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Chapter 5 – Pipelined  Computations

Applicable to a wide range of problems that are 
partially sequential in nature; i.e., sequence of 
steps must be undertaken. 

In the pipeline technique, the problem is divided 
into a series of tasks that have to be completed 
one after the other  - a form of “functional 
parallelism”

Pipeline stage: each pipeline process (that 
contributes to the overall problem and pass on 
info needed for subsequent stages.)

P0 P1 P2 P3 P4
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for (i=0; i<n; i++)
sum += a[i];

sum = sum + a[0];
sum = sum + a[1];
sum = sum + a[2];
sum = sum + a[3];
sum = sum + a[4];

Stage i performs: sout = sin + a[i];
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Example: Frequency Filter

• Problem is divided into a series of functions
• The objective is to remove specific frequencies 

(say f1, f2, f3, … ) from a (digitized) signal, f(t).
• The signal enter the pipeline from the left
• Each stage is responsible for removing one of 

the frequencies.
Frequency-amplitude histogram in professional sound systems is a 

similar example.
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Applicable Types of Computations

1. If more than one instance of the complete 
problem is to be executed.
♦ internal hardware design, simulation exercises

2. If a series of data items must be processed, each 
requiring multiple operations.
♦ array operations

With p processes and n data items, 
overall execution time is (p-1) + n

3. If info to start the next process can be passed 
forward before the process has completed all its 
internal operations.

If number of stages is larger than the number of processors in any 
pipeline, a group of stages can be assigned to each processor.
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Type 1
Pipeline cycle: each time period in space-time 

diagram.

Note the staircase effect at the beginning.

With p processes constituting the pipeline and 
m instances of the problem:

m+p-1 cycles are required to execute all m instances.

Average number of cycles: (m+p-1)/m

One instance of the problem is completed in each 
pipeline cycle after the n-1 cycles (pipeline latency)
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• Ability to send messages between adjacent 
processes in the pipeline
– direct comm. links -- ring or line is ideal structure.

• Networked workstations on Ethernet may not 
really be a suitable platform for the pipelined 
programs.

We will assume that an ICNW that can provide at 
least simultaneous transfers between adjacent 
processors.

• locally blocking send() operations can be used.

Computing Platform for Pipelined 
Applications

Host
Computer

Multiprocessor
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Adding  Numbers (Type 1)

• Basic code for process Pi:
if (process > 0) {

recv(&partial_sum, P i-1);
partial_sum += number;

}
if (process < n -1)

send(&partial_sum, P i+1);

Two ways of distributing data: (Fig.5.11 & 12)
1. Data being entered into the first process, the 

result is returned through the last process.
2. Data is fed into each process at the times that 

they are needed by the processes.
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Analysis

• Assume that each process performs similar 
actions in each pipeline cycle.

• We will work on comp. and comm. required in 
one cycle.

ttotal = (time for one pipeline cycle) (# of cycles)
ttotal = (tcomp + tcomm) (m+p-1)

m: number of instances of the problem
p: pipeline stages (processes)

The average time for a computation: ta = ttotal / m
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Single Instance of Problem: (Figure 5.11)
Single number is being added in each stage: n==p

tcomp = 1
tcomm = 2 (tstartup + tdata)

When only one set of numbers, m=1:
ttotal = (2 (tstartup + tdata) + 1) n

Multiple Instances of Problem:
m groups of n numbers are being added:

ttotal = (2 (tstartup + tdata) + 1) (m+n-1)
For large m, ta = ttotal/m = 2 (tstartup + tdata) + 1
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Data Partitioning with Multiple Instance of Problem:

Each stage will process a group of d numbers
p = n/d

tcomp = d
tcomm = 2 (tstartup + tdata)

ttotal = (2 (tstartup + tdata) + d) (m + n/d - 1)

As d increases, 
• the impact of the comm. on the overall time diminishes
• parallelism decreases and increases the execution time.
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Sorting Numbers (Type 2)

reorder a set of numbers in increasing (or 
decreasing) numeric order.

