
1

1

Systems Programming

Chapter 3
Linkers and Loaders

2

Outline
• Design and implementation of linkers and

loaders
– fundamental function:

• loading an object program into memory for execution
• e.g.,an absolute loader for SIC machine

– relocation and linking
• object program representation and machine

dependence
– linking loader
– machine independent loader features
– linkage editors – perform linking before loading
– dynamic linking – delaying linking until execution

time

3

Introduction
Object program:

– contains translated instructions and data from
the source program,

– specifies addresses in memory where these
items are to be loaded.

Loading: brings the object program into memory
for execution

Relocation: modifies the object program so that it
can be loaded at an address different from the
location originally specified

Linking: combines two or more separate object
programs and supplies the information needed to
allow references between them.

4

Loaders
• A loader is a system program that

performs the loading function.
– many also support relocation & linking
– others have a separate linker and loader

• A single loader and linker exist on a
system since compilers/assemblers
produce object code in the same
format.

5

Basic Loader Functions
• bringing an object program into

memory
• starting its execution

6

Design of an Absolute
Loader

• Refer to Section 2.1&2.1.1 and Figure 3.1
• Its operation is very simple

– no linking or relocation
• Single pass operation

– check H record to verify that correct program
has been presented for loading

– read each T record, and move object code into
the indicated address in memory

– at E record, jump to the specified address to
begin execution of the loaded program.

2

7

• Figure 3.2

• Each byte of assembled code is given using
Hex representation in character form

• As the instruction is loaded for execution,
the operation code must be stored in a
single byte w/Hex value.

• May prefer to store object code in binary
form for obtaining more efficiency!

8

A Simple Bootstrap Loader
• Automatically executed when the computer

is first turned on
• Loads the first program to be run: usually

the O/S.
• See Figure 3.3 – A bootstrap loader for

SIC/XE
– itself begins at address 0 in memory
– loads the O/S starting at address 80
– Each byte of object code to be loaded is represented on

device F1 as two Hex digits
– No H or E records, no control information (eoln)
– After all code is loaded, bootstrap jumps to address 80.
– Subroutine GETC reads one char from device F1 and

converts it from ASCII char code to the value of the
hex digit that it represents

9

MACHINE-DEPENDENT LOADER
FEATURES

• Disadvantages of absolute loader
– actual load address must be specified

• OK for SIC
• problematic for an advanced machine where

several independent programs run together
and share memory

– relocation is needed for efficient execution
– difficult to use subroutine libraries

(scientific and mathematical) efficiently
• important to be able to select and load

exactly those routines that are needed

10

• A more complex loader
– suitable for SIC/XE and is typical of those

found on most modern computers
– supports relocation and linking

• Section 3.2.1 – hardware dependencies
• Section 3.2.2 – program linking from the

loader’s point of view
– not as machine dependent as relocation

• Section 3.3 – data structures and
processing logic

11

Relocation
Relocating loaders or relative loaders:

loaders that allow for program relocation.
Two methods for specifying relocation as part of

the object program:
1. A Modification record (Section 2.3.5) is used to

describe each part of the object code that must be
changed when the program is relocated
• Figure 3.4 (same as 2.6) – XE program -> Figure 3.5
• Most instructions in this XE program use relative

addressing, except lines 15, 35, and 65.
• M00000705+COPY

12

Second method
2. Modification record scheme is not well suited

for use with a machine like SIC
- SIC does not use relative addresses

almost all instructions (except RSUB) must
be modified when the program is relocated.

No Modification records
A relocation bit associated with each word of
object code and they form a bit mask

T00106119FE0040030E01079301064508039DC10792C00363810644C000005

111111100000

+ + + + + + +

3

13

Third method
3. Hardware relocation capability is

provided by some computers
- eliminates some of the need for the
loader to perform relocation
- They keep all memory references to
be relative to the user’s assigned area
of memory
- Conversion takes place during
execution.

