UNIX Systems Programming

Compilers
(Sabesta, chp.3)

Dr. Kivan¢ Dinger
CENG-332 Lectures
Spring 2000

Formal Approaches to Describing Syntax

» Recognizers - used in syntax analysis part of
compilers
— A language L that uses alphabet & of characters.
— We construct a recognition device, R, which is capable of
« inputting strings of chars. from the alphabet &
and
« indicating whether a given input string is in L or not.

5

Syntax (form) & Semantics (meaning)

v |4
Syntax Most common method of descibing syntax:
Graphs || [Context-Free Grammars (Backus-Naur Form)

v '

Attribute Grammars A CFG-Based Syntax
for describing Analysis Technique:
syntax & semgntics Recursive Descent Parsing

v

Formal methods of describing semantics:
Operational, Axiomatic and
Denotational Semantics

Backus-Naur Form and Context-Free Grammars

Grammars are formal language generation mechanisms
commonly used to describe syntax of PLs.

Context-Free Grammars (CFG) (mid-1950s)
* Developed by Noam Chomsky.

« Defined a class of languages called context-free langs.

¢ Context-free grammars can describe whole languages,
with minor exceptions.

¢ Regular grammars can describe langs of tokens of PLs.

Backus-Naur Form (BNF) (1959)

* Invented by John Backus to describe Algol 58.

* BNF is equivalent to context-free grammars.

« BNF is a very natural notation for describing syntax.

Syntax and Semantics

» Syntax - the form or structure of the
expressions, statements, and program units.

* Semantics - the_meaning of the expressions,
statements, and program units.

Describing syntax is easier than describing semantics.

Ex: Anif statement in C language:

if (<expr>) <statenent>

3

Fundamentals

* A metalanguage is a language used to describe
another language. (ex. BNF is a metalang. for PLs)

¢ In BNF, abstractions are used to represent classes
of syntactic structures--they act like syntactic
variables (also called nonterminal symbols)

€.0. <while_stnt> -> while <logic_expr> do <stnt>

e This is arule (or production); it describes the
structure of a while statement.

¢ A rule has aleft-hand side (LHS) and a right-hand
side (RHS), and consists of nonterminal and
terminal (lexemes and tokens) symbols.

The General Problem of Describing Syntax

« A sentence is a string of characters over some alphabet.
e Alanguage is a set of sentences.
— Syntax rules specify which sentences are in the
language.
* A lexeme is the lowest level syntactic unit of a language
(e.g., *, sum, begin.)
— Description of lexemes is given by a lexical specification,
and separate from the syntactic description of the lang.
— Lexemes include identifiers, constants, operators and
special words.
* Atoken is a category of lexemes (e.g., identifier, semicolon,
or equal_sign) [Example]

You can think of programs as strings of lexemes rather than chars

4

* Agrammar is a finite nonempty set of rules.

¢ An abstraction (or nonterminal symbol) can have
more than one RHS (i.e., definitions):
<stmt> -> <single_stnt>
| begin <stnt_list> end

« Syntactic lists are described in BNF using recursion:
<ident_list> -> ident
| ident, <ident_list>

« Aderivation is a repeated application of rules,
starting with the start symbol and ending with a
sentence (all terminal symbols)

« Each of the strings in the derivation, including start
symbol is called a sentential form.
— Asentence is a sentential form that has only terminal
symbols, or lexemes.
¢ Aleftmost derivation is one in which the leftmost
nonterminal in each sentential form is the one that is
expanded:

<ternmr -> <ternp * <factor>

¢ A derivation may be leftmost, rightmost, or neither of
them.
— Derivation order has no effect on the language
generated by a grammar.
— By exhaustively choosing all combinations of
alternative RHSs of rules, the entire language can
be generated.

« Metasymbols: The brackets, braces, and parantheses in
the EBNF extensions.
— Metasymbols are notational tools and not terminal
symbols in the syntactic entities they help describe.
— If these metasymbols are also terminal symbols in the
language being described, the instances that are
terminal symbols are underlined.