A pipeline solution: (Parallel Insertion Sort)
• The first process, P0, accepts the series of 

numbers one at a time.
• Stores the largest number so far received, and 

pass onward all numbers smaller than the 
stored number.
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Parallel Code for Pi.
recv(&number, P i-1);
if (number > x) {

send(&x, P i+1);
x = number;

} else 
send(&number, P i+1);

With n numbers:
right_procno = n - i -1;
recv(&x, Pi-1);
for (j=0; j<right_ procno; j++) {

recv(&number, P i-1);
if (&number > x) {

send(&x, P i+1);
x = number;

}
else 

send(&number, P i+1);
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A message-passing program using an SPMD or a 
master-slave approach is straightforward 

• especially since each pipeline process executes 
essentially the same code.

Results can be extracted from the pipeline using 
• either the ring configuration of Fig.5.11 or 
• the bidirectional line configuration of Fig.5.15.
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right_procno = n - i -1;
recv(&x, Pi-1);
for (j=0; j<right_ procno; j++) {

recv(&number, P i-1);
if (&number > x) {

send(&x, P i+1);
x = number;

}
else send(&number, P i+1);

}
send(&number, P i-1);
for (j=0; j<right_ procno; j++) {

recv(&number, P i+1);
send(&x, P i-1);

}
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Analysis.
Assuming that compare-and-exchange is one 

computational step:
ts = (n-1) + (n-2) + ... + 2 + 1 = 

The parallel impl. has n+n-1 = 2n-1 pipeline cycles
during the sorting if there are n pipeline 
processes and n numbers to sort.
tcomp = 1
tcomm = 2 (tstartup + tdata)

If the results are returned by comm. to the left 
through the master, 3n-1 pipeline cycles are 
needed.
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Prime Number Generation

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

To find the primes up to n, it is only necessary to look at 
numbers up to sqrt(n).

Sequential Code.
for (i=2; i<n; i++)

prime[i] = 1;
for (i=2; i<= sqrt_n; i++)

if (prime[i] == 1)
for (j=i+i; j<n; j+=i)

prime[j] = 0;

There are [n/2-1] multiples of 2, [n/3-1] multiples of 3, so 
on. Hence, total sequential time is ... with O(n2) complexity
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Parallel Code.
recv(&x, Pi-1); 
for (i=0; i<n; i++)

recv(&number, Pi -1); 
if (number == terminator) break;
if ((number % x) != 0) send(&number, Pi+1); 
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Solving a System of Linear Equations 
(Type 3)

A process can continue with useful work after 
passing on information.

Objective: solving a system of linear equations of 
the upper-triangular form.

Method: simple repeated “back” substitution.

The ith process (0<i<n) receives the values 
x0, x1, ..., xi-1 and computes xi from the equation:

i - 1

xi = ( bi - S ai,jxj ) / ai,i
j = 0
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Sequential Code.
x[0] = b[0]/a[0][0];
for (i=1; i<n; i++) {

sum = 0;
for (j=0; j<i; j++) {

sum += a[i][j] * x[j];
x[i] = (b[i] - sum) / a[i][i];

}
} 

Parallel Code.
for (j=0; j<i; j++) {

recv(&x[j], P i-1);
send(&x[j], P i+1);

}
sum = 0;
for (j=0; j<i; j++) {

sum += a[i][j] * x[j];
x[i] = (b[i] - sum) / a[i][i];
send(&x[i], P i+1);
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Analysis.
Computational effort at each pipeline stage is not the same.

P0 performs one divide and one send() .
Pi performs 
• i recv()
• i send()
• i multiply/add                 a total of n-1 comm.
• 1 divide/subtract                and 2n-1 comp. steps
• 1 final send()

Figure 5.20: a perfect sync. of the sends and recvs
Tp = time of final process + n-1 sends and 1 divide.

O(n) - parallel time complexity
O(n2) - serial time complexity
Actual speedup is 0.37n (Lester, 1993)
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• Nonblocking sends and blocking receives are 
used in implementation.