14

Program Linking
• Section 2.3.5, Figure 2.15

– a program w/3 control sections
– They may be separately or together

assembled
• result is separate segments of object code

after assembly
• Figure 3.8
• set of references to external symbols:

– instruction operands (REF1 – REF3)
– values of data words (REF4 – REF8)

» We will examine the differences in the way
these identical expressions are handled within
the three programs.

15

• REF1 –
– PROGA – simply a reference to a label

within the program: PC-relative instr.
– PROGB/PROGC – refers to an external

symbol: extended-format instr.
• has a Modificiation record instructing the

loader to add the value of LISTA to this
address during linking

• REF2 –
– same as REF1 , except value of constant

16

• REF3 – immediate operand whose value is
to be the difference between ENDA and
LISTA
– PROGA – knows all info
– PROGB/C – values of labels are unknown

• must be assembled as an external reference
w/two modification records

17

General approach
• to evaluate as much of the expression

as it can and to pass the remaining
terms to the loader via Modification
records

• See REF4
– PROGA – evaluate all except LISTC
– PROGB/PROGC – no terms can be

evaluated

18

• Fig 3.10 – three programs after loading and
linking
– REF4 – 8 has resulted in the same value
– Figure 3.10.b – actual computation of REF4 in

PROGA
• For the references that are instruction

operands, the calculated values after
loading do not always appear to be equal
– because, there is an additional address

calculation step involved for PC-relative
instructions (BUT target addresses are the
same)

• REF1 (PROGA: 01D PC-relative, PROGB: 4040
extended format)

4

19

Algorithm and Data Structures
for a Linking (Relocating) Loader
• More complicated than the absolute loader
• We use Modification records for relocation

– so that linking and relocating functions are
performed using the same mechanism

• Input: a set of object programs (control
sections) that are to be linked together
– A CS may make an external ref. to a symbol

whose def does not appear until later in this
input stream until later CS is read.

– Two passes over input:
• Pass 1: assigns addresses to all external symbols
• Pass 2: performs the actual loading, relocation, and

linking.

20

Main Data Structures
• External Symbol Table (ESTAB)

– ~Symbol Table
– stores the name and address of each external symbol in

the set of control sections being loaded.
– also often indicates in which CS the symbol is defined.
– A hashed organization is typically used.

• Program Load Address (PROGADDR)
– beginning address inmemory where the linked program is

to be loaded.
– supplied by the O/S

• Control Section Address (CSADDR)
– starting address asigned to the CS currently being

scanned by the loader
– Its value is added to all relative addresses within the

control section to convert them to actual addresses

21

The Algorithm
• Refer to Fig.3.11
• Pass 1:

– concerned only w/Header and Define
records

– PROGADDR is obtained from O/S
– CSADDR is set accordingly
– All external symbols are entered into

External Symbol Table (Fig 3.11a)
– Starting address and length of each CS

are determined

22

• Pass 2:
– does actual loading, relocation, and linking
– As each Text record is read, the object code is

moved to the specified address
• (plus the current value of CSADDR)

– When a Modification record is encountered, the
mentioned symbol’s value is added or
subtracted from the indicated location in
memory

• Last step: transfer control to loaded program to
begin execution.
– indicated in the End record

Remark: Algorithm can be made more efficient
by changing the object code but this concerns the
implementors only!

23

MACHINE-INDEPENDENT
LOADER FEATURES

• Loading and linking are often thought
as O/S service functions.
– The programmer’s connection with such

services is not as direct as it is with
assemblers.

– Most loaders include fewer different
features than are found in a typical
assembler.

• Automatic library search process for
handling external references

24

Automatic Library Search
• allow a programmer to use standard

subroutines w/o explicitly including
them in the program to be loaded.
– In most cases there is a standard system

library that is used this way
• subroutines called by the program

being loaded are automatically
retrieved from a library as they are
needed during linking.

