
1

Dr. K. Dincer Chapter 3 - File Organization
and Processing

1

II. PRIMARY FILE ORGANIZATIONS

Goal: To choose a file organization with space
efficiency and high performance.

(How we store or organize info.) (How we process or access info.)

File Org. File Access
sequential sequential
indexed sequential sequential & direct
Direct Direct (Random)

Dr. K. Dincer Chapter 3 - File Organization
and Processing

2

Sequential Access : accessing multiple records, often
the entire file, acc. to a predefined order.

Direct (Random) Access : locating a single record.

How can we have an effective organization ?
– Org. should be matched with the type of intended access.
– Use & structure of info should match

File Access Types

Dr. K. Dincer Chapter 3 - File Organization
and Processing

3

Sequential File Organization

Record:

Ex: An employee record :

Primary Key : is a field, or a combination of several fields
which uniquely distinguishes a record from all others.

Secondary Keys or Attributes : All remaining fields.

field1 field2 fieldn

Emp-name number title dept mgr salary

Dr. K. Dincer Chapter 3 - File Organization
and Processing

4

A file consists of recs. of the same format.
• Fixed-length recs: all recs within a file have

the same length. Example?

• Variable-length recs: all recs. within a file do
not need to be the same length. Example?

Sequential File Organization:
The (i+1)’th element of a file is stored
contiguous to and immediately after the (i)’th
element.

1 2 ... i i+1 ... n-1 n

Dr. K. Dincer Chapter 3 - File Organization
and Processing

5

Sequential Access: a simple process to move
from one record in the file to the next by
incrementing the address of the current
record by the record size.

– Compare this to accessing a sequential array.

Direct Access : If we know the subscript, we
can process a single record directly.

Sequential Search: processes the records of a
file in their order of occurrence until:

– it either locates the desired record
– or processes all the records

We assume that the subscript isn’t the primary id of a record.

Dr. K. Dincer Chapter 3 - File Organization
and Processing

6

Direct Access on a Sequential File

• not efficient

Probe is an access to a distinct location

• In a file with R recs,
– R/2 probes are needed to locate the record of interest
– R probes are needed if record is not part of the file.

• Performance:
– For Large R, unacceptable performance.
– For small R, simple & fast.

2

Dr. K. Dincer Chapter 3 - File Organization
and Processing

7

Use of Sorting to Improve Retrieval
Performance

• Sorting the records gives us a linear ordering
based upon the key values of records:

key1 < key2 < < keyi<...keyn

• For a sorted file:
– Average cost of searching for the desired

record is R/2
• for either successful or unsuccessful searches.

Dr. K. Dincer Chapter 3 - File Organization
and Processing

8

Assumptions & Notation
• Files are stored in a small number of contiguous extents.
• Single-user (single-process) environment.
• Fixed-length records
• One (or sometimes two) disk drives.
• 10 MBs of main memory

TF = time to fetch (find & read) one record.
TN = time to fetch next record in order.
TI = time to insert a new record.
TU = time to update by modifying values.
TD = time to delete a record.
TX = time for exhaustive reading of a file.
TY = time for reorganization of a file.

Dr. K. Dincer Chapter 3 - File Organization
and Processing

9

The File Header

Every file has a header that contains some
descriptive info about the file:
– number and length of recs.
– address of last block.
– whether file is an ASCII or binary file.
– number of bytes in file.
– whether file has an index.
– addresses of all extents.

• When the file is opened, this header is brought into
memory and becomes available.

• When the file is closed, it is updated in disk if necessary.
• Header read/write has zero cost.

Dr. K. Dincer Chapter 3 - File Organization
and Processing

10

The Pile File

A pile file is a succession of records simply placed
one after another with no additional structure.

– We assume fixed-size records.
– Even if a file has an index, it may still have to be

regarded as a pile file when searching on the basis of
a different field. (i.e., ?)

Dr. K. Dincer Chapter 3 - File Organization
and Processing

11

Fetching One Record

Given the value of some field in a record, e.g.,last
name, we must search sequentially through
whole file and compare values until:
– we either find a record,
– or we reach end of file.

[We can’t read less than one block at a time.]

