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MergeSort - Continued
template <class Comparable>
void mergeSort( vector<Comparable> & a )
{

vector<Comparable> tmpArray( a.size( ) );

mergeSort( a, tmpArray, 0, a.size( ) - 1 );
}

template <class Comparable>
void mergeSort( vector<Comparable> & a,

vector<Comparable> &  tmpArray, int left, int right )
{

if( left < right )
{

int center = ( left + right ) / 2;
mergeSort( a, tmpArray, left, center );
mergeSort( a, tmpArray, center + 1, right );
merge( a, tmpArray, left, center + 1, right );

}
}
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template <class Comparable>
void merge( vector<Comparable> & a, vector<Comparable> & tmpArray,

int leftPos, int rightPos, int rightEnd )
{

int leftEnd = rightPos - 1;
int tmpPos = leftPos;
int numElements = rightEnd - leftPos + 1;

// Main loop
while( leftPos <= leftEnd && rightPos <= rightEnd )

if( a[ leftPos ] <= a[ rightPos ] )
tmpArray[ tmpPos++ ] = a[ leftPos++ ];

else
tmpArray[ tmpPos++ ] = a[ rightPos++ ];

while( leftPos <= leftEnd )    // Copy rest of first half
tmpArray[ tmpPos++ ] = a[ leftPos++ ];

while( rightPos <= rightEnd )  // Copy rest of right half
tmpArray[ tmpPos++ ] = a[ rightPos++ ];

// Copy tmpArray back
for( int i = 0; i < numElements; i++, rightEnd-- )

a[ rightEnd ] = tmpArray[ rightEnd ];
}
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Analysis of MergeSort

Mergesor() is a recursive routine
There ia general technique to analyze 
recursive routines
First we need to write down a recurrence 
relation that expresses the cost of procedure. 

T(N) = ….
Assume the input size to the MergeSort, N, is 
a power of 2. 
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Analysis of MergeSort

Lets compute the running time
If N  = 1 

The cost of mergesort is O(1). We will denote this 
as 1 in T(N) formula.

If (N > 1) 
The mergesort algorithm cosists of: 

Two mergesorts on input of N/2. Running time = T(N/2)
A merge routing that is linear with respect to input size. 
O(N).  

Then: T(N) = 2T(N/2) + 1
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Analysis of MergeSort

We need to solve this recurrence relation!
One way is like the following: 

The idea is to expand each recursive part by 
substitution. 

T(N) = 2 T(N/2) + 1  (1) 
T(N/2) = 2T(N/4) + 1 (2) 
Substitude T(N/2) in formula (1)

T(N) = 2 (2 T(N/4) + 1) + N        
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Continue doing this
T (N) = 2 ( 2 ( 2 T(N/8) + N) + N) + N

= 23T(N/23) + 3
In termination case we have T(1) = 1
For having T(1) = T(N/2k), we should have k = logN

k = logN
T(N) = 2kT(N/2k) + kN
T(N) = 2logNT(N/2logN) + NlogN
T(N) = NT(1) + NlogN
T(N) = N +N logN

Analysis of MergeSort
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QuickSort

Fastest known sorting algorithm in practice.
For in-memory sorting.  

O(NlogN) average running time
O(N2) worst-case performance, which can be 
very rare. 
The inner loop in algorithms is very 
optimized. 
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QuickSort - Algorithm

Input: S – an array of elements of size N. 
Output: S – in sorted order. 

1. If the number of elements in S is 0 or 1, then 
return. 

2. Pick any element v in S. This is called the pivot
3. Partition S-{v} into two disjoint groups:

S1 = {x in S-{v} | x <= v} and 
S2 = {x in S-{v} | x >= v} 

4. Return {quicksort(S1)} followed by v followed by 
{quicksort(S2)}
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Example 13

81 92
43

31 57

26 75
0

65

13

81 92
43

31 57

26 75
0

65

13
0

26
43

31
57 92 75

81

0 13 26 31 43 57

75 81 920 13 26 31 43 57 65

65

65 75 81 92

select pivot

partition

quicksort small quicksort large
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Partitioning can be performed over the same
array. 
After partition, the two parts may be equal 
sized. 
Choosing the pivot value is important to have

Both parts S1 and S2 to have close to equal sizes. 
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Picking the Pivot

Wrong way: 
Choose the first element of array

What is the array was sorted!
A safe method

Pick it up randomly among the elements of array
Depends on the quality of random number generator

A good method: 
Pick the median of three elements: 

First elements
Last element
Middle element (lowerbound((first+last)/2)

Definition: Median of N elements is the lowerbound(N/2)th largest 
element. 
Example: Median of {7, 3, 4} is 4. 



