
•1

Dr. Kivanc Dincer Parallel Processing - Chapter 6 1

Solving a System of Linear Equations
by Iteration

Dr. Kivanc Dincer Parallel Processing - Chapter 6 2

Suppose that a system of linear equations is not in a
special triangular form.

• How to solve? : by iteration
– Iterative methods are preferred over direct methods when

such direct methods require excessive computations.
+ small memory requirements
- may not always converge

• The solution requires global synchronization.

Jacobi Iteration
– all values of x are updated together
– will converge if array of a’s is diagonally dominant.

• the diagonal values of a have an absolute value greater than
the sum of the absolute values of other a’s on the row
Σ |ai,j| < |ai,i| (sufficient but not necessary condition)

j≠ i

– starts with some initial guess (xi=bi) for all the
unknowns.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 3

Termination.
1- Via a termination condition.

|xit - xit-1| < error tolerance
This does not guarantee the solution to that accuracy!
• Errors might compound and the computed value could be

very significantly different from the final exact value.
• Errors of one computed value will effect the accuracy of other

computed values that use it in their calculation.
Other ternination conditions have been proposed.

2- Via a maximum number of iterations.
Consider the tradeoff between using a complex termination

calculation with potentially fewer iterations and using a less
complex iterations bw checking for termination.

Allow a number of iterations between checking for termination.

Calculations must be sync’d globally.
Dr. Kivanc Dincer Parallel Processing - Chapter 6 4

Dr. Kivanc Dincer Parallel Processing - Chapter 6 5

Sequential Code.

for (i=0; i<n; i++)
x[i] = b[i]; /*initialize unknowns*/

for (it=0; it<limit; it++) {
for (i=0; i<n; i++) { /* for each unknown*/

sum = 0;
for (j=0; j<n; j++) /*compute summation of a[][]x[]*/

if (i != j) sum += a[i][j] * x[j];
new_x[i] = (b[i]-sum)/a[i][i]; /*compute unknown*/

}
for (i=0; i<n; i++)

x[i] = new_x[i]; /*update values*/
}

Can be more written in a more efficient way!

Dr. Kivanc Dincer Parallel Processing - Chapter 6 6

Parallel Code.
Allocate one process for each unknown, and each process will iterate

the same number of times.

x[i] = b[i]; /*initialize unknowns*/
for (it=0; it<limit; it++) {

for (i=0; i<n; i++) { /* for each unknown*/
sum = -a[i][i] * x[i];
for (j=0; j<n; j++) /*compute summation of a[][]x[]*/

sum += a[i][j] * x[j];
new_x[i] = (b[i]-sum)/a[i][i]; /*compute unknown*/

}
broadcast_receive(&new_x[i]);
global_barrier();

}
Communication can be done using send() and receive()’s.
MPI has MPI_Allgather() or MPI_Allgatherv()

•2

Dr. Kivanc Dincer Parallel Processing - Chapter 6 7

Typically, we want to iterate until the
approximations are sufficiently close:

it = 0;
do {

it++;
...

} while (tolerance() && (it < limit));
why ?

Dr. Kivanc Dincer Parallel Processing - Chapter 6 8

Partitioning.
Number of processors is much fewer than the

number of data items to be processed.

Assuming p processors and n unknowns:
• block allocation
x0 ... x(n/p)-1 to P0
x(n/p) ... x(2n/p)-1 to P1 and so on.

• cyclic allocation
x0, xp, x2p, ... x((n/p)-1)p to P0
x1,xp+1,x2p+1,... x((n/p)-1)p+1 to P1 and so on.
– more complex to compute indices of unknowns.
– more effort is needed to group the unknowns in one

message.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 9

Analysis.
Suppose p processors and n equations (unknowns):
• Each processor operates upon n/p unknowns
• t iterations per processor
Computation.

tcomp = n/p (2n+4) t
1 * and 1 + in inner loop --- 1 *, 2 -, and 1 / in outer loop.

Communication.
tcomm = p (tstartup+ (n/p) tdata)t = ptstartup+ntdata)t

The resulting total execution time has one component that is
decreasing function of p and another that is increasing
function of p.

