
1

1

Systems Programming

Chapter 2
Assemblers – part 2

2

Homework #2
(Due: Mar 24th& & 31st)

• Design and implement a SIC assembler simulator by
following the software engineering and procedural /
object-oriented design principles given in Chapter 8.

• Part 1: Due Mar 24th

– Submit a document that includes
• a system specifications document
• object-oriented system design
• module interfaces
• system testing strategy.

• Part 2: Due Mar 31st

– Implement your assembler in C++ using an object-
oriented approach. Submit your full codes and a
document that relates your actual work to the Part 1.

3

Outline
• Machine-independent features

– handling expressions
– program blocks
– control sections and program linking

• Assembler design options
– one-pass assemblers
– multi-pass assemblers

4

Col 1 M
Col. 2-7 Starting address of the field to

be modified, relative to the beginning
of the control section

Col. 8-9 Length of the field to be modified, in
half bytes.

Col 10 Modification flag (+ or -)
Col 11-16 External symbol whose value is to

be added to or subtracted from the
indicated field

See Fig. 2.17

New!

Modification record
(revised):

5

Linking up external
references

15 CLOOP +JSUB RDREC 4B100000

relative address 0004

M00000405+RDREC

length of the field to be modified, in half-bytes

190 MAXLEN WORD BUFEND–BUFFER 000000
relative address 0028

M00002806+BUFEND
M00002806-BUFFER

6

Doing program relocation
• Exactly the same mechanism can be used

for program relocation and for program
linking.
– the modification required is adding the

beginning address of the control section to
certain fields in the object program.

– The symbol used as the name of the control
section has as its value the required address –
control section name is automatically an
external symbol.

M00000705 M00000705+COPY
M00001405 M00001405+COPY
M00002705 M00002705+COPY

2

7

Handling of expressions in the
existence of multiple CSs

• Def: All of the relative terms in an expr.
must be paired (absolute), or that all
except one must be paired (relative.)

• + Both terms in each pair must be relative
within the same CS (Control Section.)
– BUFEND–BUFFER vs. RDREC-COPY

When an expr. involves external refs, assembler
cannot in general determine whether or not the
expr. is legal. Why?

– It forms an initial expr. value, and leaves the
rest to the loader.

8

Assembler Design Options
• Two-Pass Assemblers (we have covered)
• One-Pass Assemblers
• Multi-Pass Assemblers

9

One-Pass Assemblers
• Main problem: forward references

– Instruction operands often are symbols
that have not yet been defined in the
source program.

• Is elimination possible?
– eliminate forward refs to data items: all

should be defined before they are ref’d.
• EASY! ACCEPTABLE!

– BUT cannot eliminate forward refs to
labels on instrs
• NOT easy. We need forward jumps frequently!

usually applied
to reduce
complexity

10

Two types of one-pass
assemblers:

1. Load-and-go assembler: produces object
code directly in memory for immediate
execution.

– no object program is written out
– no loader needed
– useful in heavy development/testing envs.

• programs are re-assembled nearly every time they
are run.

– often used on systems where external working-
storage devices are not available or when
external storage is slow or inconvenient to use

11

Handling of forward refs in
load-and-go assemblers

• less difficult since object program is
produced in memory
– assembler generates object code as it scans

the program
– if an instr operand is a not-yet-defined symbol,

• operand address is omitted
• symbol is entered into symbol table
• address of operand field is added to a list of forward

refs associated with the symbol table entry
– when the definition is encountered, the forward

ref list for that symbol is scanned, and the
proper address is inserted into any instrs
previously generated.

See Fig. 2.18 à 2.19 (a) & (b)

12

Two types of one-pass
assemblers:

2. Type 2: produces usual kind of object
program for later execution
– forward refs are entered into lists as

before
• However when the def of a symbol is

encountered, intrs that made forward refs
to that symbol may no longer available in
memory for modification

– they have been written out as part of a Text
record

• Assembler must generate another Text
record with the correct operand address

– this is inserted into the correct place by the
loader

See Fig. 2.20

3

13

Multi-Pass Assemblers
• Remember: any symbol used on the right-

hand side be defined previously in the
source program, e.g., EQU
– The reason for this is the symbol definition

process in a two-pass assembler.
ALPHA EQU BETA
BETA EQU DELTA
DELTA RESQ 1

Forward refs are even difficult even for human reader! We can
prohibit them.

A 2-Pass assembler
cannot resolve such
sequence of defs.

14

• But the general solution is multi-pass
assemblers:
– can make as many passes as ar needed to

process the definitions of symbols
• does not have to do > 2 passes over the entire

program – Pass 1 saves portions that involve forward
refs, Pass 2 re-scans them

• Store symbol defs that involve forward-
refs in the symbol table
– table also indicates which symbols are

dependent on the values of others
– See Fig.2.21

