
1

K.Dincer Programming
Languages - Chapter 5

1

Chapter 5 - Data Types
• Data types and the characteristics of

the common primitive data types
(integer, floating-point, etc.)

• Designs of enumeration and subrange
types

• Structured data types: arrays, records,
and unions.

• Set types
• Pointers

Design Issues for all data types:
1. What is the syntax of references to variables?
2. What operations are defined and how are they

specified?

Primitive Data Types
(those not defined in terms of other data types)

Integer
- Almost always an exact reflection of the

hardware,
so the mapping is trivial

- There may be as many as eight different integer
types in a language

K.Dincer Programming
Languages - Chapter 5

2

Floating Point

- Model real numbers, but only as approximations
- Languages for scientific use support at least two

floating-point types; sometimes more
- Usually exactly like the hardware, but not

always;
some languages allow accuracy specs in code

e.g. (Ada)

type SPEED is digits 7 range 0.0..1000.0;
type VOLTAGE is delta 0.1 range -12.0..24.0;

- See book for representation of floating point
(p. 199)

Decimal

- For business applications (money)
- Store a fixed number of decimal digits (coded)
- Advantage: accuracy
- Disadvantages: limited range, wastes memory

Boolean

- Could be implemented as bits, but often as bytes
- Advantage: readability

K.Dincer Programming
Languages - Chapter 5

3

Evolution of Data Types

• FORTRAN I (1956) - INTEGER, REAL,
arrays, …
– dynamic structures are all modeled

with arrays.
• COBOL - accuracy of decimal data values

and structured data type for records of
information.

• PL/I - many data types
• ALGOL 68 - a few basic types and few

flexible structure defining operators, i.e.,
user-defined data types.

• Ada (1983) - User can create a unique
type for every category of variables in the
problem space and have the system
enforce the types --> abstract data types
– use of a type is separated from the

representation and set of operations
on objects of that type.

– All of the types provided by a HL PL
are abstract dt.

K.Dincer Programming
Languages - Chapter 5

4

• Def: A descriptor is the collection of the
attributes of a variable

K.Dincer Programming
Languages - Chapter 5

5 K.Dincer Programming
Languages - Chapter 5

6

Character String Types

Values are sequences of characters
Useful in labeling output, doing

input/output, maniupulating
characters.

Design issues:
1. Is it a primitive type or just a

special kind of array?
2. Is the length of objects static or

dynamic?

Operations:
• Assignment
• Comparison (=, >, etc.)
• Catenation
• Substring reference
• Pattern matching

2

K.Dincer Programming
Languages - Chapter 5

7

Examples

• Pascal
– Not primitive;
– assignment and comparison

only (of packed arrays)
• Ada, FORTRAN 77, FORTRAN 90

and BASIC
– Somewhat primitive
– Assignment, comparison,

catenation, substring reference
– FORTRAN has an intrinsic for

pattern matching
e.g. (Ada)
• N := N1 & N2 (catenation)
• N(2:4) (substring reference)

But what about assigning and
comparing operands of different
lengths?

Pattern matching provided as library
functions rather than an operation
of the language.

K.Dincer Programming
Languages - Chapter 5

8

• C and C++
– Not primitive
– terminated with null , i.e., zero

•Library functions that construct
strings often supply the null
character.

– Use char arrays and a library of
functions (string.h) that provide
operations

E.g., char *str = “apples”;
strcpy, strcat, strcmp, strlen

• SNOBOL4 (a string manipulation
lang.)

– Primitive
– Many operations, including

elaborate pattern matching
• Perl

– Patterns are defined in terms of
regular expressions

– A very powerful facility!
– e.g., /[A-Za-z][A-Za-z\d]+/

• Java
– String class (not arrays of char)

K.Dincer Programming
Languages - Chapter 5

9

String Length Options
1. Static - FORTRAN 77, Ada, COBOL

In F90: CHARACTER (LEN = 15) NAME;
2. Limited Dynamic Length - C & C++

actual length (0..max) is indicated
by a null character

3. Dynamic - SNOBOL4, Perl
+ no maximum, flexible
- overhead,i.e.,dynamic de/allocations

Evaluation (of character string types):
• Aid to writability
• As a primitive type with static length,

they are inexpensive to provide--why
not have them?

