
1

Dr. Kivanc Dincer Parallel Processing - Chapter 5 1

Chapter 5 – Pipelined Computations

Applicable to a wide range of problems that are
partially sequential in nature; i.e., sequence of
steps must be undertaken.

In the pipeline technique, the problem is divided
into a series of tasks that have to be completed
one after the other - a form of “functional
parallelism”

Pipeline stage: each pipeline process (that
contributes to the overall problem and pass on
info needed for subsequent stages.)

P0 P1 P2 P3 P4

Dr. Kivanc Dincer Parallel Processing - Chapter 5 2

for (i=0; i<n; i++)
sum += a[i];

sum = sum + a[0];
sum = sum + a[1];
sum = sum + a[2];
sum = sum + a[3];
sum = sum + a[4];

Stage i performs: sout = sin + a[i];

P0 P1 P2 P3 P4

unfold

a
sin sout

a[0]

sum
a

sin sout

a[1]

a
sin sout

a[2]

a
sin sout

a[3]

Dr. Kivanc Dincer Parallel Processing - Chapter 5 3

Example: Frequency Filter

• Problem is divided into a series of functions
• The objective is to remove specific frequencies

(say f1, f2, f3, …) from a (digitized) signal, f(t).
• The signal enter the pipeline from the left
• Each stage is responsible for removing one of

the frequencies.
Frequency-amplitude histogram in professional sound systems is a

similar example.

f0
fin fout

f(t)
f1

fin fout

f2
fin fout

f3
fin fout

Signal w/o
frequency f0

Signal w/o
frequency f1

Signal w/o
frequency f2

Filtered
Signal

Dr. Kivanc Dincer Parallel Processing - Chapter 5 4

Applicable Types of Computations

1. If more than one instance of the complete
problem is to be executed.
♦ internal hardware design, simulation exercises

2. If a series of data items must be processed, each
requiring multiple operations.
♦ array operations

With p processes and n data items,
overall execution time is (p-1) + n

3. If info to start the next process can be passed
forward before the process has completed all its
internal operations.

If number of stages is larger than the number of processors in any
pipeline, a group of stages can be assigned to each processor.

Dr. Kivanc Dincer Parallel Processing - Chapter 5 5

Type 1
Pipeline cycle: each time period in space-time

diagram.

Note the staircase effect at the beginning.

With p processes constituting the pipeline and
m instances of the problem:

m+p-1 cycles are required to execute all m instances.

Average number of cycles: (m+p-1)/m

One instance of the problem is completed in each
pipeline cycle after the n-1 cycles (pipeline latency)

Dr. Kivanc Dincer Parallel Processing - Chapter 5 6

• Ability to send messages between adjacent
processes in the pipeline
– direct comm. links -- ring or line is ideal structure.

• Networked workstations on Ethernet may not
really be a suitable platform for the pipelined
programs.

We will assume that an ICNW that can provide at
least simultaneous transfers between adjacent
processors.

• locally blocking send() operations can be used.

Computing Platform for Pipelined
Applications

Host
Computer

Multiprocessor

2

Dr. Kivanc Dincer Parallel Processing - Chapter 5 7

Adding Numbers (Type 1)

• Basic code for process Pi:
if (process > 0) {

recv(&partial_sum, P i-1);
partial_sum += number;

}
if (process < n -1)

send(&partial_sum, P i+1);

Two ways of distributing data: (Fig.5.11 & 12)
1. Data being entered into the first process, the

result is returned through the last process.
2. Data is fed into each process at the times that

they are needed by the processes.
Dr. Kivanc Dincer Parallel Processing - Chapter 5 8

Analysis

• Assume that each process performs similar
actions in each pipeline cycle.

• We will work on comp. and comm. required in
one cycle.

ttotal = (time for one pipeline cycle) (# of cycles)
ttotal = (tcomp + tcomm) (m+p-1)

m: number of instances of the problem
p: pipeline stages (processes)

The average time for a computation: ta = ttotal / m

Dr. Kivanc Dincer Parallel Processing - Chapter 5 9

Single Instance of Problem: (Figure 5.11)
Single number is being added in each stage: n==p

tcomp = 1
tcomm = 2 (tstartup + tdata)

When only one set of numbers, m=1:
ttotal = (2 (tstartup + tdata) + 1) n

Multiple Instances of Problem:
m groups of n numbers are being added:

ttotal = (2 (tstartup + tdata) + 1) (m+n-1)
For large m, ta = ttotal/m = 2 (tstartup + tdata) + 1

Dr. Kivanc Dincer Parallel Processing - Chapter 5 10

Data Partitioning with Multiple Instance of Problem:

Each stage will process a group of d numbers
p = n/d

tcomp = d
tcomm = 2 (tstartup + tdata)

ttotal = (2 (tstartup + tdata) + d) (m + n/d - 1)

As d increases,
• the impact of the comm. on the overall time diminishes
• parallelism decreases and increases the execution time.

