
1

CS 202, Spring 2003
Fundamental Structures of Computer

Science 1

Introduction to C++ and
Algorithm Analysis

CS 202 – Fundamental Structures of
Computer Science

Bilkent University
Computer Engineering Department

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 2

Writing Programs

In order to make a computer to do some work, you first design an
algorithm.
It is not enough that your algorithm works and functionally
correct.

It should also practical in terms of run-time: For large input sizes,
it should complete in a reasoble amount of time.

There may be different algorithms that are solving the same
problem, but they require much different time and space during
run-time.
Therefore, an algorithm should be designed for

1) Operational correctness: It should solve the problem correctly.
2) Time efficiency: It should solve the problem as quickly as possible.
3) Space efficiency: It should requires reasonable amount of memory, disk
space (computer system resources).

There may be trade-offs in achieving the goals 2) and 3)

2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 3

Some Basic Mathematics Review

2
2

1
1

1
1
,1

1
1

122

0

00

0

1

1

0

∑

∑∑

∑

∑

=

==

=

+

+

=

=

−
=∞

−
≤

<<
−
−

=

−=

N

i
i

N

i

i
N

i

i

N

i

N
i

N
N

i

i

i
A

A
A

A

A
AA

 , to tends n as ;

then A 0 If

generally More

 otherwise. specified unless
 2 base the to are logarithms all science, computer In

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 4

Some Basic Mathematics Review

3
)12)(1(

2
)1(

3

0

2

2

0

NNNNi

NNNi

N

i

N

i

≈
++

=

≈
+

=

∑

∑

=

=

6

2

3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 5

C++ Classes

In this course, we will write many data
structures.
We will use C++ to define and manipulate
data structures.
In C++, classes are used to define data
structure and the operations (methods) that
manipulate them

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 6

Class syntax

A class consists of members
A member can be Data or Function.

The functions are called member functions.
Each instance of a class is an object.

Each object contains data components
The function of the class of the object are used to act
(operate) on the data components.

4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 7

Class syntax - example
/* A class for simulating an integer memory cell */

class IntCell
{

public:
IntCell()
{ storedValue = 0; }

IntCell(int initialValue)
{ storedValue = initialValue;}

int read() {
{ return storedValue; }

void write(int x)
{ storedValue = x;}

private:
int storedValue;

};

constructors

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 8

Class syntax

Private members are not visible outside of the class
(provides information hiding).

By use of private members the internal representation of data
can be changes without changing the interface, hence without
affecting other classes that make use of this class.

Public members are visible to all other classes.
Usually,

The data members are defined as private.
Member functions are defined as public.

A constructor is a method
that has the same name with the class, and
that describes how an instance of the class (objects) is
constructed.

That may be more than one constructors defined.

5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 9

Extra Constructor Syntax

/* A class for simulating an integer memory cell */

class IntCell
{

public:
explicit IntCell(int initialValue = 0)

: storedValue(initialValue) {}

int read() const {
{ return storedValue; }

void write(int x)
{ storedValue = x; }

private:
int storedValue;

};

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 10

Extra Constructor Syntax -
explanation

Here, we are defining one constructor function that can be called
either with or without parameter initialValue.

Thereby, we just define a single constructor as opposed to two
constructors in the initial example.
If we omit the parameter in the call to the constructor, then the
default value is used (which is 0 in this case).

: storedValue(initialValue) is the initialized list. Here we
have just one element in the list.

Sometimes it is mandatory to initialize data members of a class in the
initializer list;

If the data member is const (can not be changed after object
construction)
If the data member is of type some other class which has complex
initialization.
The data member is of type some other calss which has not zero-
parameter constructor.

6

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 11

Extra Constructor Syntax -
explanation

Explicit constructor
Is used for type checking at compile time.
All one parameter constructors should be defined explicit.

IntCell obj; /* onj is an object of class IntCell */
obj = 37; /* should not compile: type mismatch */

If there is not explicit, C++ compiler may convert the above code to the following
for one-parameter constructor:

IntCell obj;

IntCell temporary = 37;
obj = temporary;

Use of explicit make the compile to complain at the line: obj = 37;

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 12

Extra Constructor Syntax -
explanation

const keyword after the closing paranthesis
of a member function is used:

To define a member function that can examine but not
modify/change the state of its object.
These kind of member functions are called accessor.
Member functions that do change the state of its object
called mutators.

7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 13

Separation of Interface and
Implementation

It is sometimes useful the separate the definition of
the interface of a class from the implementation of
its members.

The interface remains same for a long time.
The function implementations can be modified more frequently.
The writers of other classes and modules have to only know the
interfaces of classes.

An interface lists the class and its members (data
and function signatures).
An implementation is coding of the member
functions.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 14

Separation of Interface and
Implementation

It is a good programming practice for large-
scale projects to put the interface and
implementation of classes in different files.

