
1

K. Dincer Chapter 4 - File Organization
and Processing

1

EXTERNAL SORTING

Few Computer Engineers write sorting routines
for large files. But many use & choose which
packages to buy.

This chapter will help
• to estimate how much time sorting should

take
• to make informed choices among sorting

packages
• to decide under what circumstances to use

the sorting package
K. Dincer Chapter 4 - File Organization

and Processing
2

4.1 Creating Initial Sorted Segments

Whenever a file does not fit entirely into memory:
• First Stage of Sorting : div ide file into

segments & sort each one separately.
• Second Stage of Sorting : merge sorted

segments
Each stage involves reading & writing the file at

least once:
• sorting w/one disk drive takes at least 4*T x

• sorting w/two disk drives takes at least 2*Tx
(reading & writing time is overlapped)

K. Dincer Chapter 4 - File Organization
and Processing

3

CA Income Tax File

6 million records of 400 B each ≈2400 MB file.
10 MB of comp memory.
We need to list the records in order of a field for

which there is no index and for which it is not
already sorted.

Time for finding records in order, given a list of
key values but no addresses of records:
= 80 years

Sorting would be a better option!

K. Dincer Chapter 4 - File Organization
and Processing

4

Heapsort with One Disk Drive

Most optimal method for external sorting with
one disk drive

• Because input & output is overlapped, so only the I/O
time needs to be counted. Sorting becomes free!

(This is not the case for other internal sorting routines
such as quicksort, bubblesort, etc.)

Creates the initial sorted segments which are
the size of the available memory.

K. Dincer Chapter 4 - File Organization
and Processing

5

Replacement Selection
with Two Disk Drives

An extension of heapsort
• Initial sorted segments are twice the size of

available memory
• Reading in unsorted file and writing out

sorted segments overlap
• Initial stage takes the time to write the file

once.

Initial Sorted Segments

K. Dincer Chapter 4 - File Organization
and Processing

6

Merging Algorithms

• For 100 sorted segments, we take a piece
from each segment & read it into memory.
– When a piece of one sorted segment runs out,

replace it with next piece of the same sorted
segment.

• Do a 100-way merge in memory
Pros and Cons:
– requires a large # of disk accesses for pieces

of segments.
+ it takes less time than using larger pieces &

making several passes.

2

K. Dincer Chapter 4 - File Organization
and Processing

7

Overlapping Heapsort with I/O

Heap has two meanings:
• a pile file, or unsorted file
• priority queue [*]

A priority queue is a complete binary tree,
where each node contains a record with a
key value which is smaller than the keys in its
two children.

• Root is the smallest key of all the records in the tree
• But keys are not totally in order

K. Dincer Chapter 4 - File Organization
and Processing

8

Complete Binary Trees

A complete binary tree has a tree in which
• all leaves are on two levels: kth level and (k+1)th

level,
• the leaves on the bottommost level are in the

leftmost positions in that level.
A complete binary tree is easy to model with an

array:
• We arrange the nodes of the tree in level order.
• The height is floor(log n), where n is the # nodes in the

tree.
• The children of the ith element in the array are in the 2ith

& (2i+1)st elements of the array. See Figure 4.1

K. Dincer Chapter 4 - File Organization
and Processing

9

The Idea of Heapsort

1st Stage
• read in records & place each new record

– at the end of the array (in the rightmost bottom child position
of the complete binary tree)

– If new record is smaller than its parent’s key, then exchange
new record with its parent (recursively up the heap).
(# comparisons & exchanges <= log n, where n is the #
records that have already been read into memory)

• We read in records until memory fills up.

2nd Stage
• The second stage overlaps writing out the sorted

segment
See Figure 4.2

K. Dincer Chapter 4 - File Organization
and Processing

10

Example
400 B records in 2400 B blocks,10MB memory

– 6 insertions while reading the next block
– 25,000 records in the tree

Each record insertion causes at most
log 25000 = 14 exchanges

Each block has 6 blocks, so in worst case
about 84 comparisons & exchanges.

