
1

Chapter 3 Programming Languages 1

Chapter 3. Describing Syntax and Semantics
Syntax (form) & Semantics (meaning)

Most common method of descibing syntax:
Context-Free Grammars (Backus-Naur Form)

Syntax
Graphs

A CFG-Based Syntax
Analysis Technique:

Recursive Descent Parsing

Attribute Grammars
for describing

syntax & semantics

Formal methods of describing semantics:
Operational, Axiomatic and

Denotational Semantics

Chapter 3 Programming Languages 2

Describing a Programming Language

The task of a concise yet understandable
description of a PL is difficult but essential to
the language’s success.
– ALGOL 60 & ALGOL 68 are the first languages

with concise descriptions.
– What might be the result of imprecise description?

Who must use language definitions?
• Other language designers
• Implementors
• Programmers (the users of the language)

Chapter 3 Programming Languages 3

Syntax and Semantics
Study of PLs include examination of:

• Syntax - the form or structure of the expressions,
statements, and program units.

• Semantics - the meaning of the expressions,
statements, and program units.

• Ex: An if statement in C language:
if (<expr>) <statement>

In a well-designed PL, semantics should follow
directly from syntax.

Describing syntax is easier than describing semantics.

Chapter 3 Programming Languages 4

The General Problem of Describing Syntax
• A sentence is a string of characters over some alphabet.
• A language is a set of sentences.

– Syntax rules specify which sentences are in the
language.

• A lexeme is the lowest level syntactic unit of a language
(e.g., *, sum, begin.)
– Description of lexemes is given by a lexical specification,

and separate from the syntactic description of the lang.
– Lexemes include identifiers, constants, operators and

special words.
• A token is a category of lexemes (e.g., identifier, semicolon,

or equal_sign) [Example]

You can think of progs as strings of lexemes rather than chars.

Chapter 3 Programming Languages 5

Formal Approaches to Describing Syntax
• Recognizers - used in syntax analysis part of

compilers
– A language L that uses alphabet ∑ of characters.
– We construct a recognition device, R, which is capable

of
• inputting strings of chars. from the alphabet ∑ and
• indicating whether a given input string is in L or not.

• Generators - what we'll study
– A language generator is a device that can be used to

generate the sentences of a language.
– more readable and understandable than recognizers
– Lang. recognizers are not useful as a language

description mechanism.
Chapter 3 Programming Languages 6

Backus-Naur Form and Context-Free Grammars

Grammars are formal language generation mechanisms
commonly used to describe syntax of PLs.

Context-Free Grammars (CFG) (mid-1950s)
• Developed by Noam Chomsky.
• Defined a class of languages called context-free langs.
• Context-free grammars can describe whole languages,

with minor exceptions.
• Regular grammars can describe langs of tokens of PLs.

Backus-Naur Form (BNF) (1959)
• Invented by John Backus to describe Algol 58.
• BNF is equivalent to context-free grammars.
• BNF is a very natural notation for describing syntax.

2

Chapter 3 Programming Languages 7

Fundamentals
• A metalanguage is a language used to describe

another language. (ex. BNF is a metalang. for PLs)

• In BNF, abstractions are used to represent classes
of syntactic structures--they act like syntactic
variables (also called nonterminal symbols)

e.g. <while_stmt> -> while <logic_expr> do <stmt>

• This is a rule(or production); it describes the
structure of a while statement.

• A rule has a left-hand side (LHS) and a right-hand
side (RHS), and consists of nonterminal and
terminal (lexemes and tokens) symbols.

*

Chapter 3 Programming Languages 8

• A grammar is a finite nonempty set of rules.

• An abstraction (or nonterminal symbol) can have
more than one RHS (i.e., definitions):

<stmt> -> <single_stmt>
| begin <stmt_list> end

• Syntactic lists are described in BNF using recursion:
<ident_list> -> ident

| ident, <ident_list>

• A derivation is a repeated application of rules,
starting with the start symbol and ending with a
sentence (all terminal symbols)

Chapter 3 Programming Languages 9

• Each of the strings in the derivation, including start
symbol is called a sentential form.

• A sentence is a sentential form that has only
terminal symbols, or lexemes.

