
Chapter 4
Threads

Threads
Thread Groups

Life Cycle of a Thread
Thread t = new Thread();

New Thread

Runnable Not Runnable

t.start();t.yield();

Dead
Runnable –
capable of being run
by the Scheduler

t.stop();

Thread  Priority
• t1.start();
• t2.start();
• t3.start();

t2 runs until:
1. a higher priority 

thread becomes 
runnable

2. it yields, or its run() 
method terminates

3. in multi-tasking 
systems, its slice 
expires

t1 t2

t3

The “Runnable” pool

Thread States 
and

Thread Messages

Messages in class Thread
• t.start()
• t.yield()
• t.stop()
• t.resume()
• t.sleep()
• t.interrupt()
• t.destroy()
Other Messages:
• wait()
• notifyAll()

new

runnable

dead

blocked
(not runnable)

Thread States

Blocked Threads
new

runnable

dead

blocked
(not runnable)

Thread States

A blocked thread is not in the Runnable pool 
-- it is not  a candidate for selection by the scheduler



Threads Block on I/O
new

runnable

dead

blocked
(not runnable)

t.start()
blocks on I/O

I/O completes

Threads Block with sleep()
new

runnable

dead

blocked
(not runnable)

t.start()
t.sleep(500)

time-up

only guaranteed to return to runnable 
at some time after the guaranteed sleep time

Threads Block with suspend()
new

runnable

dead

blocked
(not runnable)

t.start()
t.suspend()

t.resume()

Warning: suspend & resume are deprecated !

Do Threads Block with yield() ?
new

runnable

dead

blocked
(not runnable)

t.start()

No! The scheduler repicks a thread – may 
be the same one !

Blocking with wait() and notify()
new

runnable

dead

blocked
(not runnable)

t.start()

notify and wait are NOT thread methods!

Blocking - wait() and notify()
new

runnable

dead

blocked
(not runnable)

t.start()

a thread executes some object’s wait 
method

wait()



Blocking - wait() and notify()
new

runnable

dead

blocked
(not runnable)

t.start()

the thread blocks

wait()

Blocking - wait() and notify()
new

runnable

dead

blocked
(not runnable)

t.start()

blocked until some other thread calls 
notify on the same object

Blocking - wait() and notify()
new

runnable

dead

blocked
(not runnable)

t.start()

another thread executes notifyAll() on the 
same object – the blocked thread 
becomes runnable

Blocking - wait() and notify()
new

runnable

dead

blocked
(not runnable)

t.start()

used to coordinate access to an object

Thread Death

Natural  Death
new

runnable

dead

blocked
(not runnable)

t.start()

a thread completes its run() method



Death with stop()
new

runnable

dead

blocked
(not runnable)

t.start()

a thread may leave an object in an 
inconsistent state

t.stop()

DANGER: Don’t stop!

Death with destroy()
new

runnable

dead

blocked
(not runnable)

t.start()

DRASTIC! – Avoid destroy

t.destroy()

t.destroy()

Deadlock I

(waiting for each other)

Deadlock
new

runnable

dead

blocked
(not runnable)

t.start()

t1

wait()

object1

t1

t1 calls wait() –
t2 will call notifyAll()

t2

Deadlock
new

runnable

dead

blocked
(not runnable)

t.start()

wait()

object1

t1

t2 calls wait()t2

Deadlock
new

runnable

dead

blocked
(not runnable)

t.start()

wait()

object1

t2 calls wait()
t2

t2

t1



Deadlocked !
new

runnable

dead

blocked
(not runnable)

t.start()

wait()

object1

t2

t1

t1 is waiting for t2 
to call notifyAll()

t2 is waiting for t1 
to call notifyAll()

Deadlock II

(Suspended before I could 
notify my friend)

Deadlock
new

runnable

dead

blocked
(not runnable)

t1

wait()

object1

t1

t1 calls wait() –
t2 will call notifyAll()

t2

Deadlock
new

runnable

dead

blocked
(not runnable)

wait()

object1

t1

t2 is about to call notifyAll()
inside a synchronized method

t2

Deadlock
new

runnable

dead

blocked
(not runnable)

wait()

object1

t1

t2 t2
t2.suspend()

Deadlocked !
new

runnable

dead

blocked
(not runnable)

t.start()

wait()

object1

t2

t1

t1 is waiting for t2 
to call notifyAll()

t2 is waiting for someone 
to say t2.resume() 



new

runnable

dead

blocked
(not runnable)

t.start()

wait()

object1

t2

t1

t1 is waiting for t2 
to call notifyAll()

t2 keeps the lock on object1

The problem with stop()

(Why it’s deprecated)

new

runnable

dead

blocked
(not runnable)

t.start()

wait()

object1

t3

t1 is waiting for a notify ()

t3.stop()

new

runnable

dead

blocked
(not runnable)

t.start()

wait()

object1 – may be left in inconsistent state

t3.stop()

stop() - depracated
• stop() is inherently unsafe.

– Stopping a thread with Thread.stop() 
causes it to unlock all monitors (objects) 
that it has locked

– If any objects protected by these monitors 
were in an inconsistent state, the damaged 
objects are visible to other threads, potentially 
resulting in arbitrary behavior.

stop(). . .
• stop() should be replaced by code that 

modifies some variable to indicate that the 
target thread should stop running.
– The target thread should check this variable 

regularly, and return from its run method in an 
orderly fashion if the variable indicates that it 
is to stop running.

