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Formal Approaches to Describing Syntax

» Recognizers - used in syntax analysis part of
compilers
— A language L that uses alphabet & of characters.
— We construct a recognition device, R, which is capable of
« inputting strings of chars. from the alphabet &
and
« indicating whether a given input string is in L or not.
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Syntax (form) & Semantics (meaning)

v |4
Syntax Most common method of descibing syntax:
Graphs || [ Context-Free Grammars (Backus-Naur Form)
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Attribute Grammars A CFG-Based Syntax
for describing Analysis Technique:
syntax & semgntics Recursive Descent Parsing

v

Formal methods of describing semantics:
Operational, Axiomatic and
Denotational Semantics

Backus-Naur Form and Context-Free Grammars

Grammars are formal language generation mechanisms
commonly used to describe syntax of PLs.

Context-Free Grammars (CFG) (mid-1950s)
* Developed by Noam Chomsky.

« Defined a class of languages called context-free langs.

¢ Context-free grammars can describe whole languages,
with minor exceptions.

¢ Regular grammars can describe langs of tokens of PLs.

Backus-Naur Form (BNF) (1959)

* Invented by John Backus to describe Algol 58.

* BNF is equivalent to context-free grammars.

« BNF is a very natural notation for describing syntax.

Syntax and Semantics

» Syntax - the form or structure of the
expressions, statements, and program units.

* Semantics - the_meaning of the expressions,
statements, and program units.

Describing syntax is easier than describing semantics.

Ex: Anif statement in C language:

if ( <expr>) <statenent>
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Fundamentals

* A metalanguage is a language used to describe
another language. (ex. BNF is a metalang. for PLs)

¢ In BNF, abstractions are used to represent classes
of syntactic structures--they act like syntactic
variables (also called nonterminal symbols)

€.0. <while_stnt> -> while <logic_expr> do <stnt>

e This is arule (or production); it describes the
structure of a while statement.

¢ A rule has aleft-hand side (LHS) and a right-hand
side (RHS), and consists of nonterminal and
terminal (lexemes and tokens) symbols.

The General Problem of Describing Syntax

« A sentence is a string of characters over some alphabet.
e Alanguage is a set of sentences.
— Syntax rules specify which sentences are in the
language.
* A lexeme is the lowest level syntactic unit of a language
(e.g., *, sum, begin.)
— Description of lexemes is given by a lexical specification,
and separate from the syntactic description of the lang.
— Lexemes include identifiers, constants, operators and
special words.
* Atoken is a category of lexemes (e.g., identifier, semicolon,
or equal_sign) [Example]

You can think of programs as strings of lexemes rather than chars
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* Agrammar is a finite nonempty set of rules.

¢ An abstraction (or nonterminal symbol) can have
more than one RHS (i.e., definitions):
<stmt> -> <single_stnt>
| begin <stnt_list> end

« Syntactic lists are described in BNF using recursion:
<ident_list> -> ident
| ident, <ident_list>

« Aderivation is a repeated application of rules,
starting with the start symbol and ending with a
sentence (all terminal symbols)




« Each of the strings in the derivation, including start
symbol is called a sentential form.
— Asentence is a sentential form that has only terminal
symbols, or lexemes.
¢ Aleftmost derivation is one in which the leftmost
nonterminal in each sentential form is the one that is
expanded:

<ternmr -> <ternp * <factor>

¢ A derivation may be leftmost, rightmost, or neither of
them.
— Derivation order has no effect on the language
generated by a grammar.
— By exhaustively choosing all combinations of
alternative RHSs of rules, the entire language can
be generated.

« Metasymbols: The brackets, braces, and parantheses in
the EBNF extensions.
— Metasymbols are notational tools and not terminal
symbols in the syntactic entities they help describe.
— If these metasymbols are also terminal symbols in the
language being described, the instances that are
terminal symbols are underlined.

