
1

Dr. Kivanc Dincer Parallel Processing - Chapter 4 1

Chapter 4 – Partitioning and
Divide-and-Conquer Strategies

Two fundamental techniques in parallel programming:
1. Partitioning

– divide problem into separate parts and compute each part
separately.

2. Divide and conquer
– applies partitioning in a recursive manner by continually

dividing the problem into smaller and smaller parts before
solving the smaller parts and combining the results

Dr. Kivanc Dincer Parallel Processing - Chapter 4 2

Partitioning Strategies

• Partitioning divides the problem into parts.
– it is the basis of all parallel programming.
– most partitioning strategies require the results of the parts to

be combined later on to obtain the desired result.

– Data Partitioning or Domain Decomposition:
• dividing the data and operating upon the divided data

concurrently.
This is the main strategy for parallel programming.

– Functional Decomposition:
• dividing the program into independent functions and executing

the functions concurrently.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 3

Example: Adding Numbers

We are to add a sequence of numbers x0, . . ., x n-1

1. divide sequence into m parts of n/m numbers each
(distribute sequences to corresponding processors)

2. m processors can each add one sequence
independently to create partial sums

3. partial sums are added together on master to form
the final sum.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 4

Master-slave approach.
• How to broadcast data?

– broadcast whole list of numbers to every slave ?
– send the specific numbers to each slave ?

Broadcast operation will have
a single startup time rather than separate startup times

when using multiple send routines and may be preferable.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 5

The code using separate send() s and recv () s:
Master:
s = n / m; /* number of items on each slave */
for (i=0, x=0; i<m; i++, x += s)

send(&numbers[x], s, Pi);

result = 0;
for (i=0; i<m; i++) { /* wait for results from slaves */

recv(&part_sum, PANY);
sum += part_sum; /* accumulate partial sums */

}

Slave:
recv(numbers, s, Pmaster); /* receive s items from master */
sum = 0;
for (i=0; i<s; i++) /* add numbers */

part_sum += numbers[i];
send(&part_sum, Pmaster); /* send result to master */

Dr. Kivanc Dincer Parallel Processing - Chapter 4 6

Remarks:
• Slaves are identified by a process ID in PVM, that

can be usually obtained by calling a library routine,
e.g., pvm_spawn(...)

• Slave number is the rank within the group in MPI
– an integer from 0 to m-1, where m is the # processes in

the group.

2

Dr. Kivanc Dincer Parallel Processing - Chapter 4 7

The code using a broadcast or multicast routine:
Master:
s = n / m;
bcast(numbers, s, Pslave_group);

result = 0;
for (i=0; i<m; i++) {

recv(&part_sum, PANY);
sum += part_sum;

}

Slave:
bcast(numbers, s, Pslave_group);
start = slave_number * s;
end = start + s;
sum = 0;
for (i=start; i<end; i++)

part_sum += numbers[i];
send(&part_sum, Pmaster);

Dr. Kivanc Dincer Parallel Processing - Chapter 4 8

The code using scatter and reduce routines, if available:
Master:
s = n / m;
scatter(numbers, &s, Pgroup, root=master);
reduce_add(&sum, &s, Pgroup, root=master);

Slave:
scatter(numbers, &s, Pgroup, root=master);

sum = 0;
for (i=0; i<s; i++)

part_sum += numbers[i];
reduce_add(&part_sum, &s, Pgroup, root=master);

Similar to adding numbers, we could do other operations as well:
•find maximum number
•find number of occurrences of a number

Dr. Kivanc Dincer Parallel Processing - Chapter 4 9

Analysis.
Sequential Implementation.

requires n-1 additions or O(n).

Parallel Implementation.
• Phase 1 - Communication. m slave processes reads their n/m numbers.

tcomm1 = m(tstartup + (n/m)tdata) (Using send/recv)
tcomm1 = tstartup + n tdata (Using scatter)

• Phase 2 - Computation. Slaves concurrently add n/m number together.
tcomp1 = n/m - 1

• Phase 3 - Communication. Slaves return partial sums to master
tcomm2 = m(tstartup + tdata) (Using send/recv)
tcomm2 = tstartup + m tdata (Using gather and reduce)

• Phase 4 - Computation. Final accumulation.
tcomp1 = m - 1

Dr. Kivanc Dincer Parallel Processing - Chapter 4 10

Analysis (continued)

• Overall tp = O(n+m) and worse than ts

• What about speedup?

ts (n - 1)
S = ----- = -------------------

tp n/m + m - 2

The speedup tends to m for large n.

