UNIX Systems Programming

Interprocess Communication
(Curry, chp.13)

Dr. Kivang Dinger
CENG-332 Lecture Notes
Spring 2000

Creating Pipeline Commands

e Once a pipe is created, there is very little
difference bw a pipe file descriptor and a

regular file descriptor.
% eqn report > outl
% tbl outl > out2
%troff out2 > out3 eqgn report | tbl | troff | psdit | Ip
% psdit out3 > out4
% | p out4d
% rmoutl out2 out3 out4

A filter is a program that will read from its
standard input and write to its standard
output.

— programs written in this way can be joined together
in pipelines by the shell.

Pipes

e Two processes can communicate with
each other by exchanging data

» Pipes is a special pair of file descriptors that,
rather than being connected to a file,

Is connected to another process.
— provides an interface bw two processes
— provides a unidirectional communications medium

Single Pipe Creation

#i ncl ude <stdio. h>

FI LE *fopen(const char *command, const char *type);

where type 1s r (open the file for reading) or w (for writing)
returns NULL if error occurs
— creates a new process and executes the command.

— creates a pipe to that process and connects it to process’stdin or
stdout.

— returns a file pointer to the calling process.

#i ncl ude <stdi o. h>
int *fclose(FILE *stream;

— closes the stream and frees up the buffers associated with it.

- also issues a call towai t pi d to wait for the child process to
terminate, then returns childs termination status to the caller.

See Example 13-1: popen is quite inefficient (it starts a copy of the shell,) system
calls and library routines are more efficient than using popen. 4

Advanced Pipe Creation

#i ncl ude <uni std. h>
int pipe(int fd[2]);

e returns O

e return -1 if failure and places the reason for failure in err no.

e creates two file descriptors:
— Td[O] is open for reading
— fd[1] is open for writing

— The two file descriptors are joined like a pipe, such that data
written to fd[1] can be read from fd[0].

= After creating a pipe, the calling process normally
calls fork to create a child process.

— The two processes can then communicate, in one direction,
using the pipe.

— A pipe is a half-duplex communications channel.

FIFOs (Named Pipes)

e Major limitation of pipes:
— they can only be used bw related processes

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
int nkfifo(const char *path, node t node);
The node argument contains a set of permission bits to set the FIFO
returns O or -1 and sets er r no if fails.
Opening a FIFO:

— default: O_NONBLOCK not specified: an open for
reading/writing only blocks until another process opens the
FIFO for writing/reading.

— O_NONBLOCK is specified: an open for reading returns
immediately, an open for writing returns an error if FIFO
has not been yet opened for reading.

See Example 13-4 & 13-5: a server and a client using FIFOs to communicete, server
prints any data it receives from the client.

Closing a Pipe

e If the write end of a pipe has been closed,

— any further reads from the pipe will return O, or end-of-
file.

e If the read end of a pipe has been closed,

— any attempt to write to the pipe will result in a SIGPIPE
signal being delivered to the process attempting the
write.

Each pipe has a buffer size, this size is defined by
the constant PI PE_BUF, inlimts. h.

— A write of this many bytes or less is guaranteed not to
be interleaved with the writes from other processes
writing the same pipe.

See Example 13-2: pipedate: we create a pipe and execute date ourselves.
See Example 13-3: pipemail: uses the pipe for the parent to send data to the child. 6

UN I X-Domain Sockets

vS. named pipes:

= similar in providing an address in the file system that
unrelated processes may use to communicate

e FIFOs are accessed just like any other file. UNIX-
domain sockets are implemented using the Berkeley
networking paradigm, usually called the socket
interface (create, destroy, transfer, .. functions)

IPC with sockets follow the Client-Server Model:

e The server is responsible for satisfying the requests
made of it by other processes, called clients.
— a server usually has a well-known address.

Creating a Socket

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
int socket(int dommin, int type, int protocol)

» domai n specifies the domain, or address family, in
which addresses should be interpreted.

— It imposes certain restrictions on the length of
addresses, and what they mean.

— AF_UNI Xdomain is used for UNIX-domain sockets.

* protocol specifies the protocol number that
should be used on the socket, usually the same as
address family.

— PF_UNI Xprotocol is used for UNIX-domain sockets.

Server-Side Functions: bind, listen, accept

1- Naming a socket

e A server process must provide a socket with a
name, so that client programs can access it.

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
int bind(int s, const struct sockaddr* nane, int addl en)

Note: address must not be already in use!

struct sockaddr_un {
short sun_famly; «—— always AF_UNI X
char sun_path[108]; <«—— system pathname of socket

Note: file should not already exist!

11

* type specifies the communications channels
supported by sockets:

— SOCK_STREAM(virtual circuit)
< a bi-directional continuous byte stream that guarantees the
reliable delivery of data in the order in which it was
sent.The circuit remains intact until the conversation is
complete.
— SOCK_DGRAM
« used to send distinct packets of info called datagrams. No
guarantees on order or delivery.
> returns a socket descriptor (a non-negative integer similar to
a fd) or -1 and errno.

Server-Side Functions: bind, listen, accept

2- Waiting for Connections

« Server must notify the O/S when it is ready to accept
connections from clients on that socket.

int listen(int s, int backlog)

backl og specifies the # of connection requests that may be
pending at any given time.

3- Accepting Connections

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
int socketpair(int domain, int type, int protocol,int sv[2])

int accept(int s, struct sockaddr *name, int *addrlen)

creates an unamed pair of sockets and placed their
descriptors in sd. Each socket is a bidirectional
communications channel.

returns O or -1 and errno. 10

e returns a new sd to communicate with the client.
— old sd continue to accept additional connections.

 When connection is accepted, if nane is not null,
O/S stores the address of the client there and
length in addr | en.

returns -1 and er r no if fails.

Client-Side: Connecting to a Server

int connect (int s, struct sockaddr *nanme, int addrlen)

e connects the socket refd by s to the server at
addr described by nane.

» addr | en specifies the length of addr in nane.
returns O or -1 and err no.

A client may use connect to connect to a datagram
socket to the server as well.
» Not necessary

« But it does enable the client to send datagrams on
the socket w/0 having to specify destination addr
for each datagram.

13

Transferring Data using

Datagram-Based Sockets
e client does not (generally)call connect

— There is no way for the O/S to determine
automatically where data on these sockets is to
be sent.

e server does not call listen or accept

The sender must tell the O/S each time where the
data is to be delivered, and the receiver must ask
where it came from.

int recvfrom(int s, char *buf, int Ten, int flags,
struct sockaddr *from int *from en)

int send(int s, const char *buf, int len, int flags,
struct sockaddr *to, int tolen)

returns # bytes actually received/sent or -1.

15

Client-Side: Transferring Data

1- simply useread and wri t e.
2- use send and r ecv

int recv(int s, char *buf, int len, int flags)
int send(int s, const char *buf, int len, int flags)

fl ag effect how the data is sent or received.

M5G_PEEK: 1T specified in a call tor ecv, the data is
copied into buf as usual, but it is not consumed.
Another call to r ecv will return the same data.

14

Destroying the
Communications Channel

1- Close a socket with the cl ose function

— if the socket refers to a stream-based socket, the
cl ose will block until all data has been transmitted.

2- Use shutdown function

|int shutdown(int s, int how

shuts down either or both sides of the communications channel

* howis O: shut down for reading, all further reads from the
socket return eof.

* howis 1: shut down for writing, all further writes to the
socket will fail.

* howis 2: shut down both sides

16