For small amount of coding it may not matter.

A file that contains the interface of a class
usually ends with .h (an include file)
A file that contains the implementation of a
class usually ends with .cpp (.cc or .C)

.c file includes the .h file with preprocessor command
#include.

Example: #include<myclass.h>

8

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 15

Separation of Interface and
Implementation

In a big project, there will be a lot files (may
be in the order of thousands), that may
including other files.

There is a danger that an include file (.h file) may be
read more than once during the compilation process.

It should be read once and only once to let the compiler
learn the definition of the classes.

To prevent a .h file to be read multiple times,
we use preprocessor commands #ifndef
and #define in the following way.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 16

Separation of Interface and
Implementation

#ifndef _IntCell_H_
#define _IntCell_H_

class IntCell
{

public:
explicit IntCell(int initialValue = 0)

: storedValue(initialValue) {}

int read() const;
void write(int x);

private:
int storedValue;

};
#endif

Interface in IntCell.h file

9

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 17

Separation of Interface and
Implementation

#include “IntCell.h”

explicit IntCell(int initialValue) : storedValue(initialValue) {}

int IntCell::read() const {
{

return storedValue;
}

void IntCell::write(int x)
{

storedValue = x;
}

Implementation in IntCell.cpp file

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 18

Separation of Interface and
Implementation

#include “IntCell.h”

int main()
{

IntCell m; /* or IntCell m(0); */
m.write (5);
cout << “Cell content : “ << m.read << endl;

return 0;
}

A program TestIntCell.cpp that uses IntCell class. We only include the
Interface of the class.

10

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 19

Object declaration

int main()
{

/* correct declarations */
IntCell m1;
IntCell m2 (12);

/* incorrect declarations */
Intcell m3 = 37; /* constructor was defined explicit:

meaning that when you declare an
object using this constructor you have
to call the constructor with parenthesis like
m3(37);

Intcell m4(); /* this is a function declaration, not object!*/}

Similar to primitive types.

CS 202, Spring 2003
Fundamental Structures of Computer

Science 20

Algorithm Analysis

11

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 21

What is an algorithm

Clearly specified set of simple instructions to
be followed to solve a problem.
Once you have a correct algorithm for a
problem, you have determine how much
resource (time and space) the algorithm will
require.
Now we will focus:

How to estimate the time required for an algorithm
(program)
How to reduce the time required

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 22

Mathematical Background

Analysis required to estimate the resource use of an
algorithm is generally a theoretical issue.

A formal framework is required.

Definitions:
DEFINITION: T(N) = O(f(N)) if there are positive constants c
and n0 such that T(N) <= cf(N) when N >= n0

DEFINITION: T(N) = Ω(g(N)) if there are positive constants c
and n0 such that T(N) >= cg(N) when N >= n0

DEFINITION: T(N) = θ(h(N)) if and only if T(N) = O(h(N))
and T(N) = Ω(h(N)).
DEFINITION: T(N) = o(p(N)) if T(N) = O(p(N)) and T(N) ≠
θ(h(N)).

12

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 23

The running time of an algorithm is expressed with
function T(N).

N is the input size.
The bound is given with f(N)
We say that T(N) is O(f(N)).

T(N) = O(f(N))
f(N) is an upper bound for the running time for sufficiently big N.

Examples:
T(N) = 1000N = O(N2) (correct)
T(N) = 1000N = O(N) (better)
T(N) = 1000N = θ(N) (tight bound

expression)

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 24

Rules

If T1(N) = O(f(N)) and T2(N) = O(g(N)), then
a) T1(N) + T2(N) = max(O(f(N)), O(g(N)))
b) T1(N) * T2(N) = O(f(N)) * O(g(N))

If T(N) is a polynomial of degree k then T(N)
= θ(Nk).
logkN = O(N) for any constant k.

13

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 25

Common Growth Rates

CubicN3

Exponential2N

QuadraticN2

N log N
LinearN
Log-squaredlog2N
Logarithmiclog N
ConstantC
Growth Rate NameFunction

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 26

Computation Model

Before analyzing an algorithm, it is important over
what kind of machine the algorithm will run
(computer, parallel machine, ….)
We will assume that the algorithms we will design
will be running on a computer
The computation model in this case is:

Computer has standard set of basic instructions (add,
mulyiply, …) and algorithms are using them to do a job.
All instructions take one unit of time.
No fancy basic instructions such sorting which require more
than one unit of time.
We assume infinite memory (since we want to focus on
running time).
We have fixed size integers (32 bit).