5

25

Implementation of Search
• linking loader must keep track of external

symbols that are referred to, but not
defined.
– enter symbol from each Refer record

into the external symbol table (ESTAB)
–> at the end of Pass 1, the symbol in table that
remain undefined represent unresolved
external references

– the loader searches the library or
libraries specified for routines that
contain the definitions of these symbols
• Subroutines fetched from a library in this

may may themselves contain external
references.

26

• The process allows the programmer to
override the standard subroutines in the
library by supplying his or her own routines.

• The libraries to be searched by the loader
ordinarily contain assembled or compiled
versions of subroutines (i.e., object
programs)
– In most cases, a special directory is used for

the libraries.
– Directory entry points to the address of the

subroutine within the file.

27

Loader Options
• Many loaders allow the user to

specify options that modify the
standard processing described above
– a special command language (job control

language) is used for this purpose
• Examples:

– Most loaders allow the user to specify
alternative libraries to be searched
• LIBRARY MYLIB

28

LOADER DESIGN OPTIONS
• Linking loaders

– perform all linking and relocation at load time
• Linkage editors

– perform linking prior to load time, and writes
linked program (executable image) into file
instead of being immediately loading into
memory.

– found on most systems in addition to linking
loaders

• Dynamic linking
– linking function is performed at execution time
– uses facilities of the O/S to load and link

subprograms at the tie they are first called

29

Linkage Editors
• A linking loader performs all linking and

relocation, including automatic library search, and
loads the linked program directly into memory for
execution.

• A linkage editor produces a linked version of
the program (load module or executable image) which is
written to a file or library for later execution
– a simple relocating loader can be used later to

load the program into memory
– linkage editor performs relocation of all CSs

relative to the start of the linked program
– loading can be accomplished in one pass w/no

external symbol table required.

30

• A linked program is generally in a form
suitable for processing by a relocating
loader
– all external references are resolved
– relocating is indicated by some mechanism, such

as Modification record or bit mask
– Even though all linking has been performed,

information concerning external references is
often retained in the linked program

– This allows subsequent re-linking of the
program to replace control sections, modify
external references, etc.
• if this info is not retained, then what

happens?

6

31

Suitable Work Environments
• In an environment where program is

to be executed many times w/o being
reassembled
– use of a linkage editor -> reduces

overhead
• resolution of external refs and library

searching are performed only once
(Compare to a linking loader!)

• In a development and testing
environment
– a linking loader is more efficient.

32

• Exact (executable) image
– if the actual address at which the

program will be loaded is known in
advance, the linkage editor can perform
all of the needed relocation

33

Other Functions of Linkage
Editors

1- when a change is made in the source code
of a subroutine, linkage editor can replace
this subroutine in the linked version of the
program w/o recompiling/reassembling all
code

2- can be used to build packages of CSs that
are generally used together
– Ex: FORTRAN has a large number of subroutines for

formatted i/o with lots of cross-refs between them
– It is desirable to keep them as separate CSs for reasons

of program modularity and maintainability

34

Using packages
• If all of the cross-refs between library

routines would have to be processed
individually – same set of cross-refs would
need to be processed for almost every
FORTRAN program linked

• A linkage editor can be used to combine
the appropriate subroutines into a package

• Since package already has all of the cross-
refs between subroutines resolved, these
linkages would not be processed when each
user’s program is linked

35

3- allow users to specify that external refs
are not to be resolved by automatic library
search
– 100 programs using the I/O routines described

above stored in a library
• If all external refs are resolved, 100 copies of the

package would be stored
– wastes memory

• Thus only the external refs bw user-written routines
would be resolved, and linking loader could be used to
combine the linked user routines with the package at
execution time

– involves two separate linking operations
– saves space

36

Dynamic Linking (Load on call)
• We can postpone the linking function until

execution time: a routine is loaded and
linked to the rest of the program when it is
first called