7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 13

Partitioning Strategy

Requires O(N) running time. 
1. First find the pivot. 
2. Then swap the pivot with the last element
3. Then do the following operations on 

elemente from first to last-1 (last contains 
the pivot)
- Move all element smaller than pivot to the left of array
- Move all element greater than pivot to the right of array
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Partitioning Strategy

For Step 3: 
Keep two index counters: i and j.

1. Initialize i to first and j to last-1. 
2. While i is smaller or equal to j do

1. Move i towards right until array[i] > pivot
2. Move j towards left until array[i] < pivot. 
3. Swap array[i] and array[j]
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Example

8 1 4 9 0 3 5 2 7 6

i j

8 1 4 9 0 3 5 2 7 6

i j

2 1 4 9 0 3 5 8 7 6

i j

Moved j

Swapped
Swapped

pivot

pivot

pivot
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2 1 4 9 0 3 5 8 7 6

i j

Moved iI
and j

2 1 4 5 0 3 9 8 7 6

i j

Swapped

2 1 4 5 0 3 9 8 7 6

ij

i crossed j
STOP 

pivot

pivot

pivot
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2 1 4 5 0 3 6 8 7 9

i

After swapping 
pivot (last 

element) with 
array[i])pivot

2 1 4 5 0 3 8 7 9

Part 1 Part 2

call quicksort recursively on these parts 
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QuickSort Code
template <class Comparable>

void quicksort( vector<Comparable> & a )
{    
quicksort( a, 0, a.size( ) - 1 );

}

template <class Comparable>
const Comparable &median3( vector<Comparable> & a, int left, int right )
{

int center = ( left + right ) / 2;
if( a[ center ] < a[ left ] )

swap( a[ left ], a[ center ] );
if( a[ right ] < a[ left ] )

swap( a[ left ], a[ right ] );
if( a[ right ] < a[ center ] )

swap( a[ center ], a[ right ] );

swap( a[ center ], a[ right - 1 ] ); // Place pivot at position right - 1
return a[ right - 1 ];

}
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template <class Comparable>
void quicksort( vector<Comparable> & a, int left, int right )
{

/* 1*/   if( left + 10 <= right )
{

/* 2*/          Comparable pivot = median3( a, left, right );
// Begin partitioning

/* 3*/          int i = left, j = right - 1;
/* 4*/          for( ; ; )

{
/* 5*/              while( a[ ++i ] < pivot ) { }; // move i to right
/* 6*/              while( pivot < a[ --j ] ) { };   // move j to left
/* 7*/              if( i < j )
/* 8*/                  swap( a[ i ], a[ j ] );   // swap array[i] with array[j]

else
/* 9*/                  break;

}

/*10*/          swap( a[ i ], a[ right - 1 ] );  // Restore pivot – put pivot at ith position

/*11*/          quicksort( a, left, i - 1 );       // Sort small elements – recursive call
/*12*/          quicksort( a, i + 1, right );    // Sort large elements

}
else  // Do an insertion sort on the subarray if array size  is smaller than 10 

/*13*/          insertionSort( a, left, right );
}
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Analysis of Quicksort

It is a recursive algorithm like mergesort. 
We will again use recurrence relations
We will analyze of 3 cases

Worst case
Best case
Average case
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Analysis of Quicksort

For N=1 or N=0
T(N) = 1

For (N>1)
Running time T(N) is equal to the running time of 
the two recursive calls plus the linear time spent in 
partitioning
T(N) = T(i) + T(N-i-1)+cN,
where i is the number of elements in the first part S1
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Worst Case (i=0) Analysis
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Best Case (i ~= array.size()/2) 
Analysis
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Average-Case Analysis

Each of the sizes of S1 is equallt likely. 
The sizes are in range {0,…,N-1}
The probability of an array having one of these sizes 
is: 1/N
Assuming partitioning strategy is random

Otherwise analysis is not correct!

The the average vaue of T(i) is like the following: 
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External Sorting

So far we have assumed that all the input 
data can fit into main memory (RAM)

This means random access to data is possible 
and is not very costly. 

Algorithms such as shell-sort,  and quick-sort
make random access to array elements. 
If data is in a hard-disk or in a tape (in a file) 
random access is very costly. 
External sorting algorithms deal with these 
cases and can sort very large input sizes. 
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External Sorting

External sorting algorithms  makes sequential 
accesses to a storage device. 

Tape or hard-disk. 
In this way, the setup cost of retrieval is got rid of. 

Our model for external devices are (tapes)
They will be read from and written to sequentially.

