
•1

Dr. Kivanc Dincer Parallel Processing - Chapter 6 1

Chapter 6 – Synchronous Computations
A group of separate computations must wait for

each other before proceeding, thereby becoming
synchronized.

Fully synchronous applications require all
processes to be synchronized at regular points:

• Generally the same computation is applied to a
set of data points.

• All operations start the same time in a lock-step
manner anologous to SIMD computations.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 2

Dr. Kivanc Dincer Parallel Processing - Chapter 6 3

Synchronization with Barrier

• When processes need to exchange data between
themselves and then continue from a known
state together

• Each process must wait until all others have
reached a particular reference point in their
computations.

• In dynamic process creation:
– exit and respawn -- but costly
– barrier
– All processes must wait in a barrier and placed in an

inactive state and they wait others to reach the same
point.

• potential race condition

Dr. Kivanc Dincer Parallel Processing - Chapter 6 4

• MP systems: as library routines
– MPI_Barrier()
– pvm_barrier() -- all or a subset of processes

• Synchronous and message tags are not used.

• Let’s review some of the common
implementations of a barrier:
– counter
– tree
– butterfly

Dr. Kivanc Dincer Parallel Processing - Chapter 6 5 Dr. Kivanc Dincer Parallel Processing - Chapter 6 6

Counter Implementation (Linear
Barrier)

• A centralized counter is used to count the
number of processes reaching the barrier.

• When the correct number is reached, all other
processes waiting for the counter are released.

• Implementation in two phases:
– an arrival (or trapping) phase
– a departure (or release) phase

• Consider the case a barrier might be used more
than once in a process, i.e., a process enters the
barrier for a second time before previous
processes have left the barrier for the first time.

•2

Dr. Kivanc Dincer Parallel Processing - Chapter 6 7 Dr. Kivanc Dincer Parallel Processing - Chapter 6 8

Master Process:
for (i=0; i<n; i++) /* arrival phase */

recv(Pany);
for (i=0; i<n; i++) /* departure phase */

send(Pi);

Slave Process:
send(Pmaster);
recv(Pmaster);

• All processes must reach the arrival phase before
continuing on to a clearly defined departure phase.

• Blocking recv() and locally blocking send()
operations are used and this implementation has a time
complexity of O(n) with n processes.

• An implementation using gather() and broadcast()
routines is possible.

• Even if system-supplied barrier() is available, user
implemented barriers may be required.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 9 Dr. Kivanc Dincer Parallel Processing - Chapter 6 10

Tree Implementation

• With n processes, we can implement a barrier
with a counter that has 2 log n steps and a time
complexity of O(log n).

Dr. Kivanc Dincer Parallel Processing - Chapter 6 11

Butterfly Barrier
• Pairs of processors synchronize at each stage.
• Each sync requires only a single pair of

send()/recv(). After all sync stages, all
processes can continue.

• At stage s, process i syncs with process i+2s-1 if
n is a power of 2.

• With n processes, it has n steps, and complexity
of O(log n).

Dr. Kivanc Dincer Parallel Processing - Chapter 6 12

Local Synchronization

• Sometimes processes need only be synchronized
with a few other processes.
– Ex: mesh or pipeline fashion processor organizations

Process Pi-1 Process Pi Process Pi+1

recv(Pi); send(Pi-1); recv(Pi);
send(Pi); send(Pi+1); send(Pi);

recv(Pi-1);
recv(Pi+1);

Note that this is not a perfect three-process barrier, but
sufficient.

•3

Dr. Kivanc Dincer Parallel Processing - Chapter 6 13

Deadlock

• When a pair of processes each send and receive
from each other, deadlock may occur.
– If both processes perform synchronous sends (or

blocking sends without sufficient buffering)
– Avoidance: arrange processes so that even-numbered

processes perform their sends first and odd-numbered
processes perform their receives first.

• sendrecv() routine: combined blocking operation for
bidirectional data transfers is implemented so that
deadlock cannot occur.

MPI_Sendrecv()/_replace() having 12 parameters

Process Pi-1 Process Pi Process Pi+1

sendrecv(Pi); sendrecv(Pi-1);
sendrecv(Pi+1); sendrecv(Pi);

Dr. Kivanc Dincer Parallel Processing - Chapter 6 14

Data Parallel Computations

• Have implicit sync. requirements
• The same operation is performed on different

data elements simultaneously.
• Two reasons:

– ease of programming (only one program)
– can scale easily to larger problem sizes

• SIMD computers operate as data parallel
computers
– Synchronism is built into the hardware, the

processors operate in lock-step fashion
– same instruction is executed by different processors

but on different data.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 15

Ex: add the same constant to each element of an
array:
for (i=0; i<n; i++) ⇒ a[] = a[] + k; (SIMD)

a[i] += k;

forall statement: a special parallel construct to
specify data parallel operations.
forall (i=0; i<n; i++)

a[i] += k;

• n instances of the body is executed simultaneously
• no iteration!
• whole construct will not be completed until all instances

of the body have been executed.
– Hence a barrier is implicit within the forall construct.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 16

• On SIMD computers
• On a message-passing computer

– explicit barrier is needed
– SPMD style of programming is used
i = myrank;
a[i] += k; /* body */
barrier(mygroup);

Other data parallel algorithms (Hillis and Steel, Jr., 1986)

– summing numbers
– sorting
– operating on linked lists
– etc.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 17

Prefix Sum Problem

• Given a list of numbers x0, x1, ..., xn-1, all the
partial summations (i.e., x0+x1, x0+x1+x2, x0+x1
+x2+x3, ...) are computed.
– Any associative operation can take place of +.
– Processor allocation, data compaction, sorting,

polynomial evaluation.

for (i=0; i<n; i++) {

sum[i] = 0;

for (j=0; j<=i; j++)

sum[i] += x[j];

}

Time complexity is O(n2).

Dr. Kivanc Dincer Parallel Processing - Chapter 6 18

• Figure 6.8
• Adding all partial sums of 16 numbers as

described in (Hillis and Steel, Jr., 1986)

– original numbers are lost
– a different number of computations occur in each step
– requires log n steps, where there are n numbers (and n

is a power of 2).
• In step j (0 ≤j < log n), n-2j additions occur.

Sequential Code: SIMD code:
for (j=0; i< log(n); j++) for (j=0; i< log(n); j++)

for (i=2j; i<n; i++) forall (i=0; i<n; i++)

x[i] += x[i-2j]; if (i>= 2 j) x[i]+=x[i-2j];

O(n2) With n-1 processors, O(n log n) not cost optimal!

•4

Dr. Kivanc Dincer Parallel Processing - Chapter 6 19

Synchronous Iteration

• Iterative method is a powerful method for solving
numerical problems, where a calculation is
repeated until convergence criteria is satisfied.
– the result of one iteration is used in the next iteration.

• Parallel implementation can be successfully
employed to iterative methods when there are
multiple independent instances of the iteration.

• Synchronous iteration or synchronous
parallelism is used to solving a problem by
iteration where
– each iteration is composed of several processes that

start together at the beginning of each iteration and
– the next iteration cannot begin until all processes have

finished the previous iteration.
Dr. Kivanc Dincer Parallel Processing - Chapter 6 20

for (j=0; i< n; j++) /*for each sync iteration*/
forall (i=0; i<N; i++) { /*N processes each executing*/

body(i); /*body using specific value of i*/

}

SPMD program:
for (j=0; i< n; j++) /*for each sync iteration*/

i = myrank; /*find value of i to be used*/
body(i); /*body using specific value of i*/
barrier(mygroup);

}