If each execution of exchange step is 10 µsec:
840 µsec = 0.84 msec required

= time to read in one block of 2400 bytes in IBM 8330.
Assumptions:
• Some overlapping is possible
• Whole memory is used as a buffer
• It does not matter if TI(heap) > btt (for next block)
• Most of heap insertion can overlap with reading

K. Dincer Chapter 4 - File Organization
and Processing

11

Output Sorted Segment
WHILE more records exist not written to disk DO (Page 100)
• Move the root record into the output buffer.

Put the rightmost bottom record (say “X”) in the root position.
• [heap condition test]

If the value of X is greater than its two children, exchange it with the
smaller child. Repeat this step for X, until the tree becomes a heap.

This is an O(log n) operation, where n is the # records left in the tree.
– It can be a great extent to be overlapped with the writing of the

sorted segment.
• Seek time = 24.3 msec, TR(for 30MB of data to be sorted) = 3500msec
• Time for creating the initial sorted segments = 2b*ebt

– Time to read in segments overlapping creation of the heap and
– time to write out the sorted segments, overlapping the 2nd phase of

heapsort (See Fig. 4.2)

K. Dincer Chapter 4 - File Organization
and Processing

12

Ex: Cambridge Tax File
30,000 100-byte records can fit into 10 MB memory
Since heapsort overlaps I/O,

T X = 1250*0.84 msec = 1 sec.
T sort= 2b * ebt = 2 TX = 2 sec
(1 sec to read in file & create a heap)
(1 sec to write out the sorted file)

(Compare with 4.38 hours required for ordered
reading of records as computed in Chp.3)m

3

K. Dincer Chapter 4 - File Organization
and Processing

13

Replacement Selection w/2 Disks
• Produces sorted segments twice the size of memory.
• It takes only one sequential reading time.

– (Reading, writing, and sorting all overlap.)

Algorithm:
• A heap is constructed from the first read segment.
• Using heapsort, smallest records that completes a block are

emitted.
• A new block is read in:

– New records with keys smaller than those of records already written
out is put into a second heap in memory.

– Others are inserted into the first heap as usual and smallest record
at root position is moved to the output buffer.

– The empty position (root position) in the first heap are filled with the
smallest element of the second heap. (Exchanges may be needed)

K. Dincer Chapter 4 - File Organization
and Processing

14

Analysis:
• We can overlap i/o with internal processing:

– We can both insert a record and output a record in the time it
previously took just to do output of one record.

Extreme Cases:
• In case the keys of incoming records are mostly smaller than the

keys of the records which have already been emitted:
– After some time, the new heap in memory may become

larger than the old one.
– In this case we may not be able to overlap I/O (both usual

input and usual output must take place)
• In case records are partially sorted in ascending order:

– It will take longer before the new heap dominates the old
heap. The output segment will be very large.

For random input, output segments are twice the size of memory.
•if file is partially sorted in the right order, the segments will be longer.
• opposite order, shorter.

K. Dincer Chapter 4 - File Organization
and Processing

15

Summary:
– Requires having two disks.

– Must be able to write out blocks of sorted segments at the same
time as reading in blocks of the unsorted file. (Otherwise?)

(overlap is only possible after the memory has been filled once.)

+ This reduces the time for initial sorting of segments by a
factor of two : b x ebt

+ Sorted segments are twice as large as the memory
capacity.

K. Dincer Chapter 4 - File Organization
and Processing

16

One Disk Drive Large-Memory Merging
Assume we have a disk similar to IBM 8330 that has

room for two 2400 MB files (sorted or unsorted)
but only one disk arm.

Memory size = 10 MB
Heapsort was used to obtain 240 sorted segments,

each 10MB of size(Time required is 14x2=28 min)

K. Dincer Chapter 4 - File Organization
and Processing

17

The Two-Way Merge
We merge two of the sorted segments at a time:
• We can read in half of each segment (5 MB) into memory
• One disk arm --> RW overlap or RR overlap is not possible!
• With double [output] buffering we can overlap merging w/ writing out.