BNF: EBNF:
<expr> -> <expr> + <ternp <expr>-> <tern> {(+| -)<ternp}
| <expr> - <terme
| <terme
<termr -> <termp * <factor>| <termp-><factor>{(*|/)<factor>}
| <termr / <factor>
| <factor>

13

Examples
An example grammar for a small language:

<programp -> <stnts>
<stnts> -> <stnmt> | <stnt> ;
<stnt> -> <var> = <expr>
<var> ->a | b|] c| d
<expr> -> <ternp + <ternp |
<ternp -> <var> | const

<stnts>

<ternr - <terne

A derivation of a program in this language:

<progranp => <stnts>
=> <stnt>
=> <var> = <expr>
=> a = <expr>

=> a = <terne + <ternv
=> a = <var> + <terne
=> a=b + <ternp

=> a = b + const

10

Syntax Graphs

A graph is a collection of nodes, some of which are
connected by lines, called edges.

A directed graph is one in which the edges are directional.
— (Ex: A parse tree is a restricted directed graph)

Syntax graphs (diagrams, charts) are directed graphs
where circle nodes represent terminals and rectangle
nodes represent non-terminals of a BNF grammar.

Pascal type declarations: | ———— R

g type_identifier |
..
o

14

Parse Trees

A parse tree is a hierarchical representation of a
derivation.

<program>
<stmts>
<stmt>

<var> =

<eXpr >

L <term> + <term> Every leaf is labeled

<var> congt Withaterminal symbol.

b

11

Recursive Descent Parsing

* A CFG can serve as a syntax analyzer, or parser, of a compiler.
Recursive descent is a grammar-based top-down parser.

¢ Parsing is the process of tracing or constructing a parse tree for
a given input string.

¢ Each nonterminal in the grammar has a subprogram associated
with it;

— Given an input string, it traces out the parse tree whose
leaves match the input string.

— The subprogram parses all sentential forms that the
nonterminal can generate. In effect, it is a parser for the
language that can be generated by its nonterminal.

— These subprograms are built directly from the grammar
rules, and they are usually recursive.

15

Extended BNF (EBNF)

Extensions do not enhance the power of BNF but bring
abbreviations and increase its readability writability.

1. Place optional parts in brackets: []
<proc_call> ->ident [(<expr_list>)]

2. Put alternative parts of RHSs in parentheses and

separate them with vertical bars:
<term> -> <terne (+ | -) const
3. Put repetitions (0 or more) in braces*: { }
<ident> -> letter {letter | digit}
{}*indicates one or more repetions.
This is a replacement of the recursion by a form of implied iteration.
Sometimes an ellipsis (. . .) (i.e., more of the same) is used instead:
<ident _list> -> <identifier> [,<identifier>]...

12

. lyzer
—>]| Lexical Analyzer I—F Syntax Analyze
Character Lexemes Parser

representing f Tokens
the sentence 1
Plays theroleof a
Front-End
to Parser

« lexical() gets leftmost token of input and puts it into
global variable next_token.

Recursive descent parsers, like other top-down parsers,
cannot be built from left-recursive grammars.

16

Example

Given the grammar:

<expr> -> <ternr {(+-) <term }
<termr -> <factor>{(*|/)<factor>}
<factor> -> <id> | (<expr>)

The recursive descent subprogram in C for the second rule:

void term() {
factor(); /*parse the first factor */
whi | e (next_token==ast_code || next_token==slash_code) {
I exical (); /* get the next token fromthe input */
factor(); /* parse the next factor */
}
}

17

void factor () {

if (next_token == id_code) {
Il exical ();
return;
}
else if (next_token == |left_paren_code) {
lexical ();
expr();
if (next_token == right_paren_code) {
Il exical ();
return;
else error(); /*expecting right paranthesis*/
} Parsers of read compilers report a diagnostic message
when an error is detected, and recover from the error
el se so that the parsing process can continue.

error(); /*it was neither an id or a left paranthesis*/

} 18

Homework 5

Due: May 12th, 2000 Friday

1-) Answer the following Review Questions:
3.4, 3.5, 3.6, 3.7 (10 points each)

2-) Solve the following problems in the Problem Sets:
3.2, 3.3, 3.4, and 3.8 (15 points each)

19