– The speedup will be quite low for increasing # slaves, as m slaves
are idle in the 2nd phase forming the final result.

– Ideally we want all the processes to be active all of the time.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 11

Divide and Conquer

1. Divide the problem into smaller subproblems

2. Divide subproblems into still smaller subproblems
recursively until the tasks cannot be broken down into
smaller parts.

3. Combine the results of elementary tasks, continue
combining results of larger and larger tasks recursively.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 12

Example: Sequential Recursive definition for adding a list of numbers:
• What is the termination condition below?

int add(int *s)
{

if (number(s) <= 2) return(n1 + n2);
else {

Divide(s, s1, s2); /* divide s into two parts: s1&s2*/
part_sum1 = add(s1);
part_sum2 = add(s2);
return(part_sum1 + part_sum2);

}
}

• The same divide-and-conquer method can be used for
– sorting a list, for finding the maximum number in a list, etc.

3

Dr. Kivanc Dincer Parallel Processing - Chapter 4 13

When each division creates two parts, a recursive
divide-and-conquer formulation forms a binary tree.
– The tree is traversed

• downward as calls are made(preorder traversal)
• and upward when the calls return

Consider the following case:
• The tree is not a complete binary tree (not perfectly

balanced with all bottom nodes at the same level)
– happens if number of parts is not a power of 2

Dr. Kivanc Dincer Parallel Processing - Chapter 4 14

Parallel Implementation.

• In a serial implementation, only one node of the tree
can be visited at a time.

• In parallel solution, several parts of the tree can be
traversed simultaneously.

• Let’s do it without using recursion.
– The key point is that the construction is a tree.
1. Inefficient Solution: Assign one processor to each node in

the tree.
• 2m+1 - 1 processors to divide the task into 2m parts.
• Each processor would only be active at one level in the tree

(Very inefficient solution!)

Dr. Kivanc Dincer Parallel Processing - Chapter 4 15

2. A More Efficient Solution: reuse processors at each level of
the tree (Figure 4.3)

• division stops when the total # processors is committed
• until then, at each stage each processor keeps the half of the

list and passes on the other half.
• Each list at final stage has n/p numbers
• There are log p levels in the tree.

• The combining act of summation of the partial sums
can be done similarly but in reverse order.
– The constructions are the same as the binary hypercube

broadcast and gather algorithms.
– We use the communicating neighbors from their binary

addresses.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 16

With 8 processors:
Process P0:
divide(s1, s1, s2); /*division*/
send(s2, P4);
divide(s1, s1, s2);
send(s2, P2);
divide(s1, s1, s2);
send(s2, P1);

part_sum = *s1; /*combining*/

recv(&part_sum1, P1);
part_sum += part_sum1;
recv(&part_sum1, P2);
part_sum += part_sum1;
recv(&part_sum1, P4);
part_sum += part_sum1;

With 8 processors:
Process P4:

recv(s1, P0); /*division*/
divide(s1, s1, s2);
send(s2, P6);
divide(s1, s1, s2);
send(s2, P5);

part_sum = *s1; /*combining*/

recv(&part_sum1, P5);
part_sum += part_sum1;
recv(&part_sum1, P6);
part_sum += part_sum1;
send(&part_sum, P0);

Dr. Kivanc Dincer Parallel Processing - Chapter 4 17

Analysis.
Assume n is a power of 2 and ignore the tstartup for simplicity.

The division phase only contains communication, required computation is minimal.
The combining phase requires both communication and computation to add the partial

sums received and pass on the result.

Communication. log p steps with p processes.

tcomm1 = (n/2) tdata + (n/4) tdata + (n/8) tdata + . . . (n/p) tdata= (n(p-1)/p) tdata

⇒ tcomm1 is marginally better than a simple broadcast.
Combining phase , only one data item (partial sum) is sent in each message

tcomm2 = tdata log p

Computation.
tcomp = (n/p) + log p, with time complexity of O(n) for constant p.
For large n and variable p, we get O(n/p).