Time for merging two sorted segments (each with seg blocks):
(4 + 3) x (r + s) + 2 x 2 x seg x ebt = 170 + 14,400 = 14,170 ms

= 14.2 sec

(s+r) becomes significant in n-way merges, when n is large.

half segments
(R & W)

R1/1 R2/1 W R2/2 W R1/2 W W
time

s+r

R + W time
for one segment

K. Dincer Chapter 4 - File Organization
and Processing

18

Example: Figure 4.5
10 50 70 90 150 230 310 350 470 490

20 60 100 200 250 300 400 520 610 700

A:

B:

A:
B:

A:
B:
A:
B:
A:
B:
A:
B:

A:
B:
A:
B:
A:
B:
A:
B:
A:
B:

4

K. Dincer Chapter 4 - File Organization
and Processing

19

We need ceiling(log2240) passes.
Time for first pass:

120 x 14.2 sec = 1704 sec = 28.4 min
For merging two 10MB sorted segments, we need (3 W +4 R)
For merging two 80MB sorted segments, we need (31 W+32 R)

After the first pass, (# R) ≅ (# W)
So, # separate seeks = 2 x #R = 2 x # pieces to be read in.

A Two-Way Merge With 240 Segments

pass

segment
size (MB)

number

8765431

10 20 40 80 160 7x320
1x160

3x640
1x480

1x1280
1x1120

240 120 60 30 15 8 4 2

2

K. Dincer Chapter 4 - File Organization
and Processing

20

Time for one pass when we use a two-way merge :
2 x 2 x (nsg) x (r + s) + 2 x b x ebt

when we have nsg segments of memory size.

Back to our Example:
Time for each pass = ? 4 x 240 x (24.3) + 2,000,000x0.84=28.4 min

Time to do 8 passes = ? 8 x 28.4 min = 227 min

Sorting each segment originally = 28 min

Total = ? 255 min

R & W whole file# half segments1 R & 1 W
for each segment

K. Dincer Chapter 4 - File Organization
and Processing

21

The Four-way Merge

We merge four of the sorted segments at a time:
• We can read in seg/4 of each segment (2.5 MB) into memory
• First pass : 60 segments of 40 MB each.
• Second pass: 15 segments of 160 MB
• Third Pass : 4 segments of . . .(3 x 640 and 1 x 480)
• Fourth Pass : 1 segment of 2400 MB.

Time for one four-way merge pass:

2 x 4 x (nsg) x (r + s) + 2 x b x ebt

Back to our example, what is the total time for sort + merge?

K. Dincer Chapter 4 - File Organization
and Processing

22

The P-way Merge
Time for one P-way merge pass:

2 x P x (nsg) x (r + s) + 2 x b x ebt

The number of passes: logP(nsg)

General Formula for Merge Sorting with One Disk Drive:

2b x ebt + logP(nsg) x [2 x P x (nsg) x (r + s) + 2 x b x ebt]

As a rule of thumb, try the following in order to decide what to
choose for P:

P = nsg(one pass), (usually best for nsg < 196)

P = 2√ nsg) (two passes),

and P = 3√ nsg) (three passes).

sort time # passes

K. Dincer Chapter 4 - File Organization
and Processing

23

How the Merging is Done? (Figure 4.7)
In order to do the comparisons within the merge, we use another

priority queue
• it consists of the lowest value record from each of the segments

in memory.
• as a record is selected from the queue for the merge, the next

lowest record from that segment is entered into the queue.

Sorting the Hospital File
Calculate the sort time for the hospital file with 100,000 of 400B

patient records.
• Create 4 sorted segments using heapsort.
• Do one 4-way merge in memory.

Creating the Intersection File
Constitute the intersection file from MA & BCBS files, which are

both 40 MB files. 70% of records are common in both files.
K. Dincer Chapter 4 - File Organization

and Processing
24

Two Disk Drive Large-Memory Merging
• We can do replacement selection

+ twice the size of memory segments in average
+ takes Tx time.

• We can overlap R & W in the merge phase.
+ total sorting time is cut in half
- coordination of R and W in the merge is delicate.

Double Buffering the Input
We have a problem in overlapping R & W:
• Let’s look at 2-way merging:

– assume that two sorted segments of 20MB have roughly the
same distribution. Read 5MB of data from each segment.

– It is likely that both pieces will run out at about at the same time,
and we shall be forced to wait because the other piece will be
empty. We cannot R or W both segments simultaneously.

5

K. Dincer Chapter 4 - File Organization
and Processing

25

Double Buffering the Input
We have a problem in overlapping R & W:
• Let’s look at 2-way merging:

– assume that two sorted segments of 20MB have roughly the
same distribution. Read 5MB of data from each segment.