In forward or reverse direction. 
We can rewind the head to the beginning of the 
device (tape) 
Assume we have at least three tape drives.
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The Simple Algorithm

Uses the merge idea from mergesort. 
Assume data is stored in a tape. 
Assume we have 4 tapes available. 
We will read M items at a time from input tape. 
We will sort them in memory and write to one of 
the output tapes. (set of M items will be called a 
Run)
We will continue doing this until we finish with the 
input. 
Then we will go to the merge step. 
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Algorithm Sketch
1. Constructing the runs

1. If tape 1 is not finished
1. Read M items (if available) from tape1
2. Sort them in memory
3. Write them to tape 3   (these M items is called one run)

2. If tape 1   is not finished
1. Read M items (if available) from tape 1
2. Sort them in memory
3. Write them to tape 4

3. Repeat steps 1 and 2 until tape 1 is finished.
2. Merging runs

1. Merge runs in tapes 3 and 4 into tape 1 and 2. 
1. By taking one run from tape 3 and one run from tape 4. 
2. Continue in this way

At the end of this we have runs of size 2*M in tape 1 and 2 
2. Merge runs in tape 1  and 2 into tapes 3 and 4.

At the end of this we have runs of size 4*M in tape 3 and 4. 
3. Repeat steps 1 and 3 until we have a single run of size N (input size)
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Idea – constructing the runs

1 2 3 4 5 6

1 2
3
5

3
4

x

7 8

7 5

input

Memory

Tape 3 Tape 4

Tape 1
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Idea – merging the runs
1 2
3
5

4
6

7 8

1,2 3,4
5,6 7,8

1,2,3,4,5,6,7,8

Tape 3 Tape 4

Tape 1 Tape 2

Tape 3

Pass 1

Pass 2

Pass 3
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Example (M=3)
81 94 11 96 12 35 17 99 28 58 41 75 15T1

T2

T3

T4

T1

T2

11T3

12T4

81

35

94

96

17

41

28

58

99

75

15

After constructing the runs
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T1

17T2

T3

T4

28 41 58 75 99

11 12 35 81 94 96 15

T1

T2

T3

T4 15

11 12 17 28 35 51 58 75 81 94 96 99

After first pass

After second pass
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T1

T2

T3

T4

11 12 17 28 35 51 58 75 81 94 96 9915

After third pass
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Polyphase Merge

In the previous example, we have used 4 
tapes. 

We did 2-way merge
It is possible to use 3 tapes in 2-way merge

We can perform k-way merge similarly.
We need 2k tapes for simple algorithm
We need k+1 tapes for polyphase merge
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Polyphase merge

The idea is to not put the runs evenly to output 
tapes. 

Some tapes should have more runs than the others. 

For two way merge
Have the number of runs in output tapes according to the 
Fibonacci numbers

Input = 8 output tape 1 = 3, output tape 2 = 5
Input = 13 output tape 1 = 5, output tape 2 = 8
Input = 21 output tape 1 = 13, output tape 2 = 8
…..

Add some dummy items to input if the size is not Fibonacci. 
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Assume N = 33 (input size)

T1

T2

T3

0 13 5 0 3 1 0 1

21 8 0 5 2 0 1 0

13 0 8 3 0 2 1 0

After
Run

Const.

After
T3+T2

After
T1+t2

After
T1+T3

After
T2+T3

After 
T1+T3

After 
T2+T3

After 
T2+T3

All run sizes are Fibonacci numbers. 

Run size
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Replacement Selection

A method for constructing the runs.
Will produce variable sized runs. 

All runs do not have equal sizes 
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Example
81 94 11 96 12 35 17 99 28 58 41 75 15T1

81 94 11 11 94 81
Read M elements BuildHeap

T2 11

deleteMin

Input tape

Output tape

memory
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81 94 11 96 12 35 17 99 28 58 41 75 15T1

96
Read next element

Input tape

Is 96 > 11

Yes,  
put it into heap

81 94 96

T2 11 81

deleteMin

Output tape
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81 94 11 96 12 35 17 99 28 58 41 75 15T1

12
Read next element

Input tape

Is 12 > 81

No,  
Don’t include in heap

94 96 12

T2 11 81 94

deleteMin

Output tape
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81 94 11 96 12 35 17 99 28 58 41 75 15T1

35
Read next element

Input tape

Is 35 > 94

No,  
Don’t include in heap

96 35 12

T2 11 81 94 96

deleteMin

Output tape
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81 94 11 96 12 35 17 99 28 58 41 75 15T1

17
Read next element

Input tape

Is 17 > 35

No,  
Don’t include in heap

17 35 12

T2 11 81 94 96 E

Output tape

We have empty heap.
Mark end of run!
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81 94 11 96 12 35 17 99 28 58 41 75 15T1

Read next element

Input tape

BuildHeap
12 35 17

T2 11 81 94 96 E
Output tape

deleteMin

T3 12
Output tape
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81 94 11 96 12 35 17 99 28 58 41 75 15T1

Input tape

T2 11 81 94 96 E 15 E

Replacement Selection
Algorithms

T3 12
Output tape

17 28 35 41 58 99


