Chapter 4
Threads

Threads
Thread Groups

Life Cycle of a Thread

Thread t = new Thread();

New Thread
tyield(); tstart();

.,

Runnable |«———— Not Runnable

t.stop();

Runnable —
capable of being run
by the Scheduler

Thread

e tl.start();
e t2.start();
* t3.start();

,

The “Runnable” pool

Priority

t2 runs until:

1. a higher priority
thread becomes
runnable

2. ityields, or its run()
method terminates

3. in multi-tasking
systems, its slice
expires

Thread States
and
Thread Messages

Messages in class Thread

* t.start()

« tyield()

« t.stop()

* t.resume()

* t.sleep()

« tinterrupt()

« t.destroy()
Other Messages:
- wait()

« notifyAll()

Thread States

dead

4. blocked
“— | (not runnable)

Blocked Threads

Thread States

—| blocked
“— | (not runnable)

-

dead A blocked thread is not in the Runnable pool

--itis not a candidate for selection by the scheduler

Threads Block on 1/0

! t.start()
7 % blocks on 1/0

runnable

1/0 completes

blocked
(not runnable)

Threads Block with sleep()

t.sleep(500) %

§

blocked
(not runnable)

only guaranteed to return to runnable
dead at some time after the guaranteed sleep time

time-up

Threads Block with suspend()

t.suspend()

7
blocked
(not runnable)

Warning: suspend & resume are deprecated !
dead

t.resume()

runnable

Do Threads Block with yield() ?

G55

blocked
(not runnable)

No! The scheduler repicks a thread — may
be the same one !

Blocking with wait() and notify()

runnable blocked
(not runnable)

‘ notify and wait are NOT thread methods!

Blocking - wait() and notify()

method

a thread executes some object’s wait ‘

t.start()

wait()

blocked
(not runnable)

Blocking - wait() and notify()

‘ the thread blocks

_ 3
wait() Ly #7&

blocked
(not runnable)

runnable

Blocking - wait() and notify()

blocked until some other thread calls
notify on the same object

blocked
(not runnable)

Blocking - wait() and notify()

blocked
(not runnable)

dead another thread executes notifyAll() on the
same object — the blocked thread

becomes runnable

Blocking - wait() and notify()

blocked
(not runnable)

‘ used to coordinate access to an object

Thread Death

Natural Death

4

A
35

i
Fe '
blocked

¢ runnable
(not runnable)

‘ athread completes its run() method

Death with stop()

3 ';
g ?
j 7 |

runnable blocked
(not runnable)

athread may leave an object in an
inconsistent state

Death with destroy()

blocked
(not runnable)

[DRASTIC! — Avoid destroy

Deadlock 1

(waiting for each other)

Deadlock

objectl
11 calls wait() —

’ t2 will call notifyAll()

11
43
I
N j a
blocked
(not runnable)

Deadlock

objectl

11

4

I
g“ a

12 calls wait() blocked
(not runnable)

Deadlock

objectl

t2 calls wait() | (not runnable)

Deadlocked !

-M 1 is waiting for 12

(wait) 1 o call notityal)
o Deadlock 11

b?: Czd (Suspended before 1 could

(not runnable) nOtify my friend)
I

12 is waiting for t1
to call notifyAll()

Deadlock Deadlock

t2 is about to call notifyAll()
inside a synchronized method

11 calls wait() —
t2 will call notifyAll()

N
j u
blocked blocked
(not runnable) (not runnable)

Deadlock Deadlocked !

objectl
Y A

objectl
——— t1 is waiting for t2
to call notifyAll()

43
o
t1
L o
t2.suspend() blngked blocked
(not runnable) (not runnable)
I

t2 is waiting for someone
to say t2.resume()

objectl
———7 t1 is waiting for t2

(wait0 [toca notifyAll()

*
blocked
(not runnable)

1T
t2 keeps the lock on objectl

The problem with stop()

(Why its deprecated)

objectl
Y A
’ t1 is waiting for a notify ()
) L
3
o 13
blocked
(not runnable)

t3.stop()

objectl — may be left in inconsistent state

blocked
(not runnable)

t3.stop()

stop() - depracated

= stop() is inherently unsafe.

— Stopping a thread with Thread.stop()
causes it to unlock all monitors (objects)
that it has locked

— If any objects protected by these monitors
were in an inconsistent state, the damaged
objects are visible to other threads, potentially
resulting in arbitrary behavior.

stop(). . .

« stop() should be replaced by code that
modifies some variable to indicate that the
target thread should stop running.

— The target thread should check this variable
regularly, and return from its run method in an
orderly fashion if the variable indicates that it
is to stop running.

« If the target thread waits for long periods
(on a condition variable, for example), the
interrupt method should be used to
interrupt the wait.