– It is likely that both pieces will run out at about at the same
time, and we shall be forced to wait because the other piece
will be empty. We cannot R or W both segments
simultaneously.

– One solution:
• Use two buffers, each half the size we would use for one-disk

drive merging, for each segment being merged (i.e., 2.5 MB)
• This way when only half the records in memory from a given

segment have been merged, new ones are read in from the
same segment.

• There might be occasional waiting periods but most of the time
input time should overlap most of the output.

K. Dincer Chapter 4 - File Organization
and Processing

26

The CA Income Tax File
• See Slide #3.
• Initial sorting will produce 120 segments of about 20MB each (Takes

14 minutes)
• Let’s perform a 120-way merge (one pass)

– Each segment contributes 1/120 of the initial 10MB read into memory,
i.e., 1/240 of the 20MB in each segment.

– We use “half-size” buffers, so ∃480 pieces in each segment to be read
in separately (Each piece is slightly smaller than a track)

– Assume that all data is kept in one disk, and all sorted data is written into
another disk. We can overlap R and W.

– Total time for merging=120 x 480 x (s + r) + b x ebt =2240 sec =37.3min
(Compare this with 62 min that we computed for merging w/one disk drive)

• If we make 11-way merge (two passes)
– Each segment is 44 pieces
– Each pass takes 44 x 120 x 24.3 + 840,000 ms = 968 sec.
– Two passes takes 1936 sec = 32.3 min, so total sort time=32+14=46min.

K. Dincer Chapter 4 - File Organization
and Processing

27

General Formula for Sorting with Two
Disk Drives

b x ebt + logP(nsg)x [4 x P x (nsg) x (r + s) + b x ebt]

What is the formula for sorting with two disk drives, with a one-pass
nsg-way merge?

How More Disk Drives Could be Used?
If we have 3 or more disk drives, we could use
• one disk for W
• others for R and distribute sorted segments evenly on them
⇒ Seeks on one disk can overlap Reads on another disk

We could get close to optimal sorting time by managing to
overlap R, seeking, merging, and W perfectly.
– This time can not be less than Tx.

sort time # passes

K. Dincer Chapter 4 - File Organization
and Processing

28

The Intersection File
Sorting 40MB BCBS & MA files is very fast.
• Using replacement selection, we obtain 2 sorted

segments of 20 MB each.
• We merge these two segments using a 2-way merge.

Total time = b x ebt + logP(nsg) x [4 x P x (nsg) x (r + s) + b x ebt]

= 2 x b x ebt + 4 x (nsg)2 x (r + s)

= 2 x 16,667 x 0,84 + 4 x 4 x 24.3 ≅28 sec.
Seeks are not significant, and the sort time is near optimal (2Tx.)
Sorting both files takes 56 seconds.
We can overlap R & W, so writing intersection file takes 28 seconds.
So, the total time is 84 seconds.
(Compare this with 2.5 minutes it took with only one disk drive, and much

faster than the 10.5 days it took without sorting.)

K. Dincer Chapter 4 - File Organization
and Processing

29

Using Quicksort with Virtual Memory
is Slow !

• Quicksort is an O(n log n) sorting method
– good if whole file fits into memory

• as not good as heapsort, since quicksort cannot overlap I/O

– if not, we can write a quicksort program that rely on virtual
memory (i.e., as if the whole file fits into memory)

• But this does not make sense if (file size) >> (memory size)
• A paging policy such as LRU (least recently used) is often used

in virtual memory implementation.

• Use quicksort in order to sort a file which is 240 times the size of
memory (i.e., 2400 MB.)

• See Tharp (page 342-346)

K. Dincer Chapter 4 - File Organization
and Processing

30

Sorting Packages are Sometimes Very
Slow !

• Sorting Package: a software that can be used to sort
the given files using different algorithms.

• Package may only work well for files that fit in
memory.

• Sorting in real situations may not work as well as the
sorting under theoretical conditions:
– multi-user environments
– sub-optimal physical system configurations (not enough

space on the disk for unsorted and sorted file)
– not enough memory space is available for user’s data

If a sorting package is 2 - 10 times slower than the ideal sorting
described here, it is probably pretty good.