Average number of blocks read = (1/b)*Σb
i=1 i ≅b/2

TF=(b/2)*ebt

Dr. K. Dincer Chapter 3 - File Organization
and Processing

12

The Hospital File Example:

Consider a hospital with n=100,000 patient
records of

• R=400 bytes each (≈40 MB file)

• B=2400 bytes (block size)

Then b= (100000*400)/2400 = 16667 (number of blocks)

TF = (b/2)*ebt
= 8333 * 0.84 = 7000ms =7sec. (w/o an index)

If we need to look up 10,000 names,
total time required 7x104=19 hours
[If so, then it is better to organize file in another way!]

3

Dr. K. Dincer Chapter 3 - File Organization
and Processing

13

TN = TF

Why?[Because records in a pile file is not stored in order.]
What is the difference between a list of consecutive

values for some field and an index?
– An index has the addresses of the records in

question.

Fetching the Next Record

Exhaustive Reading of the File
T x(beginning to end) = b*ebt = 2*TF

Dr. K. Dincer Chapter 3 - File Organization
and Processing

14

Finding Averages and Sums
All recs must be read but not in any particular

order. [Best to use a pile file]

i : count of the number of records read so far
A: average of the value for records up to this point.

New average = A*(i/(i+1)) + (new data/(i+1))

[We use double buffering.]

Dr. K. Dincer Chapter 3 - File Organization
and Processing

15

Creating a File of Female Patient
Records

Find all records satisfying some criterion by reading
through all records (Best to use a pile file!)

Patient File Female File

Total time = 21 secs.
(14 secs to read whole file + 7 secs to write female patient recs.)

[Switching from R to W mode requires a seek but it is insignificant]

Save females
in memory

until memory fills

Dr. K. Dincer Chapter 3 - File Organization
and Processing

16

Calculating some average w.r.t. some grouping (same as
average calculation.) [Best to use a pile file!]

• We have 200 diff. medical conds.: 1..200
• Two 200-element arrays of integers are kept in memory

– running_average for each medical condition
– running_count of occurences of each condition

Ex: Medical cond =43, length of stay=4, Prev avg=2.50, Prev count=29

Total Time = 2.50*(29/30)+(4/30)=2.55

With double buffering, Total time = T X
[read thru file one to obtain table of results in memory]

Average Length of Stay in a Hospital
by Medical Condition

Dr. K. Dincer Chapter 3 - File Organization
and Processing

17

Average Length of stay in a Hospital
by Medical Condition

Calculating some average wrt. some grouping.
(same as average ex.)

[Best to use a pile file]
200 different medical cond. : 1 ... 200
Two 200 element arrays of ints in menu:

– running average for each medical cond.
– Running count of occurences of each cond.

With double buff, Total time= TX

(read thru file once to obtain table of results in mem)
Ex: medical cond = 43 Length of stay =4
prev av. = 2.50 prev count = 29
2.50*(29/30)+(4/30) =2.55

Dr. K. Dincer Chapter 3 - File Organization
and Processing

18

Exhaustive Reading in Order of a Field
We go through a list and look up one record for each entry

on the list. Each record need to be fetched separately:
T X(independent fetches) = n * TF

= n * (b/2)*ebt
= n * [(n/Bfr)/2]*ebt

Example 1: Cambridge Property Tax Records
n=30000 records, R=100 bytes
For 30000 independent fetches:

T X = 30000 * [(30000/24)/2] * 0.84
= 15750000 ms = 15750 sec = 4.28 hours

Examples

4

Dr. K. Dincer Chapter 3 - File Organization
and Processing

19

Examples

Example 2: The Hospital File
n=100000 records of R=400 bytes
T X = 100000* (7000 ms) = 7*109 = 194 hours ≅8days

Example 3: California State Income Tax
n= 6 million personal income tax records.
R=400 bytes each
T X = 6000000* [(6000000/6)/2]*0.84 = 2.52*1012 ms

= 2.52*106sec = 700000 hours = 80 years

It would be more efficient first to sort the file and then read it in order.
[1.5 hours sorting time would be required]

Dr. K. Dincer Chapter 3 - File Organization
and Processing

20

Inserting a New Record
To insert a new record, we place it at the end of the file. Why?
Assumptions:
• Duplicate records are allowed. No check is necessary.
• Address of last record is kept in the file header in memory.