Example — stop()

poplet \ blinker: Thread

thread sleeps and when it wakes up calls repaint() ‘

private Thread blinker;

public void start() {
blinker = new Thread(this); C:I
blinker.start();

3

applet’ run method

public void stop() {
blinker.stop(); //UNSAFE
3

public void run() {
Thread thisThread = Thread.currentThread();
while (true) {
try {
thisThread.sleep(interval);
} catch (InterruptedException e) { }

repaint();

private Thread blinker;

public void stop() {
blinker = null;

CZ' blinker no longer points to
current thread

}

public void run() {
Thread thisThread = Thread.currentThread();
while (blinker == thisThread) {
try {
thisThread.sleep(interval);
} catch (InterruptedException e) { }

Thread Groups

3
repaint();
3
Multi-Threaded Server
A
Server ’
thread
A

[]

Multi-Threaded Server

A
Server ’
thread
thread

]

creates thread to execute

Multi-Threaded Server

A
[sormr
thread
A
(o | L]
thread

D
Client
7 D
other threads D D

Server Thread Management

— L threads
Server \D

NE=
do we need to send D

stop() to all the |:|
client$ threads?

ThreadGroup

« A set of threads
— can include other thread groups
e Thread groups form a tree

— every thread group except the initial one has a
parent

« A thread may access information about its

own thread group, but not about its thread

group’ parent or any other thread groups.

ThreadGroup

= Allows groups of
threads to be
maniputlated with a
single command threads
— suspend()

— resume() |:|
- stop() D D

ThreadGroup

ThreadGroup Priority

* The priority of a thread cannot be set
higher than the priority of its ThreadGroup

* Default ThreadGroup p 'ioritt}XeL%Ssame as its
parent ThreadGroup |:|

int getMaxPriority()
Returns the maximum priority of this ThreadGroup |:|

ThreadGroup

void setMaxPriority(int priority)
Sets max priority for the group

ThreadGroup Priority

e The priority of the:
« System ThreadGroup is 10
« Applet ThreadGroup is 6
« Attempt to set thread priority higher than

ThreadGroup priority will silently fail

can never raise a ThreadGroup’ priority |:|
threads

ThreadGroup |:| |:|

Default ThreadGroup

« Akk Java threads belong to some
thread group

« 1T you dont specify, an arbitrary
thread belongs to the “default”
ThreadGroup

Creating Thread Groups

e ThreadGroup(String name)
— creates a ThreadGroup with the given name

— the thread group is automatically a child of the
current ThreadGroup

e ThreadGroup(ThreadGroup parent, String name)
— creates a thread group that descends from the parent

ThreadGroup Creation

ThreadGroup tgl = new ThreadGroup(“foo”);

default ThreadGroup

tgl l——L| foo

ThreadGroup Creation

default ThreadGroup

tgl

o[

Only applications can create ThreadGroups;

[
—
T

Threads created in an Applet are part of the Applet ThreadGroup

ThreadGroup Creation

default ThreadGroup

tgl

tgx l——r—| ~ D aThread

Individual threads are not explicitly added to a ThreadGroup

[
—
T

A thread is placed in a ThreadGroup when the thread is created

Basic Thread Creation

e Thread()

e Thread(String name)

* Thread(Runnable target)

« Thread(Runnable target, String name)

The thread belongs to the ThreadGroup
of the thread executing the statement!

Basic Thread Creation —
with Group

e Thread(ThreadGroup g, String name)
e Thread(ThreadGroup g, Runnable target)
e Thread(ThreadGroup g, Runnable target, String name)

‘ The thread belongs to the specified ThreadGroup g ‘

There are NO methods to remove a thread
from its ThreadGroup

Objects and Threads

« Each object has a lock that can be
obtained and released

— Java uses an object’ synchronized
methods to control thread access to the

object
« Each object also has a waiting area
for threads that need something
other threads can provide
— wait and notify

Synchronization

tl
synchronized void deposit(int x)

t2 —— > |synchronized int withdrawal()

The threads are essentially independent —no order enforced

What if ordering required?
(put must preceed get)

tl
synchronized void put(int x)

t2 ———|synchronized int get()

synchronized alone cannot guarantee on ordering

Coordination Solution #1

int value = -1; //no value yet

synchronized void put(int x) {
value = x;

}

synchronized int get() {
while (value == -1) sleep(500);
return value;

}

notify and wait

- waitl
() . B threadl
— wait for in an object’
waiting area
« hope that another
thread will execute thread?2
notify or notifyAll
- notifyAll()
— wake up all threads A specific object
waiting in the object’
waiting area

wait();

notifyAll();

notify and wait
(methods in class Object)

« All objects understand nofity(),
notifyAll() and wait()

« Use nofify & wait in your code if:
— you have get and put methods

— you want consumer threads to wait on
producer threads

— you want producer threads to notify
customers

wait and notify is a
communication mechanism

threadl

:> wait();

thread2

notifyAll();

A specific object

thread5

wait();

thread6
notifyAll();

A specific object

thread3
:> wait();
thread4
notifyAll();

A specific object

Each object has its own waiting area

Coordination Solution #2

int value = -1; //no value yet
guarantees that a put
will aways occur
synchronized void put(int x) { | beforeaget

value = x; notifyAll();
}

synchronized int get() {
while (value == -1) wait();
return value;

(3 No busy wait loop