(What if they are not primitive type?)
• Dynamic length is nice, but is it

worth the expense?

K.Dincer Programming
Languages - Chapter 5

10

Implementation:
Implemented in software or supported

directly in hardware
• Static length - compile-time

descriptor
• Limited dynamic length - may need a

run-time descriptor for length (but
not in C and C++)

• Dynamic length - need run-time
descriptor; de/allocation is the
biggest implementation problem.
– linked list + heap: extra storage
– adjacent storage: frequent moves
Static String

Length
Address

Limited Dynamic String

Maximum Length
Current Length

Address

Dynamic String
Current Length

Address

K.Dincer Programming
Languages - Chapter 5

11

Ordinal Types

An ordinal type is one in which the
range of possible values can be
easily associated with the set of
positive integers.

In Pascal, the primitive ordinal types
are integer, char, and Boolean.

User-defined ordinal types:
• enumeration
• subrange

K.Dincer Programming
Languages - Chapter 5

12

1. Enumeration Type

is one in which the user enumerates all
of the possible values, which are
symbolic constants.

Design Issue: Should a symbolic
constant be allowed to be in more
than one type definition?

Examples:
• Pascal - cannot reuse constants; they

can be used for array subscripts, for
variables, case selectors; NO input or
output; can be compared.

• Ada - constants can be reused
(overloaded literals); disambiguate
with context or type_name.

• C and C++ - like Pascal, except they
can be input and output as integers

• Java does not include an
enumeration type.

3

K.Dincer Programming
Languages - Chapter 5

13

Common operations
predecessor, successor, position in

the list of values, and value for a
given position number.

Evaluation (of enumeration types):
1. Aid to readability--e.g. no need to

code a color as a number.
2. Aid to reliability--e.g. compiler can

check (except in C or C++, think
why?)

3. operations and ranges of values

K.Dincer Programming
Languages - Chapter 5

14

2. Subrange Type

is an ordered contiguous
subsequence of an ordinal type.

• Introduced by Pascal.

Design Issue: How can they be used?

Examples:
• Pascal

– Subrange types behave as their
parent types; can be used as for
variables and array indices
e.g. type pos = 0..MAXINT;

Evaluation of enumeration types:
• Aid to readability.
• Reliability - restricted ranges add

error detection.

K.Dincer Programming
Languages - Chapter 5

15

Implementation of
User-Defined Ordinal Types

• Enumeration types are implemented as
integers.
– first value is usually reprepresented

as 0.
– In C and C++, treated exactly like

integers.

• Subrange types are the parent types
with code inserted (by the compiler) to
restrict assignments to subrange
variables
(i.e., range checks in every assignment.)

K.Dincer Programming
Languages - Chapter 5

16

Arrays

is an aggregate of homogeneous data
• elements of primitive/structured type.
• an individual element is identified by

– its position in the aggregate,
relative to the first element.

Design Issues:
1. What types are legal for subscripts?
2. Are subscripting expressions in

element references range checked?
3. When are subscript ranges bound?
4. When does allocation take place?
5. What is the maximum number of

subscripts?
6. Can array objects be initialized?
7. Are any kind of slices allowed?

K.Dincer Programming
Languages - Chapter 5

17

Arrays and Indexes(Subscripts)
• Indexing is a mapping from indices to

elements:
map(array_name, index_value_list) → an element

• Implicit lower subscript bounds in
some languages.