We can find the minimum by differentiation.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 10

Heat Distribution Problem

Dr. Kivanc Dincer Parallel Processing - Chapter 6 11

• The solution requires local synchronization.
• We can find the temperature distribution on a sheet of

metal by dividing the area into a fine mesh of points.
– the temperature at an inside point can be taken to be

the average of the temperatures of the four
neighboring points.

– (n-1) x (n-1) interior points.
– Edge points are when i=0, i=n, j=0, j=n and have fixed

values corresponding to the fixed temperatures of the
edges.

We can compute the temperature at each point by
iterating the equation:

hi,j = (hi-1,j + hi+1,j + hi,j-1 + hi,j+1) /4,
where 0<i<n and 0<j<n, for a fixed number of iterations
or until it satisfies some convergence criteria.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 12

• This equation occurs in several other similar
problems:
– pressure
– voltage

Each point is an unknown dependent upon a few
other unknowns.

Natural order?

Finite Difference method
six neighbors in 3 dimensions

Laplace’s equation.

•3

Dr. Kivanc Dincer Parallel Processing - Chapter 6 13

Sequential Code.
for (it=0; it<limit; it++) {

for (i=1; i<n; i++)
for (j=1; j<n; j++)

g[i][j] = 0.25 *(h[i -1][j] + h[i+1][j]
+ h[i][j-1] + h[i][j+1]);

for (i=1; i<n; i++) /* update points*/
for (j=1; j<n; j++)

h[i][j] = g[i][j];
}
continue = FALSE;
for (i=1; i<n; i++)

for (j=1; j<n; j++)
if (!converged(i,j) {

continue = TRUE;
break;

}
} while (continue == TRUE);

Dr. Kivanc Dincer Parallel Processing - Chapter 6 14

Parallel Code.
Each point can be visited simultaneously w/o any

change to the algorithm.
Simple Algorithm: Assign one process to each point.
for (it=0; it<limit; it++) {

g = 0.25 *(w + x + y + z);
send(&g, Pi-1,j); /* nonblocking sends */
send(&g, Pi+1,j);
send(&g, Pi,j-1);
send(&g, Pi,j+1);
recv(&g, Pi-1,j); /* synchronous receives */
recv(&g, Pi+1,j);
recv(&g, Pi,j-1);
recv(&g, Pi,j+1);

}

Local
Barrier

Dr. Kivanc Dincer Parallel Processing - Chapter 6 15

Processes stop when they reach their required precision:
• a master process needs to be modified when all processes have

stopped.
it = 0;
do {

it++;
g = 0.25 *(w + x + y + z);
send(&g, Pi-1,j); /* locally blocking sends */
send(&g, Pi+1,j);
send(&g, Pi,j-1);
send(&g, Pi,j+1);
recv(&g, Pi-1,j); /* locally blocking receives */
recv(&g, Pi+1,j);
recv(&g, Pi,j-1);
recv(&g, Pi,j+1);

} while ((!converged(i,j)) || (iteration==limit));
send(&g, &i, &j, &it, Pmaster);

Dr. Kivanc Dincer Parallel Processing - Chapter 6 16

Handling the processes operating at the edges:
if (last_row) w = bottom_value;
if (first_row) x = top_value;
if (first_column) y = left_value;
if (last_column) z = right_value;
it = 0;
do { it++;

g = 0.25 *(w + x + y + z);
if (!first_row) send(&g, P i-1,j);
if (!last_row) send(&g, P i+1,j);
if (!first_column) send(&g, P i,j-1);
if (!last_column) send(&g, P i,j+1);
if (!first_row) recv(&g, Pi-1,j);
if (!last_row) recv(&g, Pi+1,j);
if (!first_column) recv(&g, Pi,j-1);
if (!last_column) recv(&g, Pi,j+1);

} while ((!converged(i,j)) || (iteration==limit));
send(&g, &i, &j, &it, Pmaster);

Dr. Kivanc Dincer Parallel Processing - Chapter 6 17

Partitioning.
• Block partition (square blocks)
• Strip partition (row or column strips)

• The communication times will be heavily
influenced by startup time.
– In general, the strip partition is best for a large startup

time, and a block partition is best for a small startup
time.

