Sorting - 3

CS 202 — Fundamental Structures of
Computer Science Il

Bilkent University
Computer Engineering Department

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

| MergeSort - Continued

template <class Comparable>
void mergeSort(vector<Comparable> & a)

{

vector<Comparable> tmpArray(a.size());

mergeSort(a, tmpArray, 0, a.size() - 1);

template <class Comparable>
void mergeSort(vector<Comparable> & a,
vector<Comparable> & tmpArray, int left, int right)

if(left < right)

int center = (left + right) / 2;

mergeSort(a, tmpArray, left, center);
mergeSort(a, tmpArray, center + 1, right);
merge(a, tmpArray, left, center + 1, right);

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

template <class Comparable>

void merge(vector<Comparable> & a, vector<Comparable> & tmpArray,
int leftPos, int rightPos, int rightEnd)

{

int leftEnd = rightPos - 1;
int tmpPos = leftPos;
int numElements = rightEnd - leftPos + 1;

// Main loop
while(leftPos <= leftEnd && rightPos <= rightEnd)
if(a[leftPos] <= a[rightPos])
tmpArray[tmpPos++] = a[leftPos++ 1;
else
tmpArray[tmpPos++] = a[rightPos++ 1;

while(leftPos <= leftEnd) // Copy rest of first half
tmpArray[tmpPos++] = a[leftPos++];

while(rightPos <= rightEnd) // Copy rest of right half
tmpArray[tmpPos++] = a[rightPos++];

// Copy tmpArray back
for(inti = 0; i < numElements; i++, rightEnd--)
a[rightEnd] = tmpArray[rightEnd];

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 3

Analysis of MergeSort

Mergesor() is a recursive routine

There ia general technique to analyze
recursive routines

First we need to write down a recurrence
relation that expresses the cost of procedure.
o T(N)=....

Assume the input size to the MergeSort, N, is
a power of 2.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 4

| Analysis of MergeSort

Lets compute the running time

= IfN =1

o The cost of mergesort is O(1). We will denote this
as 1in T(N) formula.

If (N> 1)

o The mergesort algorithm cosists of:

= Two mergesorts on input of N/2. Running time = T(N/2)

= A merge routing that is linear with respect to input size.
O(N).

Then: T(N) = 2T(N/2) + 1

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 5

| Analysis of MergeSort

= We need to solve this recurrence relation!

= One way is like the following:

o The idea is to expand each recursive part by
substitution.

m TIN)=2T(N/2)+1 (1)

m T(N/2) = 2T(N/4) + 1 (2)

= Substitude T(N/2) in formula (1)
o T(N)=2 (2 T(N/4) + 1) + N

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 6

| Analysis of MergeSort

= Continue doing this

o T(N)=2(2(2T(N/8)+N)+N)+N

= 23T(N/2%) + 3

In termination case we have T(1) = 1
For having T(1) = T(N/2¥), we should have k = logN
= logN
T(N) = 2KT(N/2%) + kN
T(N) = 209NT(N/2'°9N) + NlogN
T(N) = NT(1) + NlogN
T(N) = N +N logN

n
x U O

0O 0o 0O O

Fundamental Structures of Computer Science Il

CS 202, Spring 2003 Bilkent University
 QuickSort
= Fastest known sorting algorithm in practice.

o For in-memory sorting.

O(NlogN) average running time

O(N?) worst-case performance, which can be
very rare.

The inner loop in algorithms is very
optimized.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

'QuickSort - Algorithm

= Input: S — an array of elements of size N.

= Output: S —in sorted order.

1. If the number of elements in Sis 0 or 1, then
return.

2. Pick any element vin S. This is called the pivot
3. Partition S-{v} into two disjoint groups:
S,={xin S-{v} | x <=v}and
S,={xin S-{v} | x>=v}
4. Return {quicksort(S,)} followed by v followed by
{quicksort(S,)}

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 9

| Example

+ select pivot

lpartition
quicksort small v quicksort large
< ¥

0 13 26 31 43 57 65 75 81 92

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 10

= Partitioning can be performed over the same
array.

= After partition, the two parts may be equal
sized.