• If the target thread waits for long periods 
(on a condition variable, for example), the 
interrupt method should be used to 
interrupt the wait.



Example – stop()

Applet blinker: Thread

run()

thread sleeps and when it wakes up calls repaint()

private Thread blinker;
public void start() {

blinker = new Thread(this);
blinker.start();

}

public void stop() {
blinker.stop(); //UNSAFE

}

public void run() {
Thread thisThread = Thread.currentThread();
while (true) {

try {
thisThread.sleep(interval);

} catch (InterruptedException e) { }
}
repaint();

}

creates thread to execute
applet’s run method

private Thread blinker;

public void stop() {
blinker = null;

}

public void run() {
Thread thisThread = Thread.currentThread();
while (blinker == thisThread) {

try {
thisThread.sleep(interval);

} catch (InterruptedException e) { }
}
repaint();

}

blinker no longer points to
current thread

Thread Groups

Multi-Threaded Server

Client

Server

thread

Multi-Threaded Server

Client

Server

thread

Client

thread



Multi-Threaded Server

Client

Server

thread

Client

thread

other threads

Server Thread Management
Server

threads

do we need to send
stop() to all the 
client’s threads?

ThreadGroup
• A set of threads

– can include other thread groups
• Thread groups form a tree

– every thread group except the initial one has a 
parent

• A thread may access information about its 
own thread group, but not about its thread 
group’s parent or any other thread groups.

ThreadGroup
• Allows groups of 

threads to be 
maniputlated with a 
single command
– suspend()
– resume()
– stop()

threads

ThreadGroup

ThreadGroup Priority

threads

ThreadGroup

• The priority of a thread cannot be set 
higher than the priority of its ThreadGroup

• Default ThreadGroup priority is same as its 
parent ThreadGroup 

int getMaxPriority()
Returns the maximum priority of this ThreadGroup

void setMaxPriority(int priority)
Sets max priority for the group

ThreadGroup Priority

threads

ThreadGroup

• The priority of the:
• System ThreadGroup is 10
• Applet ThreadGroup is 6

• Attempt to set thread priority higher than 
ThreadGroup priority will silently fail

can never raise a ThreadGroup’s priority



Default ThreadGroup
• Akk Java threads belong to some 

thread group
• If you don’t specify, an arbitrary 

thread belongs to the “default” 
ThreadGroup 

Creating Thread Groups
• ThreadGroup(String name)

– creates a ThreadGroup with the given name
– the thread group is automatically a child of the 

current ThreadGroup

• ThreadGroup(ThreadGroup parent, String name)
– creates a thread group that descends from the parent

ThreadGroup Creation
ThreadGroup tg1 = new ThreadGroup(“foo”);

default ThreadGroup

tg1 foo

ThreadGroup Creation
default ThreadGroup

tg1

tgx

tg2

Only applications can create ThreadGroups;

Threads created in an Applet are part of the Applet ThreadGroup 

ThreadGroup Creation
default ThreadGroup

tg1

tgx

tg2

Individual threads are not explicitly added to a ThreadGroup

A thread is placed in a ThreadGroup when the thread is created 

aThread

Basic Thread Creation
• Thread()
• Thread(String name)
• Thread(Runnable target)
• Thread(Runnable target, String name)

The thread belongs to the ThreadGroup
of the thread executing the statement!



Basic Thread Creation –
with Group 

• Thread(ThreadGroup g, String name)
• Thread(ThreadGroup g, Runnable target)
• Thread(ThreadGroup g, Runnable target, String name)

The thread belongs to the specified ThreadGroup g

There are NO methods to remove a  thread 
from its  ThreadGroup

Objects and Threads
• Each object has a lock that can be 

obtained and released
– Java uses an object’s synchronized 

methods to control thread access to the 
object

• Each object also has a waiting area 
for threads that need something 
other threads can provide
– wait and notify 

Synchronization

synchronized void deposit(int x)

synchronized int withdrawal()

t1

t2

The threads are essentially independent – no order enforced

What if ordering required?
(put must preceed get)

synchronized void put(int x)

synchronized int get()

t1

t2

synchronized alone cannot guarantee on ordering

Coordination Solution #1
int value = -1;  //no value yet

synchronized void put(int x) {
value = x;

}

synchronized int get() {
while (value == -1) sleep(500);
return value;

}

notify and wait
• wait()

– wait for in an object’s 
waiting area

• hope that another  
thread will execute 
notify or notifyAll

• notifyAll()
– wake up all threads 

waiting in the object’s 
waiting area

thread1

thread2

wait();

notifyAll();

A specific object



notify and wait
(methods in class Object)

• All objects understand nofity(), 
notifyAll() and wait()

• Use nofify & wait in your code if:
– you have get and put methods
– you want consumer threads to wait on 

producer threads
– you want producer threads to notify 

customers
wait and notify is a 
communication mechanism

thread3

thread4

wait();

notifyAll();

A specific object

thread1

thread2

wait();

notifyAll();

A specific object

thread5

thread6

wait();

notifyAll();

A specific object

Each object has its own waiting area

Coordination Solution #2
int value = -1;  //no value yet

synchronized void put(int x) {
value = x; notifyAll();

}

synchronized int get() {
while (value == -1) wait();
return value;

}

guarantees that a put
will aways occur
before a get

No busy wait loop


