
1

Abstract

In 1996, the University of North Carolina at Charlotte was
awarded a two-year NSF grant1 to integrate parallel pro-
gramming into the Freshman Computer Science curricu-
lum. We are pleased to report on the results of the first full
year of this project. In addition, a comprehensive Senior-
level course has been developed and delivered to major
North Carolina universities through the statewide televideo
network (NC-REN network) in a continuing cooperative
venture. This cooperation has led to several new aspects of
teaching parallel programming because its use of distance
learning. Educational materials including web pages for
instruction and audio of lectures with “automatically-turn-
ing” slides (developed by NC State University). Another
new aspect for undergraduate parallel programming edu-
cation is the use of guest speakers to exposing students to
the state of the art. In this paper, we will describe our meth-
ods, experiences, and materials in our parallel program-
ming activities. The course materials will form a major
textbook which will be published by Prentice Hall in 1997/
98, the first undergraduate course textbook concentrating
upon the use of workstations in parallel computing.2

1 Introduction

The University of North Carolina at Charlotte (UNCC), like
many institutions in the country, has offered parallel pro-
gramming courses at the graduate and senior undergraduate
level for several years. Tools that have been used at UNCC
for these courses included transputer systems, Lester’s par-
allel programming simulator [5], and more lately net-
worked workstations using pvm/MPI. In 1996, a major
effort was started to bring parallel programming truly into
the undergraduate curriculum following the award of a
grant from the National Science Foundation for this pur-

1. Research supported in part by a grant from the National Sci-
ence Foundation, NSF DUE 9554975.

2. Parallel Programming: Techniques and Applications Using
Networked Workstations, Barry Wilkinson and Michael
Allen, Prentice Hall Inc, to be published in December, 1997.

pose. The catalyst for the development is the widespread
availability of high performance networked workstations
for student computing, coupled with the emergence of
usable and widely available parallel programming tools for
these networked workstations. The first really successful
software tool was pvm (parallel virtual machine) [1][2],
available on a wide range of platforms including version for
PCs. More recently, a standard for message-passing has
been established, MPI (Message Passing Interface)
[3][7][8]. This standard reinforces the acceptance of mes-
sage-passing in parallel computing.

In this paper, we will describe our two major thrusts; in
the Freshman year and in the senior year. In both cases,
web-based materials were used for delivery of coursework
and program compiling instructions.

2 Computing Platform

We have large numbers of students passing through our var-
ious parallel programming courses (several hundred/year),
and a suitable computing platform was essential. Our first
attempt was to use the small departmental cluster of work-
stations (SUNs, SGIs, and Pentiums) over which we have
total control over. Initially pvm/xpvm was selected. Having
a heterogeneous network was particularly attractive as then
the effects of different types of computers working collec-
tively on a problem could be illustrated. This was fine for
the small pilot courses in Spring and Summer 1996 but it
soon became evident that this cluster would be inadequate
for large numbers of students. The main problem was that
the network is not dedicated to parallel programming and
indeed the Pentiums could be switched between Windows
NT and UNIX without the knowledge of remote users.

The much larger College of Engineering network con-
sists of 400+ workstations, mainly SUNs and Pentiums.
This network does not have remote login/rsh/rexec privi-
leges because of administrative decision. This prevents
multiple general-purpose workstations being enrolled in
PVM/MPI. To overcome this problem, a dedicated set of
SUN boxes has been assembled as a ‘PVM/MPI cluster’ in
a closet. This cluster can only be used by remote access. We
have used College of Engineering surplus workstations ini-

Second Forum on Parallel Computing Curricula
Held jointly with theSymposium on Parallel Algorithms and Architectures, 97

Newport, RI, June 23-25, 1997

Parallel Programming for the Millennium: Integration Throughout the
Undergraduate Curriculum

Michael Allen, Barry Wilkinson, and James Alley
Department of Computer Science

University of North Carolina at Charlotte
Charlotte, NC 28223

cma, abw, jaalley@uncc.edu



2

tially (SUNs). We will be adding to this cluster those work-
stations that become surplus (i.e. last year’s models) and so
this cluster is expected to grow! Currently the cluster uses a
single Ethernet. Research is ongoing in the department to
develop a unique interconnection structure for this cluster
which takes into account its purpose for parallel program-
ming only.