= Choosing the pivot value is important to have
o Both parts S, and S, to have close to equal sizes.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 11

 Picking the Pivot

= Wrong way:
o Choose the first element of array
= What is the array was sorted!
= A safe method
o Pick it up randomly among the elements of array
o Depends on the quality of random number generator
= A good method:
o Pick the median of three elements:
= First elements
= Last element
= Middle element (lowerbound((first+last)/2)

o Definition: Median of N elements is the lowerbound(N/2)" largest
element.

o Example: Median of {7, 3, 4} is 4.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 12

| Partitioning Strategy

= Requires O(N) running time.

1. First find the pivot.

2. Then swap the pivot with the last element

3. Then do the following operations on
elemente from first to last-1 (last contains
the pivot)
- Move all element smaller than pivot to the left of array
- Move all element greater than pivot to the right of array

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 13

| Partitioning Strategy

m For Step 3:
o Keep two index counters: i and j.
1. Initialize i to first and j to last-1.

2. While i is smaller or equal to j do
1. Move i towards right until array[i] > pivot
2. Move j towards left until array[i] < pivot.
3. Swap array[i] and array[j]

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 14

| Example

| 8

a8 0 =]

t]afololsfs[2]7]s]

8l1]4afofol3|s5[2]7][6] woved]
I N
][]

‘2‘1‘4‘9‘0‘3‘5‘8‘7‘2‘ Swapped

T Swapped
a8] [

Fundamental Structures of Computer Science Il

CS 202, Spring 2003 Bilkent University 15
2] lafefolsls]a]7]e] MEO
,\ and j
i
‘2‘1‘4‘5‘0‘3‘9‘8‘7‘6\‘ Swapped
i
(2]1]|4a]5|0]3]9]8]7]6] icrossedi
f N STOP

pivot

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 16

After swapping
9 ‘ pivot (last
\ element) with

array[i])

2|1falsfofsfefe]7]

Part 1 Part 2
21]alsfofs] [8]7]9]

. -

Ta &

call quicksort recursively on these parts

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 17

QuickSort Code

template <class Comparable>
void quicksort(vector<Comparable> & a)

quicksort(a, 0, a.size() -1);

b

template <class Comparable>
const Comparable &median3(vector<Comparable> & a, int left, int right)
{
int center = (left + right) / 2;
if(a[center] < a[left])
swap(a[left], a[center]);
if(al right] < a[left])
swap(a[left], a[right]);
if(a[right] < a[center])
swap(a[center], a[right]);

swap(a[center], a[right - 1]); // Place pivot at position right - 1
return a[right -1];

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 18

template <class Comparable>
void quicksort(vector<Comparable> & a, int left, int right)

{
J* 1%/ if(left + 10 <= right)

{
/* 2%/ Comparable pivot = median3(a, left, right);
// Begin partitioning
/* 3%/ inti = left, j = right-1;
/* 4%/ for(; ;)
{
/* 5%/ while(a[++i] < pivot) { }; // move i to right
/* 6%/ while(pivot <a[--j 1) { }; // movej to left
/* 7%/ if(i<j)
/* 8%/ swap(al[il, a[jl); //swap array[i] with array[j]
else
/* 9%/ break;
¥
/*10%*/ swap(a[i], a[right - 1]); // Restore pivot — put pivot at ith position
/*¥11%/ quicksort(a, left,i-1); // Sort small elements - recursive call
/*12%/ quicksort(a, i + 1, right); // Sort large elements
else // Do an insertion sort on the subarray if array size is smaller than 10
/*13%*/ insertionSort(a, left, right);
>

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 19

| Analysis of Quicksort

= It is a recursive algorithm like mergesort.
= We will again use recurrence relations

= We will analyze of 3 cases
o Worst case
o Best case
o Average case

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 20

10

| Analysis of Quicksort

= For N=1 or N=0
o T(N)=1
= For (N>1)

o Running time T(N) is equal to the running time of
the two recursive calls plus the linear time spent in
partitioning

a T(N) = T(i) + T(N-i-1)+cN,

where i is the number of elements in the first part S

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 21

Worst Case (i=0) Analysis

The pivot is the smallest element all the time.i=0
T(N=T(N—-1)+cN, N>1

T(N=1=T(N -2)+c(N-1)
T(N-2)=T(N-3)+c(N-2)

T(2)=T(1)+c(2)

Adding them all yields :
N

T(N)=T(1)+ cZi — O(N?)
i=2

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 22

11

‘ Best Case (i ~= array.size()/2)
Analysis

The pivot is inthe middle
T(N=2T'(N/2)+cN, N>1

similar to mergesort analysis

T(N)=cNlogN+ N =0O(NlogN)

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 23

| Average-Case Analysis

Each of the sizes of S1 is equallt likely.