Syntax
• FORTRAN, PL/I, Ada use parentheses

– [] were not available at that time!
– can be easily confused with

subprogram calls
• if an array declaration is

missing, compiler cannot detect
the error in FORTRAN:

–checks if it is an array or a
locally defined subroutine,

–else it should be an external
subroutine to be linked later!
(remember separate
compilation)

• Most others use brackets
K.Dincer Programming

Languages - Chapter 5
18

Types?
element type and subscript type

Subscript Types:
• FORTRAN, C - int only
• Pascal - any ordinal type (int,

boolean, char, enum)
• Java - integer types only

Four Categories of Arrays (based on
subscript binding and binding to storage)

1. Static - range of subscripts and
storage bindings are static
e.g. FORTRAN 77

+ execution efficiency (no de/allocation)

2. Fixed stack dynamic - range of
subscripts is statically bound, but
storage is bound at elaboration time
e.g. Pascal locals

C locals that are not static
+ space efficiency (two procedures
can share the same large array)

4

K.Dincer Programming
Languages - Chapter 5

19

3. Stack-dynamic - range and
storage are dynamic, but fixed
from then on for the variable’s
lifetime
e.g. Ada declare blocks

declare
STUFF : array (1..N) of

FLOAT;
begin ... end;

+ flexibility - size need not be known
until the array is about to be used.

4. Heap-dynamic - subscript range
and storage bindings are dynamic
and not fixed - Implementation?

FORTRAN 90:
INTEGER,ALLOCATABLE,ARRAY(:,:):: MAT
ALLOCATE (MAT (10, NUMBER_OF_COLS))
DEALLOCATE MAT

APL & Perl: arrays grow and shrink as
needed

Java: all arrays are objects (heap-
dynamic)

K.Dincer Programming
Languages - Chapter 5

20

See the comformant arrays in Pascal.
Number of subscripts
• FORTRAN I allowed up to three
• FORTRAN 77 allows up to seven
• C, C++, and Java allow just one,

but elements can be arrays
• Others - no limit
Array Initialization
• Usually just a list of values that

are put in the array in the order in
which the array elements are
stored in memory

Examples:
1. FORTRAN - uses the DATA

statement, or put the values in
/.../ on the declaration

2. C and C++ - put the values in
braces; can let the compiler count
them e.g. int stuff []={2,4,6,8};

3. Ada - positions for the values can
be specified

4. Pascal - does not allow array
initialization

K.Dincer Programming
Languages - Chapter 5

21

Array Operations
An array operation is one that

operates on an array as a unit.

1. APL - many, see book (chp.13 or
3rd ed.)

2. Ada
• assignment; RHS can be an

aggregate constant or an array
name

• catenation; for all single-dim
arrays

• relational operators (= and /= only)

3. FORTRAN 90
• elemental operations: operations

between pairs of array elements
– assignment, arithmetic,

relational, and logical operators.
• intrinsics or library functions for a

wide variety of array operations
(e.g., matrix multiplication and
transpose, vector dot product)

K.Dincer Programming
Languages - Chapter 5

22

Slices
A slice is some substructure of an array;

nothing more than a referencing
mechanism.

Design Issue: syntax.
Slice Examples:
1. FORTRAN 90
INTEGER MAT (1:4, 1:4)

MAT(1:4, 1) - the first column
MAT(2, 1:4) - the second row

2. Ada - single-dimensioned arrays only
LIST(4..10)

Evaluation
• Arrays have been implemented in

every imperative language.
– Since their introduction in

FORTRAN I, few improvements
were made: ordinal types as
subscript types and dynamic
arrays.

K.Dincer Programming
Languages - Chapter 5

23

Implementation of Arrays
• Requires more compile-time effort

than implementing primitive types
– The code to allow accessing of

array elements are generated at
compile time.

– This code is executed at runtime to
produce element addresses.

A single-dimensioned array is a list of
adjacent memory cells.
address(list[k]) = . . .

• if element type & array are statically
bound,constant part is precomputed

• if the base is not known until
runtime, then . . .

K.Dincer Programming
Languages - Chapter 5

24

A compile time descriptor is kept to
construct an access function.

• If runtime checking of index ranges is
not done and the attributes are all
static, . . .

• If runtime checking is done . . .
• If the subscript ranges of a particular

array type are static, . . .
• If any of the descriptor entries are

dynamically bound, . . .