– The startup time will be large in most systems,
especially in workstation clusters.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 18

Implementation Details.
A complete column of points needs to be sent to adjacent

process in one message.
• When the array is stored in row-major order as in C, then

a row-strip partitioning can be used.
– Each process will have an additional row of points at each

edge, called ghost points, that hold the values from the
adjacent edge.

for (i=1; i<m; i++)
for (j=1; j<n/p; j++)

g[i][j] = 0.25 *(h[i -1][j] + h[i+1][j]
+ h[i][j-1] + h[i][j+1]);

for (i=1; i<m; i++) /* update points*/
for (j=1; j<n/p; j++)

h[i][j] = g[i][j];
send(&g[1][1], &m, P i-1); /* send rows */
send(&g[1][m], &m, P i+1);
recv(&h[1][0], &m, P i-1); /* receive rows */
recv(&h[1][m+1],&m, P i+1);

•4

Dr. Kivanc Dincer Parallel Processing - Chapter 6 19

Safety and Deadlock.
The arrangement when all processes send their messages

first and then receive all of their messages is described
“unsafe” in the MPI literature.

• Because, the amount of buffering is not specified in MPI

• A send() may block if buffer storage is insufficient
– Hence a locally blocking send may behave as a sync.send.
– Since a matching receive would never be executed if all the

sends are sync., deadlock would occur.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 20

Solution: make the code safe by alternating the order of
sends and receives in adjacent processors.

if ((myid % 2) == 0) { /*even-numbered processes*/
send(&g[1][1], &m, P i-1);
recv(&h[1][0], &m, P i-1);
send(&g[1][m], &m, P i+1);
recv(&h[1][m+1],&m, P i+1);

} else {
recv(&h[1][0], &m, P i-1);/*odd-numbered processes*/
send(&g[1][1], &m, P i-1);
recv(&h[1][m+1],&m, P i+1);
send(&g[1][m], &m, P i+1);

}

Dr. Kivanc Dincer Parallel Processing - Chapter 6 21

MPI offers several alternative methods for safe
communication:

• Combined send/receives: MPI_Sendrecv()
• Buffered sends: MPI_Bsend()
• Nonblocking routines: MPI_Isend() and MPI_Irecv()

followed by MPI_Wait(), MPI_Waitall(), MPI_Waitany(),
MPI_Test(), MPI_Testall(), or MPI_Testany().

MPI_Isend(&g[1][1], &m, P i-1);
MPI_Isend(&g[1][m], &m, P i+1);
MPI_Irecv(&h[1][0], &m, P i-1);
MPI_Irecv(&h[1][m+1],&m, P i+1);

Dr. Kivanc Dincer Parallel Processing - Chapter 6 22

Cellular Automata

Dr. Kivanc Dincer Parallel Processing - Chapter 6 23

Cellular automaton is paritularly suitable for
synchronous iteration.

• Problem space is divided into cells
– Each cell is can be in one of a finite number of states.

• Cells are affected from their neighbors according
to certain rules, and all cells are affected
simultaneously in a “generation.”

• The rules are reapplied in subsequent
generations so that cells evolve, or change state,
from generation to generation.

Dr. Kivanc Dincer Parallel Processing - Chapter 6 24

Game of Life
The most famous cellular automata.
• We have a board that consists of 2D array of

cells.
• Each cell can hold one “organism” and has eight

neighboring cells.
• Initially some cells are occupied.
• Following rules apply:

– Every organism with 2/3 neighboring organisms
survives for the next generation.

– Every organism with 4/more neighboring organisms
dies from overpopulation.

– Every organism with 0/1 neighboring organisms dies
from isolation.

– Each empty cell adjacent to exactly three occupied
neighbors will give birth to an organism.

•5

Dr. Kivanc Dincer Parallel Processing - Chapter 6 25

Other Examples:
• Sharks and Fishes

– see (Fox, Williams, and Messina, 1988) for simulation
results.

• Foxes and Rabbits
• Movement of fluids and gases around objects or

diffusion of gases
• Airflow across an airplane wing
• Erosion/movement of sand at a beach or

riverbank.