• A leftmost derivation is one in which the leftmost
nonterminal in each sentential form is the one that is
expanded:

<term> -> <term> * <factor>
• A derivation may be leftmost, rightmost, or neither of

them.
– Derivation order has no effect on the language

generated by a grammar.
– By exhaustively choosing all combinations of

alternative RHSs of rules, the entire language can
be generated.

Chapter 3 Programming Languages 10

Examples
An example grammar for a small language:

A derivation of a program in this language:

<program> -> <stmts>
<stmts> -> <stmt> | <stmt> ; < stmts>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

<program> => < stmts>
=> <stmt>
=> <var> = <expr>
=> a = < expr>
=> a = <term> + <term>
=> a = < var> + <term>
=> a = b + <term>
=> a = b + const

Chapter 3 Programming Languages 11

Parse Trees
A parse tree is a hierarchical representation of a derivation.
A grammar is ambiguous iff it generates a sentential

form that has two or more distinct parse trees.
<program>

<stmts>

<stmt>

<term>

= <expr><var>

a + <term>

<var>

b

const

Every leaf is labelled
with a terminal symbol.

Chapter 3 Programming Languages 12

A grammar is ambiguous iff it generates a sentential
form that has two or more distinct parse trees.

• Ex: An ambiguous expression grammar:

• If we use the parse tree to indicate precedence levels
of the operators, we cannot have ambiguity.

• Ex: An unambiguous expression grammar:

<expr> -> <expr> <op> < expr> | const
<op> -> / | -

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

3

Chapter 3 Programming Languages 13

Following derivation uses the above grammar:

• Operator associativity can also be indicated by a
grammar:

<expr> => <expr> - <term> => <term> - <term>
=> const - <term>
=> const - <term> / const
=> const - const / const

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)

Chapter 3 Programming Languages 14

Associativity of Operators
Make sure that the associativity is correctly described.

– Ex: A := B + C + A (See Figure 3.4)
In most cases, associativity of operators is irrelevant:

– In math, + is associative, i.e.,(A+B)+C = A + (B+C)
– In computers, + is sometimes not associative.

Ex: Floating-point addition w/limited precision.
– (–) and (/) are not associative either in math or in a

computer.
A left (right) recursive BNF rule: a rule where its LHS also

appearing at the beginning (end) of its RHS.
– Left recursion specifies left associativity. (as in + - / *)
– Right recursion “ “ right associativity. (as in **)

Chapter 3 Programming Languages 15

Extended BNF (EBNF)
Extensions do not enhance the power of BNF but bring

abbreviations and increase its readability writability.

1. Place optional parts in brackets: []
<proc_call> -> ident [(<expr_list>)]

2. Put alternative parts of RHSs in parentheses and
separate them with vertical bars:

<term> -> <term> (+ | -) const
3. Put repetitions (0 or more) in braces*: { }

<ident> -> letter {letter | digit}
{ }+ indicates one or more repetions.

This is a replacement of the recursion by a form of implied iteration.
Sometimes an ellipsis (. . .) (i.e., more of the same) is used instead:

<ident_list> -> <identifier> [,<identifier>]...
Chapter 3 Programming Languages 16

• Metasymbols: The brackets, braces, and
parantheses in the EBNF extensions.
– Metasymbols are notational tools and not terminal

symbols in the syntactic entities they help describe.
– If these metasymbols are also terminal symbols in the

language being described, the instances that are
terminal symbols are underlined.

BNF: EBNF:
<expr> -> <expr> + <term> <expr>-> <term> {(+| -)<term>}

| <expr> - <term>
| <term>

<term> -> <term> * <factor> <term> -><factor>{(*|/)< factor>}
| <term> / <factor>
| <factor>

Chapter 3 Programming Languages 17

Syntax Graphs
A graph is a collection of nodes, some of which are

connected by lines, called edges.

A directed graph is one in which the edges are directional.
– (Ex: A parse tree is a restricted directed graph)

Syntax graphs (diagrams, charts) are directed graphs
where circle nodes represent terminals and rectangle
nodes represent non-terminals of a BNF grammar.

type_identifier

identifier

,
. . constantconstant

()

Pascal type declarations:

Chapter 3 Programming Languages 18

Recursive Descent Parsing
• A CFG can serve as a syntax analyzer, or parser, of

a compiler. Recursive descent is a grammar-based
top-down parser.

• Parsing is the process of tracing or constructing a
parse tree for a given input string.