5

K.Dincer Programming
Languages - Chapter 5

25

Access function maps subscript
expressions to an address in the
array
– Row major (by rows) or column

major order (by columns)
Access to multidimensional arrays is

costly - one +* for each dimension.
Multidimensional Arrays

Hardware memory is linear
• row-major order: the elements of an

array that have as their first
subscript the lower bound value of
that subscript are stored first,
followed by the elements of the
second value of the first subscript,
and so forth.

• column-major order: the elements
of an array that have as their last
subscript the lower bound value of
that subscript are stored first,
followed by the elements of the
second value of the last subscript,
and so forth.

K.Dincer Programming
Languages - Chapter 5

26

Associative Arrays
An associative array is an unordered

collection of data elements that are
indexed by an equal number of
values called keys

Design Issues:
1. What is the form of references to

elements?
2. Is the size static or dynamic?

In Perl:
$table[“Ali”] = 97133005;
$table[“Veli”]= 97131002;
@list = keys(%table);

@list gets (“Ali”,” Veli”)
or (“Veli”, “Ali”)

foreach $key (keys %table)
print “at $key we have

$table{$key} \n”;
}

K.Dincer Programming
Languages - Chapter 5

27

Structure and Operations in Perl
• Names begin with %
• Literals are delimited by

parentheses
e.g.,

%hi_temps = ("Monday" => 77,
"Tuesday"=>79,…);

• Subscripting is done using braces
and keys

e.g.,
$hi_temps{"Wednesday"} = 83;

• Elements can be removed with
delete

e.g.,
delete $hi_temps{"Tuesday"};

K.Dincer Programming
Languages - Chapter 5

28

Records

A record is a possibly heterogeneous
aggregate of data elements in
which the individual elements are
identified by names.

Ex: info. about college students.
Introduced in COBOL in 1960’s, and

were part of almost all languages.
Design Issues:
1. What is the form of declarations

and references?
2. What unit operations are defined?
The Structure of Records:
Record Definition Syntax
- COBOL uses level numbers to
show nested records; others use
recursive definitions.

Ex. COBOL and Pascal.
C structures: like Pascal except that

they do not include record
variants, or unions.

K.Dincer Programming
Languages - Chapter 5

29

Record Field References
1. COBOL
field_name OF record_name_1
OF ... OF record_name_n

2. Others (dot notation)
record_name_1.record_name_2.
... .record_name_n.field_name

Fully qualified references must
include all record names.

Elliptical references allow leaving out
record names as long as the
reference is unambiguous.

Pascal provides a with clause to
abbreviate references and help
readibility.

K.Dincer Programming
Languages - Chapter 5

30

Record Operations

1. Assignment
- Pascal, Ada, and C allow it if the

types are identical
- In Ada, the RHS can be an

aggregate constant

2. Initialization
- Allowed in Ada, using an aggregate

constant

3. Comparison
- In Ada, = and /=; one operand can

be an aggregate constant.

4. MOVE CORRESPONDING
- In COBOL - it moves all fields in

the source record to fields with the
same names in the destination
record.

6

K.Dincer Programming
Languages - Chapter 5

31

Evaluation.
1. Valuable data types
2. Straightforward design and safe

usage.
3. Except elliptical references they

increase readability.
Comparing records and arrays
1. Access to array elements is much

slower than access to record fields,
because subscripts are dynamic
(field names are static)

2. Dynamic subscripts could be used
with record field access, but it
would disallow type checking
and it would be much slower.

Implementation
Fields are stored in adjacent memory

locations, an offset address is
associated with each field.

See Figure.

K.Dincer Programming
Languages - Chapter 5

32

Unions

A union is a type whose variables are
allowed to store different type values
at different times during
execution.

Ex: a table of constants for a compiler

Design Issues for unions:
1. What kind of type checking, if any,

must be done?
2. Should unions be integrated with

(embedded in) records?

Examples:
1. FORTRAN - with EQUIVALENCE

INTEGER X
REAL Y
EQUIVALENCE (X, Y)

specifies that both X and Y are to
cohabit the same storage location,
i.e., they are aliases.

