hello”l
remo.foo(s);

foo(s) foo(s)

remo

Parameter passing in Remote
Methods

client

Remote Objectskeleton

(remo)
stub

A copy of String s is sent across the network

When an object is passed as a parameter, a
COPY is passed, not a reference

(But the object must be serializable)

String s=“hello”l
remo.foo(s);

foo(s) foo(s)

remo

foo(s)

RMI Difference 1
• Objects passed as parameters must be

serializable (or be a Remote Object)

b.foo(c)

a
b

must be serializable

c

RMI Difference 2
• Objects passed as parameters or

returned as values are PASSED BY
VALUE (copies are made)

b.foo(c)

a
b

Passed by value

c

c

RMI Difference 3
• Remote Objects override

– equals()
– hashCode()
– toString()

equals()
• Default behavior is inherited from Object
• s.equals(q)

– are s and q pointing to the SAME object
• Many classes override this in order to use

Hashtables where
– hashcode() is used to select a hash bucket
– equals() is used to match a given object against

other objects in the hash table that have the
same hashcode

RemoteObject overrides equals()
• s.equals(q)

– what if s and q are remote objects?

client

Remote Objectskeleton

s
(stub)

s.equals(q) equals(q)

q
(stub)

Returns true if two stubs refer to the same remote object

RemoteObject overrides toString()
• s.toString(q)

– what if s is a remote object?

client

Remote Objectskeleton

s
(stub)

s.toString() toString()

Returns a string that indicates the server
where the remote object is located

END

