
1

UNIX Systems Programming
Compilers

(Sabesta, chp.3)

Dr. Kivanç Dinçer
CENG-332 Lectures

Spring 2000

2

Syntax (form) & Semantics (meaning)

Most common method of descibing syntax:
Context-Free Grammars (Backus-Naur Form)

Syntax
Graphs

A CFG-Based Syntax
Analysis Technique:

Recursive Descent Parsing

Attribute Grammars
for describing

syntax & semantics

Formal methods of describing semantics:
Operational, Axiomatic and

Denotational Semantics

3

Syntax and Semantics

• Syntax - the form or structure of the
expressions, statements, and program units.

• Semantics - the meaning of the expressions,
statements, and program units.

Ex: An if statement in C language:
if (<expr>) <statement>

Describing syntax is easier than describing semantics.

4

The General Problem of Describing Syntax
• A sentence is a string of characters over some alphabet.
• A language is a set of sentences.

– Syntax rules specify which sentences are in the
language.

• A lexeme is the lowest level syntactic unit of a language
(e.g., *, sum, begin.)
– Description of lexemes is given by a lexical specification,

and separate from the syntactic description of the lang.
– Lexemes include identifiers, constants, operators and

special words.
• A token is a category of lexemes (e.g., identifier, semicolon,

or equal_sign) [Example]

You can think of programs as strings of lexemes rather than chars.

5

Formal Approaches to Describing Syntax
• Recognizers - used in syntax analysis part of

compilers
– A language L that uses alphabet ∑ of characters.
– We construct a recognition device, R, which is capable of

• inputting strings of chars. from the alphabet ∑
and
• indicating whether a given input string is in L or not.

6

Backus-Naur Form and Context-Free Grammars
Grammars are formal language generation mechanisms

commonly used to describe syntax of PLs.

Context-Free Grammars (CFG) (mid-1950s)
• Developed by Noam Chomsky.

• Defined a class of languages called context-free langs.

• Context-free grammars can describe whole languages,
with minor exceptions.

• Regular grammars can describe langs of tokens of PLs.

Backus-Naur Form (BNF) (1959)
• Invented by John Backus to describe Algol 58.
• BNF is equivalent to context-free grammars.
• BNF is a very natural notation for describing syntax.

7

Fundamentals
• A metalanguage is a language used to describe

another language. (ex. BNF is a metalang. for PLs)

• In BNF, abstractions are used to represent classes
of syntactic structures--they act like syntactic
variables (also called nonterminal symbols)

e.g. <while_stmt> -> while <logic_expr> do <stmt>

• This is a rule (or production); it describes the
structure of a while statement.

• A rule has a left-hand side (LHS) and a right-hand
side (RHS), and consists of nonterminal and
terminal (lexemes and tokens) symbols.

*

8

• A grammar is a finite nonempty set of rules.

• An abstraction (or nonterminal symbol) can have
more than one RHS (i.e., definitions):

<stmt> -> <single_stmt>
| begin <stmt_list> end

• Syntactic lists are described in BNF using recursion:
<ident_list> -> ident

| ident, <ident_list>

• A derivation is a repeated application of rules,
starting with the start symbol and ending with a
sentence (all terminal symbols)

9

• Each of the strings in the derivation, including start
symbol is called a sentential form.
– A sentence is a sentential form that has only terminal

symbols, or lexemes.
• A leftmost derivation is one in which the leftmost

nonterminal in each sentential form is the one that is
expanded:

• A derivation may be leftmost, rightmost, or neither of
them.
– Derivation order has no effect on the language

generated by a grammar.
– By exhaustively choosing all combinations of

alternative RHSs of rules, the entire language can
be generated.

<term> -> <term> * <factor>

10

Examples
An example grammar for a small language:

A derivation of a program in this language:

<program> -> <stmts>
<stmts> -> <stmt> | <stmt> ; <stmts>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

<program> => <stmts>
=> <stmt>
=> <var> = <expr>
=> a = <expr>
=> a = <term> + <term>
=> a = <var> + <term>
=> a = b + <term>
=> a = b + const

11

Parse Trees
A parse tree is a hierarchical representation of a

derivation.