We read in the last block, and append new record:
T I = s + r + btt +2r

= s + r + btt + 2r - btt + btt
read last rec rotate back write last rec

What if the last block is full ?
• Last block is the address of the next empty block if the last one

is completely full.
• Any optimizations? Keep the last block in memory.

Dr. K. Dincer Chapter 3 - File Organization
and Processing

21

Deleting a Record
1- Fetch the record
2- Modify the contents by placing a tombstone in the

record to denote its deletion
3- Write back the modified record ♦ See Fig 3.2 for an example.

T D = TF + 2r - btt + btt = TF + 2r
rotate back write back

2r << TF (T F=7sec, 2r=166 ms)
So TD ≅TF

Dr. K. Dincer Chapter 3 - File Organization
and Processing

22

Modifying a Record

• Assuming fixed-length records (Why?)

TU(Fixed length)= TF + 2r (same as TD)

• Variable-length records.
– Modified record may be longer and may not fit in

the same place as the old version.
– Treat update as a combination of delete & insert.

T U(Variable length) = TD + T I

= TF + 2r + TI

7000 16.6 42

≅T F

Dr. K. Dincer Chapter 3 - File Organization
and Processing

23

Reorganizing
After many insertions & deletions, file organization

deteriorates:
– Time for finding a block grows proportionally to the # of blocks.
– Time for sequential reading grows since more seeks will be

involved
• File has been spread over the disk.

♦ See Fig 3.3 for an example.

Consolidate

Old Master New Master

read write into
new area

Dr. K. Dincer Chapter 3 - File Organization
and Processing

24

Too much seeks ?
– Read in as many of the nondeleted records as possible (use

double buffering)
– When memory fills, write reorganized blocks into disk

Time to read in old file = b * ebt
Time to write out new file = (n/Bfr)*ebt

T Y = (b + (n/Bfr)) * ebt

(Extra time required for seeks, rotations etc. is negligible).

5

Dr. K. Dincer Chapter 3 - File Organization
and Processing

25

Reorganizing with Two Disk Drives

1- Read from old file on disk1
2- Simultaneously write new records into disk2
3- Input speed & output speed are not the same

– We can’t use plain double buffer w/blocks, why?
– Buffers for slower process use track-sized buffers.
– When a track fills up for output, it is written to disk:

• rotational latency for writing out is minimized
• time for reading in dominates
• time for writing out is overlapped by reading in.

TY = b * ebt

Dr. K. Dincer Chapter 3 - File Organization
and Processing

26

Extended Example:An Intersection File
An intersection file contains all the records common to

given files.
Two unordered hospital files with:
• n=100,000 records of R=400 bytes each.
• One for MA residents, one for BCBS insurance
• 70,000 of these records are in both files
• We have 10 MB of main memory

100 K recs each

70 K recs

ALGORITHM 1: (requires a seek for each record)

1- Read in one record from MA file
2- Compare that record with all records in BCBS file
3- If in both files, write into new file

MA
File

BCBS
File

Intersection
File

Dr. K. Dincer Chapter 3 - File Organization
and Processing

27

ALGORITHM 2: (Unnecessary seeks are eliminated)
1- Read as much of MA file into memory first
2- Read in 1/4 of (10 ms) MA file
3- Read through whole BCBS file
4- Compare each record in memory with all BCBS records

(70% of the time it will be there, 30% ?)
5- Write out 7 MB to the intersection area
6- Back to step 1.

Analysis:
– Time for reading in 40 MB of data in 4 segments (i.e., 4

seeks & 4 rotational latencies plus time for reading 40 MB)
4*(s+r) + ...
97msec 14 msec

– Time for writing out intersection file is 70% of 14 sec.
= 10 sec.

Dr. K. Dincer Chapter 3 - File Organization
and Processing

28

Time Spent for Comparisons
For each record in MA file, we search through BCBS file:
• For 70 K records, there is a duplicate

T F = (b/2)*ebt = 7 secs.
T X(independent fetches) = n * T F(average case) = 70000*7

• For 30K records,no duplicate(i.e.,whole file needs to be read)

T X(independent fetches) = n * T F(worst case) = 30000*14

Total Time = 70000*7 + 30000*14 = 910,000sec=15.166min

= 253 hours ≅10.5 days

Result: It is not a good idea to make intersection files
from pile files w/o sorting first.