• Each nonterminal in the grammar has a subprogram
associated with it;
– Given an input string, it traces out the parse tree

whose leaves match the input string.
– The subprogram parses all sentential forms that

the nonterminal can generate. In effect, it is a
parser for the language that can be generated by
its nonterminal.

– These subprograms are built directly from the
grammar rules, and they are usually recursive.

4

Chapter 3 Programming Languages 19

Lexical Analyzer Syntax Analyzer
(Parser)Lexemes

Tokens
Characters

representing
the sentence

Plays the role of a
Front-End
to Parser

• lexical() gets leftmost token of input and puts it into
global variable next_token.

Recursive descent parsers, like other top-down parsers,
cannot be built from left-recursive grammars.

Chapter 3 Programming Languages 20

Example
Given the grammar:

<expr> -> <term> {(+| -) <term> }
<term> -> <factor>{(*|/)<factor>}
<factor> -> <id> | (< expr>)

The recursive descent subprogram in C for the second rule:

void term() {
factor(); /*parse the first factor */
while (next_token==ast_code || next_token==slash_code) {

lexical(); /* get the next token from the input */
factor(); /* parse the next factor */

}
}

Chapter 3 Programming Languages 21

void factor () {
if (next_token == id_code) {

lexical();
return;

}
else if (next_token == left_ paren_code) {

lexical();
expr();
if (next_token == right_ paren_code) {

lexical();
return;

else error(); /*expecting right paranthesis*/
}

else
error(); /*it was neither an id or a left paranthesis*/

}

Parsers of real compilers report a diagnostic message
when an error is detected, and recover from the error
so that the parsing process can continue.

Chapter 3 Programming Languages 22

Static Semantics

(Have nothing to do with meaning but the legal forms of
programs (syntax rather than semantics.))

Some characteristics of PLs:
1. Context-free but cumbersome (e.g., type checking)

– Grammar would become too large to be useful. The
size of the grammar determines the size of the parser.

2. Non-Context-free (e.g. variables must be declared before
they are used)

Because of the inability to describe static semantics with
BNF, a variety of more powerful mechanisms has been
described for that task, such as attribute grammars.

Chapter 3 Programming Languages 23

Attribute Grammars (AGs) (Knuth, 1968)

CFGs cannot describe all of the syntax of programming
languages. Additions to CFGs to carry some semantic
info along through parse trees

Attribute grammars are grammars to which have been
added:

• Attributes, which are associated with grammar symbols ,
are similar to variables that can be assigned values.

• Attribute computation functions (semantic functions)
are associated with grammar rules to specify how
attribute values are computed.

• Predicate functions, which state some of the syntax and
semantic rules of the language, are associated with
grammar rules.

Chapter 3 Programming Languages 24

Formal Definition
An attribute grammar is a CFG G = (S, N, T, P)
with the following additions:

1. For each grammar symbol x there is a set A(x) of
attribute values.

2. Each rule has a set of functions that define
certain attributes of the nonterminals in the rule.

3. Each rule has a (possibly empty) set of
predicates to check for attribute consistency.

Primary value of AGs:
1. Static semantics specification
2. Compiler design (static semantics checking)

5

Chapter 3 Programming Languages 25

Attributes and Attribute Computation
Functions

Let X0 -> X1 ... Xn be a rule.
Associated with each grammar symbol X is a set of

attributes A(X) that consists of two disjoint sets:S(X) & I(X)

• Functions of the form S(X0) = f(A(X1), ... A(Xn)) define
synthesized attributes.
– used to pass semantic info up a parse tree.
– f is a semantic function and value of X0 depends only

on the values of attributes on that node’s children.
• Functions of the form I(Xj) = f(A(X0), ... , A(Xn)), for

i <= j <= n, define inherited attributes.
– used to pass semantic info down a parse tree.
– f is a semantic function and value of Xj depends on the

values of attributes on that node’s parent & siblings.
Chapter 3 Programming Languages 26

Predicate Functions
• A predicate function has the form of a Boolean

expression on the attribute set {A(X0), ... A(Xn)}.
– Only derivations allowed with an attribute

grammar are those in which the predicates
associated with every nonterminal are all true.

– A false predicate function value indicates a
violation of the syntax or static semantics rules of
the language.