BNF: EBNF:
<expr> -> <expr> + <ternp <expr>-> <tern> {(+| -)<ternp}
| <expr> - <terme
| <terme
<termr -> <termp * <factor>| <termp-><factor>{(*|/)<factor>}
| <termr / <factor>
| <factor>
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Examples
An example grammar for a small language:

<programp -> <stnts>
<stnts> -> <stnmt> | <stnt> ;
<stnt> -> <var> = <expr>
<var> ->a | b|] c| d
<expr> -> <ternp + <ternp |
<ternp -> <var> | const

<stnts>

<ternr - <terne

A derivation of a program in this language:

<progranp => <stnts>
=> <stnt>
=> <var> = <expr>
=> a = <expr>

=> a = <terne + <ternv
=> a = <var> + <terne
=> a=b + <ternp

=> a = b + const
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Syntax Graphs

A graph is a collection of nodes, some of which are
connected by lines, called edges.

A directed graph is one in which the edges are directional.
— (Ex: A parse tree is a restricted directed graph)

Syntax graphs (diagrams, charts) are directed graphs
where circle nodes represent terminals and rectangle
nodes represent non-terminals of a BNF grammar.

Pascal type declarations: | ———— R

g type_identifier |
..
o
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Parse Trees

A parse tree is a hierarchical representation of a
derivation.

<program>
<stmts>
<stmt>

<var> =

<eXpr >

L <term> + <term> Every leaf is labeled

<var> congt  Withaterminal symbol.

b
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Recursive Descent Parsing

* A CFG can serve as a syntax analyzer, or parser, of a compiler.
Recursive descent is a grammar-based top-down parser.

¢ Parsing is the process of tracing or constructing a parse tree for
a given input string.

¢ Each nonterminal in the grammar has a subprogram associated
with it;

— Given an input string, it traces out the parse tree whose
leaves match the input string.

— The subprogram parses all sentential forms that the
nonterminal can generate. In effect, it is a parser for the
language that can be generated by its nonterminal.

— These subprograms are built directly from the grammar
rules, and they are usually recursive.
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Extended BNF (EBNF)

Extensions do not enhance the power of BNF but bring
abbreviations and increase its readability writability.

1. Place optional parts in brackets: [ ]
<proc_call> ->ident [ (<expr_list>) ]

2. Put alternative parts of RHSs in parentheses and

separate them with vertical bars:
<term> -> <terne (+ | -) const
3. Put repetitions (0 or more) in braces*: { }
<ident> -> letter {letter | digit}
{}*indicates one or more repetions.
This is a replacement of the recursion by a form of implied iteration.
Sometimes an ellipsis (. . .) (i.e., more of the same) is used instead:
<ident _list> -> <identifier> [,<identifier>]...
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. lyzer
—>]| Lexical Analyzer I—F Syntax Analyze
Character Lexemes Parser

representing f Tokens
the sentence 1
Plays theroleof a
Front-End
to Parser

« lexical() gets leftmost token of input and puts it into
global variable next_token.

Recursive descent parsers, like other top-down parsers,
cannot be built from left-recursive grammars.
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Example

Given the grammar:

<expr> -> <ternr {(+-) <term }
<termr -> <factor>{(*|/)<factor>}
<factor> -> <id> | ( <expr>)

The recursive descent subprogram in C for the second rule:

void term() {
factor(); /*parse the first factor */
whi | e (next_token==ast_code || next_token==slash_code) {
I exical (); /* get the next token fromthe input */
factor(); /* parse the next factor */
}
}
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void factor () {

if (next_token == id_code) {
Il exical ();
return;
}
else if (next_token == |left_paren_code) {
lexical ();
expr();
if (next_token == right_paren_code) {
Il exical ();
return;
else error(); /*expecting right paranthesis*/
} Parsers of read compilers report a diagnostic message
when an error is detected, and recover from the error
el se so that the parsing process can continue.

error(); /*it was neither an id or a left paranthesis*/
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Homework 5

Due: May 12th, 2000 Friday

1-) Answer the following Review Questions:
3.4, 3.5, 3.6, 3.7 (10 points each)

2-) Solve the following problems in the Problem Sets:
3.2, 3.3, 3.4, and 3.8 (15 points each)
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