The sizes are in range {0,...,N-1}

The probability of an array having one of these sizes
is: 1/N

Assuming partitioning strategy is random

o Otherwise analysis is not correct!

= The the average vaue of T(i) is like the following:
N-1
() :I/NZT(]‘) _T(N=i-1)
j=0
CS 202, Spring 2003 Fundamenta Sgwsé%;eljrﬁ{/g'zgpmer Setence | 24

12

| Average-Case Analysis

N-1
T(N) = 2% ZT(/) |+eN Equation 1
j=0
Multiply the above equation by N
N-1
NT(N)=2 ZT(j) +eN? Equation 2
j=0

Substitute N with N-1

N-2
(N-D)T(N-1)=2 Z T(j) |+e(N -1)> Equation 3
Jj=0
Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 25

| Average-Case Analysis
Subtract equation 3 from equation 2

NT(N)—(N =T (N —1)=2T(N —1)+2¢N —c
NT(N)=(N+1)T(N -1)+2cN (ignore c)

divide both sides with N(N +1)

T(N) _T(N-D) 2

N+1 N N+1
Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 26

13

| Average-Case Analysis

Now telescope (write down equtions depending on smaller N)

T(N-1) _T(N-2) 2

E2
N N -1 N
T — —
(N-2) _T(N-3) 2 _,
N -1 N-2 N -1
T
ﬁ = il) + E E4
3 2 3
Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 27

Average-Case Analysis

Add all these equations E1 through E4 and obtain:

™) T(1) %1
=——=+2c)
i=3

N+1 2

The sumis:
N+l

Zl —log, (N +1)+0.577 —%
i=3 !
Then

(N) _
Nl =O(log N)

So theresultis

T(N)=O(NlogN)

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 28

14

'External Sorting

= So far we have assumed that all the input
data can fit into main memory (RAM)

o This means random access to data is possible
and is not very costly.

= Algorithms such as shell-sort, and quick-sort
make random access to array elements.

= If data is in a hard-disk or in a tape (in a file)
random access is very costly.

m External sorting algorithms deal with these
cases and can sort very large input sizes.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 29

'External Sorting

= External sorting algorithms makes sequential
accesses to a storage device.
o Tape or hard-disk.
o In this way, the setup cost of retrieval is got rid of.

= Our model for external devices are (tapes)

o They will be read from and written to sequentially.
= In forward or reverse direction.

o We can rewind the head to the beginning of the
device (tape)

o Assume we have at least three tape drives.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 30

15

'The Simple Algorithm

= Uses the merge idea from mergesort.

= Assume data is stored in a tape.

= Assume we have 4 tapes available.

= We will read M items at a time from input tape.

= We will sort them in memory and write to one of
the output tapes. (set of M items will be called a
Run)

= We will continue doing this until we finish with the
input.
= Then we will go to the merge step.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

31

Algorithm Sketch

1 Constructing the runs
1, If tape 1 is not finished
1 Read M items (if available) from tape1
2 Sort them in memory
3. Write them to tape 3 (these M items is called one run)
2. If tape 1 is not finished
1 Read M items (if available) from tape 1
2 Sort them in memory
3 Write them to tape 4
3 Repeat steps 1 and 2 until tape 1 is finished.
2 Merging runs
1 Merge runs in tapes 3 and 4 into tape 1 and 2.
1 By taking one run from tape 3 and one run from tape 4.
2. Continue in this way
At the end of this we have runs of size 2*M in tape 1 and 2
2 Merge runs in tape 1 and 2 into tapes 3 and 4.
At the end of this we have runs of size 4*M in tape 3 and 4.
3 Repeat steps 1 and 3 until we have a single run of size N (input size)

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

32

16

|dea — constructing the

runs

1,2,3,4,5,6,7,8

Tape 3

input
7 |
Tape 3 Tape 4
Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 33
ldea — merging the runs
Pass 1 1 2
3 4
5 6
7 8
Tape3 Tape 4
Pass 2 -~ —
1,2 3,4
5,6 7,8
Tapg 1 Tape 2
Pass 3