<program>

<stmts>

<stmt>

<term>

= <expr><var>

a + <term>

<var>

b

const

Every leaf is labeled
with a terminal symbol.

12

Extended BNF (EBNF)
Extensions do not enhance the power of BNF but bring

abbreviations and increase its readability writability.
1. Place optional parts in brackets: []

<proc_call> -> ident [(<expr_list>)]

2. Put alternative parts of RHSs in parentheses and
separate them with vertical bars:

<term> -> <term> (+ | -) const
3. Put repetitions (0 or more) in braces*: { }

<ident> -> letter {letter | digit}
{ }+ indicates one or more repetions.

This is a replacement of the recursion by a form of implied iteration.
Sometimes an ellipsis (. . .) (i.e., more of the same) is used instead:

<ident_list> -> <identifier> [,<identifier>]...

13

• Metasymbols: The brackets, braces, and parantheses in
the EBNF extensions.
– Metasymbols are notational tools and not terminal

symbols in the syntactic entities they help describe.
– If these metasymbols are also terminal symbols in the

language being described, the instances that are
terminal symbols are underlined.

BNF: EBNF:
<expr> -> <expr> + <term> <expr>-> <term> {(+|-)<term>}

| <expr> - <term>
| <term>

<term> -> <term> * <factor> <term>-><factor>{(*|/)<factor>}
| <term> / <factor>
| <factor>

14

Syntax Graphs
A graph is a collection of nodes, some of which are

connected by lines, called edges.

A directed graph is one in which the edges are directional.
– (Ex: A parse tree is a restricted directed graph)

Syntax graphs (diagrams, charts) are directed graphs
where circle nodes represent terminals and rectangle
nodes represent non-terminals of a BNF grammar.

type_identifier

identifier

,
. . constantconstant

()

Pascal type declarations:

15

Recursive Descent Parsing
• A CFG can serve as a syntax analyzer, or parser, of a compiler.

Recursive descent is a grammar-based top-down parser.

• Parsing is the process of tracing or constructing a parse tree for
a given input string.

• Each nonterminal in the grammar has a subprogram associated
with it;
– Given an input string, it traces out the parse tree whose

leaves match the input string.
– The subprogram parses all sentential forms that the

nonterminal can generate. In effect, it is a parser for the
language that can be generated by its nonterminal.

– These subprograms are built directly from the grammar
rules, and they are usually recursive.

16

Lexical Analyzer Syntax Analyzer
(Parser)Lexemes

Tokens
Characters

representing
the sentence

Plays the role of a
Front-End
to Parser

• lexical() gets leftmost token of input and puts it into
global variable next_token.

Recursive descent parsers, like other top-down parsers,
cannot be built from left-recursive grammars.

17

Example
Given the grammar:

<expr> -> <term> {(+|-) <term> }
<term> -> <factor>{(*|/)<factor>}
<factor> -> <id> | (<expr>)

The recursive descent subprogram in C for the second rule:

void term() {
factor(); /*parse the first factor */
while (next_token==ast_code || next_token==slash_code) {

lexical(); /* get the next token from the input */
factor(); /* parse the next factor */

}
}

18

void factor () {
if (next_token == id_code) {

lexical();
return;

}
else if (next_token == left_ paren_code) {

lexical();
expr();
if (next_token == right_ paren_code) {

lexical();
return;

else error(); /*expecting right paranthesis*/
}

else
error(); /*it was neither an id or a left paranthesis*/

}

Parsers of real compilers report a diagnostic message
when an error is detected, and recover from the error
so that the parsing process can continue.

19

Homework 5
Due: May 12th, 2000 Friday

1-) Answer the following Review Questions:
3.4, 3.5, 3.6, 3.7 (10 points each)

2-) Solve the following problems in the Problem Sets:
3.2, 3.3, 3.4, and 3.8 (15 points each)