14

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 27

What to analyze

Given the computation model
Given the input size (N)
Compute for an algorithm (as part of algorithm
analysis)

Average running time for the algorithm for inputs of size N:
Tavg(N). (reflecst the typical behaviour of the algorithm)
Worst-case running time for the algorithm for inputs of size N:
Tworst(N) (reflects a guarantee on the performance)
Best case running time for the algorithm for inputs of size N:
Tbest(N)

Tbest(N), <Tavg(N), Tworstt(N)

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 28

What to analyze

Tavg(N) reflect the typical behavior of the algorith,
Tworst(N) reflects a guarantee for performance on any
possible input.

Generally we will be interested in computing (or
estimating) the worst case running time Tworst(N).

It is much difficult to compute the average running time.
Sometimes, the definition of average may also be nor very clear.

15

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 29

Running Time Calculations

Given a set of algorithms that solve a problem, we want to figure
which one is better.

We want to eliminate bad ones.
We want to find out the bottlenecks, so that we can be very careful in
coding these parts very efficiently.

There is no particular units of time in our calculations
We will throw away the following from the running time
estimations (bounds)

Leading constants: O(7N) O(N)
Low-order terms: O(N3 + N2) O(N3).

In big-Oh running estimation, overestimation is OK, but we
should never underestimate the running time.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 30

Example
int sum(int n)
{

int partialSum;

partialSum = 0;
for (int i = 1; i <=n; i++)

partialSum += i * i * i;
return partialSum;

}

no time

1 unit

1 unit
1 + (N+1) + N units
4 units

T(N) = 1 + 1 + (N+1) + N + N*(4) + 1 = 6N + 4 = 0(N)

So our running time estimate is O(N).

16

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 31

General Rules for estimation

For loops: The running time of for loops is at most
the running time of the statements inside for loop
times the number of iterations.
Nested Loops: Running time of nested loops
containing a statement in the inner most loop is the
running time of statement multiplied by the product
of the sized of all loops.
Consecutive Statements: Just add the running
times.
If/Else: never more than the running of the test plus
the larger of running times of S1 and S2.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 32

Recursion
long fib(int n)
{

if (n <= 1)
return 1;

else
return fib(n-1) + fib(n-2)

}

T (N) = T (N-1) + T(N-2) + 2
Solving this recurrence yields that T(N) grows exponentially.

17

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 33

Max Subsequence Problem

). through (
20 is answer the 2,- 5,- 13, 4,- 11, 2,- input For

:Example

 negative. are integers all if 0 is
 sum esubsequenc maximum the e,convenienc For

 of value maximum the find

 integers negative)(possibly Given

42

21

AA

A

,, ..., A, AA
j

ik
k

N

∑
=

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 34

Algorithm 1
int maxSubSum1(const vector<int> & a)
{

int maxSum = 0;

for (int i =0; i < a.size(); ++i) {
for (int j = i; j < a.size(); j++)
{

int thisSum = 0;

for (int k = i; k <=j; k++) {
thisSum += a[k];

}

if (thisSum > maxSum)
maxSum = thisSum;

}
return maxSum;

}

Buried inside
3 loops

18

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 35

Algorithm 1 - Analysis

Running time is O(N3) due to lines shown
previously (O(1)) that are bried inside 3 for
loops.

For loop has size of N
Second loop has size of N-I (max value of N)
Third loop has size of j-i+1 (max value of N)

Therefore, the upper bound is O(1 x N x N x N) =
O (N3).

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 36

Algorithm 1 – more precise analysis

)(
6

23

2
))(1(1

2
))(1(111

11

1

3

23

10

1

11

0

1

NNNN

iNiN

iNiNj

ij

sum

N

i

N

i

N

ij

j

ik

N

ij

N

ij

j

ik

j

ik

N

i

N

ij

j

ik

Θ=
++

=

−+−
=

−+−
=+−=

+−=

=

∑∑∑∑

∑∑∑

∑

∑∑∑

==

−

= =

−

=

−

= =

=

=

−

= =

19

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 37

Algorithm 2
int maxSubSum2(const vector<int> & as)
{

int maxSum = 0;

for (int i =0; i < a.size(); ++i) {
int thisSum = 0;
for (int j = i; j < a.size(); j++)
{

thisSum += a[j];

if (thisSum > maxSum)
maxSum = thisSum;

}
return maxSum;

}

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 38

Algorithm 2 - Analysis

We have 2 for loops.
The statements inside the second for loop
are executed O(N2) times and this is the
biggest contribution to the running time.
Therefore the running time is: O(N2)

There are two more algorithms in the book.
You should study them.

20

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 39

Algoritm 3
int maxSubSum3(const vector<int> & as)
{

int maxSum = 0; thisSum = 0;

for (int j =0; j < a.size(); ++j) {

thisSum += a[j];

if (thisSum > maxSum) {
maxSum = thisSum;

}
else if (thisSum < 0) {

thisSum = 0;
}
return maxSum;

}

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 40

Algorithm 3 - Analysis

We have one for loop.
The running time is O(N).