Dr. Kivanc Dincer Parallel Processing - Chapter 5 11

Sorting Numbers (Type 2)

reorder a set of numbers in increasing (or
decreasing) numeric order.

A pipeline solution: (Parallel Insertion Sort)
• The first process, P0, accepts the series of

numbers one at a time.
• Stores the largest number so far received, and

pass onward all numbers smaller than the
stored number.

Dr. Kivanc Dincer Parallel Processing - Chapter 5 12

Parallel Code for Pi.
recv(&number, P i-1);
if (number > x) {

send(&x, P i+1);
x = number;

} else
send(&number, P i+1);

With n numbers:
right_procno = n - i -1;
recv(&x, Pi-1);
for (j=0; j<right_ procno; j++) {

recv(&number, P i-1);
if (&number > x) {

send(&x, P i+1);
x = number;

}
else

send(&number, P i+1);

3

Dr. Kivanc Dincer Parallel Processing - Chapter 5 13

A message-passing program using an SPMD or a
master-slave approach is straightforward

• especially since each pipeline process executes
essentially the same code.

Results can be extracted from the pipeline using
• either the ring configuration of Fig.5.11 or
• the bidirectional line configuration of Fig.5.15.

Dr. Kivanc Dincer Parallel Processing - Chapter 5 14

right_procno = n - i -1;
recv(&x, Pi-1);
for (j=0; j<right_ procno; j++) {

recv(&number, P i-1);
if (&number > x) {

send(&x, P i+1);
x = number;

}
else send(&number, P i+1);

}
send(&number, P i-1);
for (j=0; j<right_ procno; j++) {

recv(&number, P i+1);
send(&x, P i-1);

}

Dr. Kivanc Dincer Parallel Processing - Chapter 5 15

Analysis.
Assuming that compare-and-exchange is one

computational step:
ts = (n-1) + (n-2) + ... + 2 + 1 =

The parallel impl. has n+n-1 = 2n-1 pipeline cycles
during the sorting if there are n pipeline
processes and n numbers to sort.
tcomp = 1
tcomm = 2 (tstartup + tdata)

If the results are returned by comm. to the left
through the master, 3n-1 pipeline cycles are
needed.

Dr. Kivanc Dincer Parallel Processing - Chapter 5 16

Prime Number Generation

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

To find the primes up to n, it is only necessary to look at
numbers up to sqrt(n).

Sequential Code.
for (i=2; i<n; i++)

prime[i] = 1;
for (i=2; i<= sqrt_n; i++)

if (prime[i] == 1)
for (j=i+i; j<n; j+=i)

prime[j] = 0;

There are [n/2-1] multiples of 2, [n/3-1] multiples of 3, so
on. Hence, total sequential time is ... with O(n2) complexity

Dr. Kivanc Dincer Parallel Processing - Chapter 5 17

Parallel Code.
recv(&x, Pi-1);
for (i=0; i<n; i++)

recv(&number, Pi -1);
if (number == terminator) break;
if ((number % x) != 0) send(&number, Pi+1);

Dr. Kivanc Dincer Parallel Processing - Chapter 5 18

Solving a System of Linear Equations
(Type 3)

A process can continue with useful work after
passing on information.

Objective: solving a system of linear equations of
the upper-triangular form.

Method: simple repeated “back” substitution.

The ith process (0<i<n) receives the values
x0, x1, ..., xi-1 and computes xi from the equation:

i - 1

xi = (bi - S ai,jxj) / ai,i
j = 0

4

Dr. Kivanc Dincer Parallel Processing - Chapter 5 19

Sequential Code.
x[0] = b[0]/a[0][0];
for (i=1; i<n; i++) {

sum = 0;
for (j=0; j<i; j++) {

sum += a[i][j] * x[j];
x[i] = (b[i] - sum) / a[i][i];

}
}

Parallel Code.
for (j=0; j<i; j++) {

recv(&x[j], P i-1);
send(&x[j], P i+1);

}
sum = 0;
for (j=0; j<i; j++) {

sum += a[i][j] * x[j];
x[i] = (b[i] - sum) / a[i][i];
send(&x[i], P i+1);

Dr. Kivanc Dincer Parallel Processing - Chapter 5 20

Analysis.
Computational effort at each pipeline stage is not the same.

P0 performs one divide and one send() .
Pi performs
• i recv()
• i send()
• i multiply/add a total of n-1 comm.
• 1 divide/subtract and 2n-1 comp. steps
• 1 final send()

Figure 5.20: a perfect sync. of the sends and recvs
Tp = time of final process + n-1 sends and 1 divide.

O(n) - parallel time complexity
O(n2) - serial time complexity
Actual speedup is 0.37n (Lester, 1993)

Dr. Kivanc Dincer Parallel Processing - Chapter 5 21

• Nonblocking sends and blocking receives are
used in implementation.