• often used to allow several executing
programs to share one copy of a subroutine
or library
– E.g., run-time support routines for a high-level

language like C could be stored in a dynamic link
library

• a single copy of the routines in this library could be
loaded into the memory

• All C programs currently in execution could be linked
to this one copy

7

37

• Advantages over other types of linking:
– provides the ability to load the routines only

when (and if) they are needed
• saves time and memory space
• Ex: a program contains correction and diagnostic

routines that may not be used al all during most
executions of the program

– avoids loading of the entire libraries for each
execution

• Ex: a user can interactively call any of the
subroutines of a large mathematical and statistical
library

38

3- Mechanisms to accomplish the actual
loading and linking of a called subroutine
– Fig.3.14
– routines that are to be dynamically loaded must

be called via an O/S service request
• instead of executing a JSUB, the program makes a

load-and-call service request to the O/S.
• O/S loads the routine if not already loaded
• Control is passed from O/S to the routine being

called
• When done, control returns to O/S and then to the

user’s calling program
– O/S may free memory, or wait for a while if some other

call may come soon

39

• When dynamic linking is used, the
association of an actual address with
the symbolic name of the called
routine is not made until the call
statement is executed:
– in other words, binding of the name to an

actual address is delayed from load time
until execution time (delayed binding)

40

Bootstrap Loaders
• How is the loader itself loaded into

memory?
– OS may load it in

• Then how is the O/S loaded into
memory?

“Given an idle computer w/no program
in memory, how do we get things started?”

41

• With the machine empty and idle, there is no
need for program relocation
– we can simply specify the absolute address for

whatever program is first loaded, usually the O/S.
• we need some means of accomplishing the functions of an absolute

loader
• Operator may enter object code of absolute loader into memory
• absolute loader program may be permanently resident on ROM and

activated by a hardware signal
• A built-in hardware function reads a fixed-length record (called

bootstrap loader) from some device into memory at a fixed
location – this record may contain the machine instructions to load
the absolute program in

• Control is transferred to there
• If the loading process requires more instructions that can be read

in a single record, this first record causes the reading of others,
and these in turn can read still more records , hence the term
bootstrap

42

SunOS Linkers
• Two different linkers:

– link editor
– run-time linker

• Link editor
– invoked in the process of compiling a

program
– takes one or more object modules

produced by assemblers and compilers
and produces a single output module:

8

43

Output module can be:
– a relocatable object module – suitable

for further link-editing
– a static executable – w/all symbolic

references bound and ready to run
– a dynamic executable – in which some

symbolic references may need to be
bound at run time

– a shared object – which provides
services that can be bound at run time
to one or more dynamic executables

44

• An object module contains
– one or more sections: instructions and data

areas
– a list of the relocation and linking operations

that need to be performed
– a symbol table that describes the symbols used

in these operations

• SunOS link-editor processes object
modules and usually generates a new symbol
table and a new set of relocation
instructions (symbols bound at run time,
relocations to be performed at load time)

45

• Symbolic references from the input files that
do not have matching definitions are processed
by referring to archives or shared objects
– An archive is a collection of relocatable object

modules
• A directory stored with the archive associates symbol

names with the object modules that contain their definitions
– A shared object is an indivisible unit that was

generated by a previous link-edit operation
• When the link-editor encounters a reference to a symbol

defined in a shared object, the entire contents of the
shared object become a logical part of the output file

• Shared object is not physically included in the output file,
instead the link-editor records the dependency on the
shared object

• SunOS run-time linker is used to bind dynamic
executables and shared objects at run time.

46

Lazy Binding
• After it locates and includes the necessary

shared objects, the linker performs
relocation and linking operations toprepare
the program for execution.
– During link-editing, calls to globally defined

procedures are converted to references to a
procedure linkage table

– When a procedure is called for the first time,
control is passes via this table to the run-time
linker.

– The linker looks up the actual address of the
called procedure and inserts it into the linkage
table

• subsequent calls directly go to the called procedure