K.Dincer Programming
Languages - Chapter 5

33

2. Algol 68 - discriminated unions
• Use a hidden tag (discriminant) to

maintain the current type
• Tag is implicitly set by assignment
• References are legal only in

conformity clauses (see book
example p. 231, 4th Ed., p.224, 3rd Ed.)

• This static type checking and
runtime type selection (and so
runtime type detection) is a safe
method of accessing union objects.

3. Pascal - both discriminated (called
record variant) & nondiscriminated
unions. See Ex. in book.

e.g.
type intreal =
record tagg : Boolean of

true : (blint : integer);
false : (blreal : real);

end;

K.Dincer Programming
Languages - Chapter 5

34

Problem with Pascal’s design:
• unsafe - type checking is ineffective

Reasons:
a. User can create inconsistent

unions (because the tag can be
individually assigned)

var blurb : intreal;
x : real;

blurb.tagg := true; {is an integer}
blurb.blint := 47; { ok }
blurb.tagg := false;{ is a real }
x := blurb.blreal; {assigns an

integer to a real }
b. The tag is optional! - Free union

Now, only the declaration and the
second and last assignments are
required to cause trouble.

Variant records in Pascal are often
used to get around some of the
restrictions in the language. Ex:
pointer arithmetic.

K.Dincer Programming
Languages - Chapter 5

35

4. Ada - discriminated unions
• Reasons they are safer than Pascal

& Modula-2:
a. Tag must be present
b. It is impossible for the user to

create an inconsistent union
(because tag cannot be
assigned by itself--All assignments
to the union must include the tag
value)

5. C and C++ - free unions (no tags)
- Not part of their records
- No type checking of references

6. Java has neither records nor
unions

Evaluation - potentially unsafe in
most languages (not Ada)

Implementation - see Figure.

K.Dincer Programming
Languages - Chapter 5

36

Set Types

A set is a type whose variables can
store unordered collections of
distinct values from some ordinal
type, called its base type.

Design Issue:
What is the maximum number of

elements in any set base type?

Examples:
1. Pascal
• No maximum size in the language

definition
– usually sets are implemented as

bit strings that fit into a single
machine word - not portable!

– poor writability if max is too
small

• Operations: intersection (*), union
(+), difference (-), =, <>, superset
(>=), subset (<=), in.

7

K.Dincer Programming
Languages - Chapter 5

37

3. Ada - does not include sets, but
defines in as set membership
operator for all enumeration types.

4. Java includes a class for set
operations.

Evaluation
• If a language does not have sets,

user must write code to simulate
them, either with enumerated
types or with arrays.

• Arrays are more flexible than sets,
but have much slower operations

Implementation
• Usually stored as bit strings and

use logical operations for the set
operations.

Ex: [‘a’..’p’] ⇒ 16-bit machine word,
a 1 representing a present element.
Membership, union, etc. is done in
one machine instruction.

K.Dincer Programming
Languages - Chapter 5

38

Pointers
A pointer type is a type in which the

range of values consists of:
– memory addresses
– and a special value, nil (or null)

Uses:
1. Addressing flexibility - indirect

addressing
2. Dynamic storage management.

Dynamic Variables: variables that are
dynamically allocated from the
heap (often have no identifiers)

Anonymous Variables: variables
without names.

Some Remarks on Pointers
• not structured types.
• not scalar variables.
• add writability to the language.

(compare a binary tree
implementation in C and Fortran)

K.Dincer Programming
Languages - Chapter 5

39

Design Issues:
1. What is the scope and lifetime of

pointer variables?
2. What is the lifetime of heap-

dynamic variables?
3. Are pointers restricted to pointing

at a particular type?
4. Are pointers used for dynamic

storage management, indirect
addressing, or both?

5. Should a language support pointer
types, reference types, or both?

Fundamental Pointer Operations:
1. Assignment of an address to a

pointer
2. References (explicit versus implicit

dereferencing)

PL/I is the first language that
included pointer variables.

K.Dincer Programming
Languages - Chapter 5

40

Assignment.
Sets a pointer variable to the address of

some object.
If pointers are used

• only to manage dynamic storage,
the allocation mechanism serves to
initialize the pointer variable.