Fundamental Structures of Computer Science Il

CS 202, Spring 2003 Bilkent University

34

17

| Example (M=3)

| T1 | |81]94|11]96| 12|35 17|99 |28]|58]41]75]15]
e P
P
P
After constructing the runs
PP
e]
13 | [11]81]eafaz 28 99 5] | | | | |
T4 | [12]ss]oc [AiEEYWES] | | | [| |

Fundamental Structures of Computer Science Il

CS 202, Spring 2003 Bilkent University 35
‘ After first pass
11 | [11]12]35]81]9alos|M8] | | | | | |
L T2 | [17]2sfar]s8[75]e0] | [| [| | |
L rrr
R .
After second pass
RN,
o
| T3 | |11|12]17 |28 35|51 |58 |75 |81 |94 96|99 |
T Jsl L[D [
CS 202, Spring 2003 Fundamenta S‘Br::;:;[;:elirﬁ{/g’zmpmer Setence | 36

After third pass

Tt | [11]12]15]17 28] 35[51 |58 |75]81]94|96]099|
e
P
cw
CS 202, Spring 2003 Fm e ket Univeray 57

| Polyphase Merge

= In the previous example, we have used 4
tapes.
o We did 2-way merge
o Itis possible to use 3 tapes in 2-way merge
= We can perform k-way merge similarly.
o We need 2k tapes for simple algorithm
o We need k+1 tapes for polyphase merge

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 38

19

| Polyphase merge

= The idea is to not put the runs evenly to output
tapes.
o Some tapes should have more runs than the others.

= For two way merge
o Have the number of runs in output tapes according to the
Fibonacci numbers
= Input =8 = output tape 1 = 3, output tape 2 =5
= Input =13 = output tape 1 =5, output tape 2 =8
= Input =21 = output tape 1 = 13, output tape 2 =8

o Add some dummy items to input if the size is not Fibonacci.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 39

'Assume N = 33 (input size)

/-\Rf:jenr After After After After After After After

Const. T3+T2 T1+2 T1+T3 T2+T3 T1+T3 T2+T3 T2+T3
T | o | 3] 5 | o | 3 | 1] o | 1
12 || 21| 8 | o | 5 | 2 | o | 1] o0
3 | 13 o | 8 | 3 [o | 2 | 1 | o

P
Run size
All run sizes are Fibonacci numbers.
Fundamental Structures of Computer Science Il

CS 202, Spring 2003 Bilkent University 40

20

| Replacement Selection

= A method for constructing the runs.

= Will produce variable sized runs.
o All runs do not have equal sizes

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 41

Example
| T1 | |81]94|11]96| 12|35 17|99 |28]|58]41]75]15]
Input tape
Read M elements BuildHeap

(119481 memory

~ deleteMin

e Jfef [P
Output tape
Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 42

21

| T1 | |81]94]11 |96 12]35]17 |99 |28|58]41|75]15]
Input tape

Read next element Yes,

Pt Ree

—— deleteMin

cre ffmfe| [L[L [L L]
Output tape
Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 43

| T1 | |81]94|11]96| 12|35 17|99 |28]|58]41]75]15]
Input tape
No,
Read next element Don't include in heap
s 12 > 81 1949612
) /deléteMiﬁ
NP0 O N O A O B R
Output tape

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 44

22

| T1 | |81]94]11 |96 12]35]17 |99 |28|58]41|75]15]

Input tape
No,
Read next element Don't include in heap
w635 2]
deleteMin
cm2 | mfetfeafes| | 0 [[| [| [|
Output tape
Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 45

| T1 | |81]94|11]96| 12|35 17|99 |28]|58]41]75]15]
Input tape
No,
Read next element Don't include in heap
Is 17 > 35 117 35] 12
We have empty heap.
" Mark end of run!
T2 | mfetieafesE[[| | [[| | |
Output tape

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 46

23

| T1 | |81]94]11 |96 12]35]17 |99 |28|58]41|75]15]
Input tape

Read next element BuildHeap

]

deleteMin

2 | et feafesle [[[[[[[[

Output tape

T N Y O Y O O R B
Output tape

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 47

| T1 | |81]94|11]96| 12|35 17|99 |28]|58]41]75]15]

Input tape

y!

Replacement Selection
Algorithms

U

T2 | [11]81|ea]es| E|15] E| |

| 713 | 12]17[28]35]41]58]99]
Output tape

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 48