3 Web-based Materials

Home pages have been created for all the parallel program-
ming courses. For the teleclass especially, it became partic-
ularly useful for providing assignments, additional
materials and programs that the students could download
remotely. However in general providing detailed instruc-
tions on how to use the parallel programming tools is very
useful. A couple of snapshot of pages from
www.cs.uncc.edu/par_prog are shown in Figure 1 and Fig-
ure 2. Figure 1 shows the links to the Freshman courses,
CSCI 1201 and CSCI 1202 and the teleclass. Figure 2
shows a picture of part of the original departmental net-
work, and the index to the instructions for running pvm pro-
grams. A similar page exists for MPI.

4 Freshman Parallel Programming

Our Freshman programming courses are a two-semester
sequence consisting of two 2-credit hour lecture courses
and two 1-credit hour labs. Currently in the labs, the under-
lying language in the first semester is C and in the second
semester C++. The lecture content is modelled after the CS-
1 and CS-2 courses of the ACM. However, we have added
some material on parallel programming in what appears to
be a unique and innovative way. Our approach relies on our
extensive network of Sun workstations and high-end PCs to
deliver a distributed workstation parallel computational
environment.

4.1 First Semester

Our CS-1 course, (CSCI 1201[lecture] and CSCI 1201L
[lab]) is typically taken by our majors in their first semester
at UNCC. The lecture portion covers overviews of von
Neumann architecture and the compile/link/load/execute
process, algorithm development, various searching/sorting
algorithms, and basic data structures including arrays,
stacks, queues, and linked lists. The lab introduces the basic
data types and control structures through programming

Figure 1 Front page of www.cs.uncc.edu/par_prog



3

assignments in C during the first part of the semester. Point-
ers, linked lists, and structures are introduces through the
programming assignments in the latter part of the semester.
Parallel computing is introduced at roughly the mid-term
point through a lab assignment.

The parallel programming objective of that first semes-
ter lab assignment is purely to familiarize the students with
the parallel programming environment at UNCC by
acquainting them with the process of editing, compiling,
and running parallel programs. Midway through the first
semester lab they are given a multi-part parallel program-
ming assignment. The first part consists of reviewing web
pages of material on PVM and MPI. They are expected to
modify their environment (by copying down various config-
uration files from the web) as part of this review. They are
then asked to run a demo program on a multi-workstation
platform and explain what it does and why there is a speed-
up when multiple processors are introduced into the solu-
tion. The objective is to familiarize them with the parallel
programming environment available to them and simply
orients them to the fact that under certain circumstances it is
possible to reduce the computation time by throwing multi-
ple processors at the solution of a problem.

Nothing is covered in the lecture about the theory of

parallel computing in that first semester. The lab portion is
strictly a “gee whiz, isn’t this a neat way to speed things
up” approach. The fact that the first semester lab uses C as
the programming language, of course ties in nicely with our
PVM or MPI tools. By the midpoint of the first semester
lab, the students are fully capable of reading and under-
standing the demo program with minimal TA support. This
parallel computing assignment also gives them an introduc-
tion to a topic that will prove invaluable in later courses:
makefiles.

4.2 Second Semester

The second semester lecture builds on that first semester lab
experience. Topics in the second semester lecture course
(CSCI 1202 at UNCC) include more in-depth work with
data structures (arrays, stacks, queues, linked lists, trees,
graphs) and algorithms incorporating them. For example,
we look at time and space complexity of algorithms as well
as searching, traversal, and optimization for the first time.
The lab portion, (CSCI 1202L at UNCC), introduces them
to C++ while reinforcing their first semester C skills.
i Two new innovations have been incorporated, however,
in our discussion of algorithms as a result of integrating

Figure 2 Front page of www.cs.uncc.edu/par_prog/pvm_index.html



4

parallel computing theory into the second semester lecture.
First, when we discuss algorithms we do it from two per-
spectives ... “How would you approach this problem using
sequential computation?”, and “How would you approach
this problem if you had a large number of workstations you
could devote to assisting you?”. Second, we ask them to
develop, code, and run a parallel solution to a simple
“divide and conquer” type problem. At this point they are
fairly comfortable with C (they have a semester of it under
their belts) and have at least a superficial exposure (from
the first semester lab) to PVM and MPI. As a result, most
students are able to complete the assignment without exces-
sive difficulty.