• for indirect addressing to non-
dynamic variables,
address of a variable must be fetched
and assigned to pointer variable
explicitly.

Explicit operator or built-in
subprograms are used in both cases.

Interpretation of occurrence of a pointer
variable in an expression:

• as an address: As in nonpointer
variables, it refers to the contents of
the memory cell to which the variable
is bound

• as an indirect reference: dereference
the pointer to obtain the value.

K.Dincer Programming
Languages - Chapter 5

41

Dereferencing.
takes a reference through one level of

indirection.
Two types:
1. Implicit dereferencing.

In Algol 68 and F90.
2. Explicit dereferencing.

^ in Pascal and * in C/C++
Pointers to Records:
In C and C++:
• (*p).name
• p->name (-> operator combines

dereferencing and field reference)
In Pascal:
• p^.name
In Ada:
• p.name (implicit derefencing)
Heap Management:
C: built-in subprogram, alloc/free
C++: operators, new and delete

K.Dincer Programming
Languages - Chapter 5

42

Problems with Pointers:
1. Type Checking

Domain type: the type of object to
which a pointer can point.
Ex. PL/I is not restricted to single
domain type, most modern
languages are.

2. Dangling Pointers (dangerous)
A pointer points to a heap-dynamic

variable that has been deallocated.

Why dangerous?

Creating one - (Method 1)
a. Allocate a heap-dynamic variable

and set a pointer to point at it
b. Set a second pointer to the value of

the first pointer
c. Deallocate the heap-dynamic

variable, using the first pointer

8

K.Dincer Programming
Languages - Chapter 5

43

Creating one - (Method 2)
Declare a pointer variable in a larger
scope than that of the object to
which it points.
This extends the lifetime of the
pointer past the lifetime of the object
to which it points.

3. Lost Objects (Lost Heap-Dynamic
Variables) (wasteful)

A heap-dynamic variable that can no
longer be referenced by any program
pointer

Creating one:
a. Pointer p1 is set to point to a newly

created heap-dynamic variable
b. p1 is later set to point to another

newly created heap-dynamic
variable

The process of losing heap-dynamic
variables is called memory leakage.

K.Dincer Programming
Languages - Chapter 5

44

4. Examples

• Pascal: used for dynamic storage
management only
- Explicit dereferencing
- Dangling pointers are possible

(dispose)
- Dangling objects are also possible

Dangling pointer problem exist in all
languages with explicit deallocation.

Alternatives for implementing explicit
deallocation in Pascal:

• ignore dispose
• exclude dispose in language

definition
• deallocate by leaving dangling

pointers behind.
• Implement dispose completely and

correctly.

K.Dincer Programming
Languages - Chapter 5

45

• C and C++. Used for dynamic storage
management and addressing.
– Explicit dereferencing and

address-of operator
– Can do address arithmetic in

restricted forms

e.g. float stuff[100];
float *p;
p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]
*(p+i) is equivalent to stuff[i] and p[i]

– Domain type need not be fixed
(void *)
void * - can point to any type and
can be type checked (since it
cannot be dereferenced)

K.Dincer Programming
Languages - Chapter 5

46

5. C++ Reference Types
Constant pointers that are implicitly

dereferenced.
• Used for parameters
• Advantages of both pass-by-

reference and pass-by-value

6. Java - Only references
• No pointer arithmetic
• Can only point at objects (which

are all on the heap)
• No explicit deallocator (garbage

collection is used)
- Means there can be no dangling
references

• Dereferencing is always implicit

K.Dincer Programming
Languages - Chapter 5

47

Evaluation of Pointers:
1. Dangling pointers and dangling

objects are problems, as is heap
management.

2. Pointers are like goto's--they widen
the range of cells that can be
accessed by a variable.

3. Pointers are necessary--so we can't
design a language without them.

Implementation of Pointers:
In most computers, pointers are

single values stored in either two-
or four-byte memory cells.

In PCs with Intel chips, addresses are
of two parts: a segment and an
offset.
Associated pointer variables use a
pair of 16-bit words.

