
1

K. Dincer Chapter 5 - File Organization
and Processing

1

Chapter 5 - Tree Indexes
Given a dynamic file (many insertions and deletions)
we would like to do frequent independent fetches, consider
• an unsorted file
• a sorted file
• having an index (look up table)

Inverted Files:
• A simplest index structure that is in the form of an ordered list

where each each entry is a (key, ptr) pair.
• difficult to maintain

– After insertion and deletions, whole file needs to be shifted.

Most DBMSs use B+-trees and hash table utilities.
• we must learn how they work and what performance to expect.

K. Dincer Chapter 5 - File Organization
and Processing

2

ISAM (Indexed Sequential Access
Method)

• the most extensively used indexing method in last decade.
• mostly promoted by IBM and INGRES DBMS, but obsolete today.

• ISAM is simple and efficient as long as no new records are added
It contains
– a memory-resident cylinder index that keeps the highest valued key

for each cylinder
– each cylinder contains an index that keeps the highest valued key

for each block

1 1001

cylinder
high
value

2 2878

cylinder
high
value

. . .

memory-resident
cylinder index

1 100

block
high
value

2 170

block
high
value

. . .

index at
cylinder 1

K. Dincer Chapter 5 - File Organization
and Processing

3

TF = r + s + btt + r + btt

Tx = same as the sorted file
(Actually a little bit longer since some space left on each cylinder for overflow.)

Disadvantages of ISAM:
• As new records are added, the ISAM file degrades in performance.
• It has to be reorganized at high cost.

Time to fetch the
index on cylinder

Time to fetch
correct block

K. Dincer Chapter 5 - File Organization
and Processing

4

Overflow Chains in ISAM
• We start with some empty tracks in each cylinder for overflow
• When a new record is added, old records are shifted to make place for

the new one.
• The record which had the largest key in the block is moved to the

overflow area.
• When the overflow area fills up, overflow is written to another cylinder
• Eventually the performance gets very slow.

Performance
• performance gets really poor when the distribution of new records could

not be predicted in advance - very long overflow chains may occur
• With good prediction, enough space can be reserved in areas which

are expected to grow

K. Dincer Chapter 5 - File Organization
and Processing

5

B+-Trees
• Most used indexing method today.
• In B+-Trees:

– nodes tend to have over 100 children
– all leaves are on the same level
– leaves contain the actual pointers to data on disk

Any indexing structure which supports an ordering on a
large file is likely to be implemented by a B+-tree.
– we can make efficient range queries.

• We shall show how a B+-tree can be used as a secondary or
primary indexing method.

• We will look at the costs of fetching, sequential operations, and
insertion/deletion.

K. Dincer Chapter 5 - File Organization
and Processing

6

Structure of a B+-Tree

Index Entries
(Direct Search)

Data Entries
(“Sequence Set”)

Index File

13 17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Example of a B+-Tree, Order v = 2

2

K. Dincer Chapter 5 - File Organization
and Processing

7

Definition of a B+-Tree of Order v
• The root has at least two children unless it is a leaf.
• No internal node has more than 2v keys.

– Root may have less keys
– Internal nodes contain only keys and addresses of nodes on

the next lower level.

• All leaves are on the same level.
– When B+-tree is used as a primary index, the leaves contain

the data records.
– When B+-tree is used as a secondary index, the leaves

contain the keys and record addresses.

• An internal node with k keys has k +1 children.

Bucket factor (Bkfr) : the # records that can fit in a leaf node.
Fan-out: the average # children of an internal node.

K. Dincer Chapter 5 - File Organization
and Processing

8

• B+-trees are short and wide.
• The records take up more space than the keys and

addresses.
– Typically internal nodes carry on 100-200 keys, leaves carry

on 15 records.

• A primary index determines the way the records are
actually stored.

• Clustering index: records are stored together in
buckets acc.to the values of the key.
– The records in a given bucket will have nearby key values.
– The index only note the lowest or the highest key in a given

bucket.
• For this reason, clustering index, is often called a sparse

index (e.g., ISAM, a B+-tree with data in the leaves)

K. Dincer Chapter 5 - File Organization
and Processing

9

• A B+-tree can also be used for a secondary index.
– The records in the file are not grouped in buckets according

to the keys of secondary indexes.
– A secondary index is also a dense index where an entry

exists for each record in the file (e.g., a B+-tree where
leaves contain keys and addresses of records)

• There may be many secondary indexes for the same
file.

• Why not have a secondary index on each field in the file?
– this would need repeating all the information in the file in the

leaves of the trees.
– with many indexes, update costs becomes high.