In the second semester of the lecture course, an effort is
made to bring out the factors limiting performance
improvement when multiple workstations are thrown at a
problem, However, the in-depth course devoted strictly to
parallel computation is a Junior/Senior level elective.
Between the Freshman year when they are introduced to the
concepts of parallel computation and that Junior/Senior
level elective we are in the process of working additional
theory of parallel programming into our Analysis of Algo-
rithms course as well. When this integration of material is
complete, all of our majors will have had a basic introduc-
tion to parallel algorithms and programming spread, in
pieces, over three semesters while those taking the Junior/
Senior elective also will have extensive depth.

5 Senior Parallel Programming Tele-
class Course

Concurrently with the Freshman development, a compre-
hensive parallel programming course has been developed
for senior undergraduates and delivered to major North
Carolina universities through the statewide televideo net-
work (NC-REN network) in a cooperative venture. Institu-
tions involved in the 1996 offering were NC State
University, UNC-Asheville and UNC-Greensboro, in addi-
tion to UNCC. The next offering of this course in Fall 1997
will include Duke University. Guest speakers are also
involved from Duke University and NC State University.
About 37 seniors enrolled in this first offering with UNC-
Asheville closing their section at 12 students.

Because this is a “teleclass” broadcast to other univer-
sities, faculty were actively involved at each site. They
could answer questions and provide other materials specific
to their site. Finally all lectures were recorded so that stu-
dents could review any lecture, or catch up with anything
they missed. In a related activity at NC State University, the
sound of complete lectures, with “automatically-turning”
slides, have been integrated on a home page. This technol-
ogy may be the future of distance learning at home.

Students do their assignments either on their local
computer network, or by remotely accessing UNCC’s clus-
ter (or NC State’s ATM cluster). Fortunately each site had,
or could very quickly establish a common environment so

that remote access proved unnecessary. Instructional mate-
rials were given to each student in the form of 185+ pages
of typed lecture notes, so that students did not need to take
notes in class and could concentrate upon the lectures. The
notes themselves were developed in preparation for publi-
cation as a textbook by Prentice Hall in December 1997.
(The final book will be about 450 pages.) The organization
of the material is purposely divided into two parts, one part
describing the basic techniques of parallel programming,
and one part describe applications and specialized algo-
rithms. The first part requires no specialized mathematical
knowledge and could be used at lower levels in the curricu-
lum, specifically as a supplement to CS-1, CS-2 and sopho-
more algorithms courses. The second part does have some
mathematical prerequisites (linear equations, partial differ-
ent equations, matrices, etc.,) but nothing beyond that
expected of seniors.

The topics of these notes is given below:

PART I Basic Techniques

Chapter 1 Parallel Computers
Chapter 2 Message-Passing Computing
Chapter 3 Embarrassingly Parallel Computations
Chapter 4 Divide-and-Conquer
Chapter 5 Pipelined Computations
Chapter 6 Synchronous Iteration
Chapter 7 Load Balancing
Chapter 8 Sharing Memory

PART II Algorithms and Applications

Chapter 9 Sorting Algorithms
Chapter 10 Numerical Algorithms I
Chapter 11 Numerical Algorithms II
Chapter 12 Searching and Optimization
Chapter 13 Image Processing
Chapter 14 Simulation and Modeling
Chapter 15 Architecture-Specific Algorithms

An important aspect of this material is that it is lan-
guage and system-independent yet targeted towards mes-
sage-passing on networked workstations. All example code
is in a pseudo-code such that students can very easily adapt
it to MPI or PVM, the two systems currently used at
UNCC. Both these tool, including their differences, are
described quite early in the course, but it is left to students
to learn the details of the library calls through writing pro-
grams. (All our parallel programming courses are hands-on
“programming” courses; students write programs.)

The first assignment is in fact the same as used for the
Freshman; a familiarization assignment in which a working
program is provided. Students set up their system environ-
ment, compile the program and obtain results after reading
the instructions on the home page. The program simply
adds numbers together in parallel. At this stage only one
workstation is used, but multiple workstations are used in



5

subsequent assignments. The students also have to modify
the program to find the maximum value. This assignment
only requires a few hours to do. The concepts of creating
makefiles and other compiling matters are of course very
familiar to most senior students (which is not the case with
the Freshman).

The second assignment, which is still quite simple,
illustrates an embarrassingly parallel program, the Mandel-
brot computation. For this assignment, X-window code for
generating graphical output is provided for downloading –
the course does not assume any prior knowledge of graph-
ics. The graphics code is in fact useful for the subsequent
assignments as well.

