
Chapter 8
Bandwidth-Limited Systems

Bandwidth-limited systems
• the reliability and capacity of the

underlying network is not sufficient
for the task at hand

• e.g.,
– wireless communication devices
– use of multimedia content in nw’d apps.

Outline of the chapter
• bandwidth monitoring

– built within java.io’s I/O stream classes
• general content consumer/producer

model
– having adaptive buffering for data being

streamed over the network

Two flavors of limited
bandwidth - 1

• application can have high bandwidth
requirements (i.e., required rate of
data flow is close to capacity of
network)
– e.g.,streaming high quality video for real-

time playback
• a constant, high=throughput, reliable

network connection is necessary

Two flavors of limited
bandwidth - 2

• Network connection has low/unreliable
capacity and is insufficient for many data
transactions
– e.g., current telephone modem throughput rates

are insufficient to support downloading high-
quality multimedia in real time.

– Many wireless communication devices unreliable
to the point that their effective throughput <<
their peak throughput

Two flavors of limited
bandwidth - 3

• In summary:
Data requirement of application

>
available bandwidth

Coping with Limited
Bandwidth

• Monitor data throughput to detect
changes in runtime environment

• Manage the bandwidth usage of the
system to react to these changes

A) Monitoring bandwidth
• Raw data: is fed

into/out of system
at the socket or
stream level
– compressed or

encoded
• Real data:

Local
Agent

out in

raw/real
data throughput

Monitoring…
• Monitoring raw data throughput

– in order to respond to network
variability (bandwidth fluctuations, loss
of service, etc.)

• Monitoring real data throughput
– in order to pick up on major fluctuations

in net bandwidth usage and local
resources like CPU availability while
maintaining a certain performance level

How to measure
performance?

• depends on application, but will
typically a function of
– responsiveness,
– relative rate of data delivery to user,
– etc.

Managing bandwidth
• In order to satisfy application

requirements
– A multimedia presentation with an audio track

needs to ensure that the real input rate of
audio samples into the local audio device is >=
playback rate (in order to avoid interruptions)

– An interactive chat client may want to balance
input/output rates (so that user typing a
response can see other user’s response)

Managing bandwidth
• Managing bandwidth and local

resources to support the type of data
being processed

• Managing the nature of data itself in
order to match the bandwidth and
local resource profile

Example for second case
• Choosing the encoding format of the

transmitted data for limited-
bandwidth applications
– tradeoff between expected bandwidth

and local resource capabilities
• choose best compression ration for low-

bandwidth situations
• choose most robust algorithm for loosy

network situations

Network-level protocols to
support monitoring and

management in real time• Real-Time Protocol (RTP)
– provides a protocol layered on top of a baseline

network transport layer like TCP, with header
info capable of providing data timing and ordering
statistics

• Real-Time Control Protocol (RTCP)
– is meant to provide basic bandwidth management

functions for RTP applications

RTP and RTCP is to be supported in Java Media Framework

Monitoring Bandwidth
• Ability to monitor effective

bandwidth seen by an application
à

• ability to adapt to variable runtime
environments

Some bandwidth measures
• Average data throughput rate over a given

time period
• Total data throughput over a given time

period
• Estimate of time until a given amount of

data will be available
• Other first- and second-order statistics on

data rate and throughput over time
(variances, median rate, data “acceleration”)

We would like to
• capture these bandwidth measures in

real time
• have these measures in terms of

both raw (unprocessed) data
throughput and real (application) data
throughput.

DataMonitor class
• provides a container for holding byte

counts of data and corresponding start and
stop times.
– addSample(): for adding bandwidth

measurement samples
• can be queried for statistics using

– getAverageRate()
– getRateFor()
– getLastRate()

Raw Data Monitoring

• They monitor their own raw data rates
using the DataMonitor class.

• After each read() and write() operation,
a data point is stored in the stream’s
DataMonitor.

FilterInputStream

RTInputStream

FilterOutputStream

RTOutputStream

Hiesenberg Uncertainty
Principle

• Measuring resources affects the
measurements themselves
public int read() throws IOException {

Date start = new Date();
int b = super.read();
monitor.addSample(1, start, new Date());
return b;

}

Example: streaming an audio
file from a server for local,

real-time playback• Steps: (all are in a single thread)
– data i/o -> decoding -> writing to local audio

device

Effective raw data input rate for one cycle:
RT= dt / (tr + td + tw)

+ Monitoring:
RT= dt / (tr + td + tw+ tc)

How to make tc negligible?
• read and process large amounts of

data in each cycle
– hinders our ability to track data rate

variations over time
• ignore the effect of data monitoring

and read very small packets of data in
each cycle
– larger negative impact on the data rate

itself

Real Data Monitoring
• Raw data monitoring does not tell us

anything about whether our local data
processing is keeping up with network
requirements of the system
– e.g., we may be pulling real audio data from the

network fast enough, but decoding may be
taking longer than expected

• Monitor the rate at which we are
processing data from its format on the
network to a format suitable for the local
application, and vice versa.

An infrastructure for
monitoring

• Filters may
compress, modify, or
subdivide the data
passed through them
– can be thought of as

content producers/
consumers, or both.

Local
Agent

out in

raw/real
data throughput

filterfilter

How to construct this
infrastructure?

• Develop basic interfaces for these content
consumers and producers:
– ContentConsumer: accepts data and consumes

it, display data on screen, store data in a
database or file, or it may feed some kind of
analysis engine.

– ContentProducer: generates data by pulling
data from persistent storage, or as a product
of some processing by another producer.

Chaining producers and
consumers

• Each producer and consumer has a
source and a destination.

ContentConsumer class
• consumeAll(): consumes data from its

producer until it is exhausted
• consume(): accepts a data buffer in the

form of a byte array, consumes it by calling
– preConsume() - initialization
– doConsume()
– postConsume() – cleanup

• and creates a data sample for the
DataMonitor associated with the consumer

Constructing Pipelines
ContentProducer input = new MyProducer(host,

port);
ContentConsumer dbase1 = new

RDBMSConsumer(“jdbc:odbc://dbhost/mydata”);
input.setDest(dbase1);
ContentConsumer dbase2 = . . .
dbase1.setDest(dbase2);
. . .
input.produceAll();

Monitoring both raw and real
data rates

• Ex: Image processing pipeline

InputStream imgStream = . . .;
RTInputStream rtStream = new RTInputStream(imgStream);
ContentProducer source = new StreamProducer(rtStream);

END