Dr. Kivanc Dincer Parallel Processing - Chapter 4 18

M-ary Divide and Conquer

Divide and conquer can also be applied where a task is divided
into more than two parts at each stage.

For example, let’s divide a task into four parts:

int add(int *s)
{

if (number(s) <= 4) return(n1 + n2 + n3 + n4);
else {

Divide(s, s1, s2, s3, s4);
part_sum1 = add(s1);
part_sum2 = add(s2);
part_sum3 = add(s3);
part_sum4 = add(s4);
return(part_sum1 + part_sum2 + part_sum3 + part_sum4);

}
}

4

Dr. Kivanc Dincer Parallel Processing - Chapter 4 19

Tree Types

Quadtree: a tree in which each node has four children
– has particular applications in decomposing 2-D regions into

4 subregions.

Octtree: a tree in which each node has 8 children.
– has application for dividing a 3-D space recursively.

m-ary tree: a tree in which each node has m parts.
– suggests greater parallelism.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 20

Sorting with Bucket Sort

• Most sequential algorithms are based upon the
compare and exchange of pairs of numbers.

• In contrast, bucket sort is naturally a partitioning
method:
– works well if the original numbers are uniformly distributed

across a known interval, say 0 to a-1.
– This interval is divided into m equal regions and one “bucket”

is assigned to hold numbers that fall within each region: m
buckets.

– We can use m=n buckets, i.e., one bucket for each number
– we can develop this into a divide-and-conquer method by

continually dividing the buckets into smaller buckets:
• here we will use a limited number of buckets.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 21

Sequential Algorithm

ts = n + m((n/m) log(n/m)) = n+n log(n/m) = O(n log(n/m))

assuming sorting n numbers requires
O(n log n) comparisons.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 22

Parallel Algorithm

• Four phases:
– Partition numbers.
– Sort into small buckets.
– Send to large buckets.
– Sort large buckets.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 23

– Phase 1. Computation and Communication.
• tcomp1 = n
• tcomm1 = tstartup + tdata n

– Phase 2. Computation.
• tcomp2 = n/p

– Phase 3. Communication.
• tcomm3 = p(p-1)(tstartup + (n/p2)tdata)
• tcomm3 = (p-1)(tstartup + (n/p2)tdata)

– Phase 4. Computation.
• tcomp4 = (n/p)log(n/p)

– Overall.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 24

Numerical Integration

• Sometimes simple partitioning will not give the
optimal solution, especially if the amount of work in
each part is difficult to estimate.
– Bucket sort, for example, is only effective when each region

has approximately the same # of numbers.

A general divide-and-conquer technique divides the region
continually into parts and lets some optimization function
decide when certain regions are sufficiently divided.
I = ∫a b f(x) dx

To integrate this function (i.e., to compute the area under the
curve,) we can divide the area into separate parts, each of
which can be calculated by a separate process.

5

Dr. Kivanc Dincer Parallel Processing - Chapter 4 25

Quadrature Methods:
approximate numerical methods for computing a
definite integral using a linear combination of values

• Rectangular regions
• Aligned rectangular regions whose middle points

intersect with the function
• Trapezoidal regions

Dr. Kivanc Dincer Parallel Processing - Chapter 4 26

• Static Assignment.
– Let’s consider trapezoidal method.

Process Pi:
if (i == master) {

printf(“Enter number of intervals: “);
scanf(“%d”, &n);

}
bcast(&n, Pgroup);
region = (b-a)/p;
start = a + region * i;
end = start + region;
d = (b-a)/n;
area = 0.0;
for (x=start; x<end; x += d)

area += 0.5 * (f(x) + f(x+d)) * d;
reduce_add(&integral, &area, Pgroup);

Dr. Kivanc Dincer Parallel Processing - Chapter 4 27

N-Body Problem

Dr. Kivanc Dincer Parallel Processing - Chapter 4 28

Barnes-Hut Algorithm
Whole space in which one cube contains the bodies (particles)
• divide the cube into 8 subcubes
• if a subcube contains no particles, the subcube is deleted

from further consideration
• if a subcube contains > 1 body, it is recursively divided

until every subcube contains one body.
• This process creates an octtree.

Dr. Kivanc Dincer Parallel Processing - Chapter 4 29

Orthogonal Recursive Bisection. (Salmon, 1990)