The next assignments are increasingly difficult. The
third assignment involves solving Laplace’s equation to
obtain the heat distribution in a room which has a fireplace.
Graphical output is required in the form of temperature con-
tours. Synchronous iteration is used. Another assignment
involves solving the same problem by direct means (Gauss-
ian elimination). It is useful to show different methods to
solve the same problem and the speed implications of the
different methods. Load balancing is a key aspect of all the
assignments, and timing information must be provided,
usually by instrumenting the code with the time() system
call. All assignments have “open-endedness” in that extra
credit can be obtained by additional work.

6 Expert Guest Speakers

Part of the NSF project is to introduce expert guest speakers
who would talk about some practical aspect of parallel pro-
gramming. In Fall 1996, we were fortunate to have two
such presentations. (Only one in each semester was origi-
nally planned.) Professor John Board of Duke University
gave a presentation entitled “Networks of Workstations:
The Plodding Workhorses of Parallel Computing” and also
outlined modeling DNA. Professor Mladen Vouk of NC
State University gave a presentation on the current state of
supercomputers and supercomputing conferences. In both
cases, the teleclass NC-REN facility was used. The
response to these presentations was very positive and gave
the material in the courses a greater significance. We intend
to continue using expert guest speakers. We also arranged
for two graduate students to make presentations of their
parallel programming project dealing with parallel genetic
algorithms.

7 Conclusions

In this paper we have described our work in bringing paral-
lel programming into the Freshman year and a Senior paral-
lel programming class to various NC universities. Freshman
in particular have responded very enthusiastically when it
was explained that multiple-processor parallel computation

is the future of their field. They realize that they are getting
a “leg up” on their competition through this early introduc-
tion to the area.

The Senior class incorporated several new aspects
partly because of its use of a televideo network. First, it was
necessary for remote sites to have an adequate parallel com-
puting platform. Networked workstations are idea since
nearly every university has them. Second, very significant
preparatory materials were necessary in the form of notes
and web materials. Finally the use of a televideo facility
allowed experts from different sites to participate in the
course and give presentations to undergraduates. We will be
offering the teleclass on a continuing basis with faculty
from different universities cooperating on lecture materials.

Acknowledgments

It is a great pleasure to acknowledge Dr. M Mulder, pro-
gram director at the National Science Foundation for sup-
porting our project. We should like to thank the many
students at UNCC who help us refine the material over the
last few years, especially the talented “teleclass” of Fall
1996 when the material was finally classroom-tested. We
owe a debt of gratitude to many people. Professor Lang of
UNC-Asheville truly contributed to the course development
in the classroom and Professor Vouk of NC State Univer-
sity, apart from presenting a expert guest lecture for us, set
up an impressive web page which included “real audio” of
the lectures and “automatically-turning” slides. Professor
John Board of Duke University also kindly made an expert
guest presentation to the class – all these activities helped
us in developing our materials.

References

[1] Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek and V. Sunderam (1994),PVM3 User’s
Guide and Reference Manual, Oak Ridge National
Laboratory: Tennessee.

[2] Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek and V. Sunderam (1994),PVM: Parallel Vir-
tual Machine, The MIT Press: Cambridge, Massachu-
setts.

[3] Gropp, W., E. Lusk, and A. Skjellum (1994),Using
MPI Portable Parallel Programming with the Mes-
sage-Passing Interface, The MIT Press: Cambridge,
Massachusetts.

[4] Kumar, V., A. Grama, A. Gupta, and G. Karypis (1994),
Introduction to Parallel Computing, Benjamin/Cum-
mings Publishing Company Inc.: Redwood City Cali-
fornia.

[5] Lester, B. (1993),The Art of Parallel Programming,
Prentice Hall: Englewood Cliffs, New Jersey.

[6] Nevison, C. H. (1995), “Parallel computing in the



6

undergraduate curriculum”,IEEE Computer, 28, no.
12, 51–6.

[7] Pacheco, P. (1997),Parallel Programming with MPI,
Morgan Kaufmann Publishers Inc.: San Francisco, Cal-
ifornia.

[8] Snir, M., S. W. Otto, S. Huss-Lederman, D. W. Walker
and J. Dongarra (1996),MPI The Complete Reference,
The MIT Press: Cambridge Massachusetts.