Chapter 3 Programming Languages 27

Parse Tree of an Attribute Grammar
• Parse tree is based on its underlying BNF grammar,

with a possibly empty set of attribute values attached
to each node.

• If all the attribute values in a parse tree have been
computed, the tree is said to be fully attributed.

• Assume that attribute values are computed after the
complete unattributed tree has been constructed.

Chapter 3 Programming Languages 28

Intrinsic Attributes
Intrinsic attributes are synthesized attributes of leaf

nodes whole values are determined outside the parse
tree.

Example 1: Ada procedure names.
Rule: In Ada language, the name on the end of a

procedure should match the procedure’s name.

Syntax rule:
<proc_def> → procedure <proc_name>[1]

<proc_body> end <proc_name>[2];

Semantic rule:
<proc_name>[1].string = <proc_name>[2].string

Chapter 3 Programming Languages 29

Example 2: Type Constraints

Rule: The syntax and semantics of an arithmetic statement
are as follows:

• The only variable names are A, B, and C.
• The RHS of assignments can be: <var> | <var> + <var>
• There are only two variable types: real and int.
• When there are two variables on RHS, they need not be

the same type:
– The type of expression becomes real if types of two

variables do not match.
– When both variables have the same type, the

expression type is assigned that type.
– LHS’s type in assignment must match the type of RHS.

Chapter 3 Programming Languages 30

BNF:
<assign> → <var> := <expr>
<expr> → <var> | <var> + <var>
<var> → A | B | C)

Attributes:
<assign> < var> < expr>

synthesized lhs_type actual_type actual_type
inherited env expected_type,env env

The environment variable, env, is a pointer to the
compiler’s symbol table and is inherited from above the
root of the parse tree in this grammar. The declarations
in the language cause the compiler to generate a
symbol table. (See Example 3.6)

6

Chapter 3 Programming Languages 31

Example 3: Simple Expression
Expressions of the form: id + id
• id's can be either int_type or real_type

• types of the two id's must be the same
• type of the expression must match it's expected type

BNF:
<expr> -> <var> + <var>
<var> -> id

Attributes:
• actual_type - synthesized for <var> and <expr>
• expected_type - inherited for <expr>

Chapter 3 Programming Languages 32

Attribute Grammar:
1. Syntax rule: <expr> -> <var>[1] + <var>[2]

Semantic rules:
<var>[1].env ← <expr>.env
<var>[2].env ← <expr>.env
<expr>.actual_type ← <var>[1].actual_type

Predicate:
<var>[1].actual_type = <var>[2].actual_type
<expr>.expected_type = <expr>.actual_type

2. Syntax rule: <var> -> id

Semantic rule:
<var>.actual_type ← lookup (id, <var>.env)

Chapter 3 Programming Languages 33

How are Attribute Values Computed?
1. If all attributes were inherited, the tree could be

decorated in top-down order.

2. If all attributes were synthesized, the tree could be
decorated in bottom-up order.

3. In many cases, both kinds of attributes are used,
and it is some combination of top-down and
bottom-up that must be used.

Chapter 3 Programming Languages 34

Attribute Evaluation Order
1. <expr>.env ← inherited from parent

<expr>.expected_type ← inherited from parent

2. <var>[1].env ← <expr>.env
<var>[2].env ← <expr>.env

3. <var>[1].actual_type ← lookup (A, <var>[1].env)
<var>[2].actual_type ← lookup (B, <var>[2].env)
<var>[1].actual_type =? <var>[2].actual_type

4. <expr>.actual_type ← <var>[1].actual_type
<expr>.actual_type =? <expr>.expected_type

Chapter 3 Programming Languages 35

Dynamic Semantics

No single widely acceptable notation or formalism
for describing semantics, all are complicated and very
theoretical.

Three common types:
1. Operational Semantics
2. Axiomatic Semantics

– Based on formal logic (first order predicate calculus)
– Original purpose: formal program verification

3. Denotational Semantics
– Based on recursive function theory
– The most abstract semantics description method.

Chapter 3 Programming Languages 36

Homework 2

Due: March 2nd, 1999 Tuesday

1-) Answer the following Review Questions:
2.5, 3.5, 3.9, and 3.12 (Each 10 points)

2-) Solve the following problems in the Problem Sets:
2.1, 3.5, 3.7, 3.8 (Each 15 points)

