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Motivation

We will now see how several problems in 
Graph Theory can be modeled and solved 
using Graph algorithms
Many real life problems can be modeled with 
graphs
We will give algorithms that solve some 
common graph problems
We will see how choice of data structures is 
important in increasing the performance of 
algorithms
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Example
1

4

2

53

6 7

Directed Graph G

G = (V,E)
V = {1,2,3,4,5,6,7}
E = {(1,2),(1,4),(1,3),(2,4),(2,5),(3,6),(4,3),(4,6),(4,7),(5,4),(5,7),(7,6)
3 is adjacent to 1, but 1 is not adjacent to 3. 
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Representation of Graphs

We will consider representation of directed 
graphs. Undirected graphs are similarly 
represented. 
Support we number the vertices, starting 
from one. 
There are two methods

1. Adjacency matrix representation
2. Adjacency list representation
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Some Common Graph Problems and 
Algorithms

Topological Sort
Shortest-Path Algorithms
Network Flow Problems
Minimum Spanning Tree
Depth First Search and Applications
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Representation of Graphs

We will represent the graph above as an example.  

1

4
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Adjacency Matrix Representation

Use a two-dimensional array A. 
For each edge (u,v), set A[u][v] to true, otherwise to 
false. 
If the edge has a weight (cost) associated with it 
than we set the A[u][v]  equal to the weight. 

Use a very large or very small weight as a sentinel to 
indicate nonexistent edges.  

Space requirement O(|V|2)
Good if the graph is dense. 
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Adjacency Matrix Representation

01000007

00000006

10010005

11001004

01000003

00110002

00011101

7654321
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Adjacency List Representation

For each vertex, keep a list of all adjacent 
vertices.
Space requirement is O(|E| + |V|)

Linear in the size of the graph. 
Standard way to represent graphs
Undirected graphs can be similarly 
represented; each edge (u,v) appears in two 
lists.   

Space usage doubles. 
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Adjacency List Representation

2 4 3

4 5

6

6 7 3

4 7
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Some Common Graph Problems and 
Algorithms

Topological Sort
Shortest-Path Algorithms
Network Flow Problems
Minimum Spanning Tree
Depth First Search and Applications
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Topological Sort

A topological sort is an ordering of vertices in 
a directed acyclic graph, such that if there is 
a path from vi to vj, then vj appears after vi in 
ordering. 

A topological ordering is not possible if the graph 
contains cycles, since for two vertices v and w on 
a cycle, v precedes w and w precedes v. 

Ordering is not necessarily unique.
v1, v2, v5, v4, v3, v7, v6    (one ordering)
v1, v2, v5, v4, v7, v3, v6 (an other ordering)
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Topological Ordering
1

4

2

53

6 7

1 2 5 4 3 7 6

1 2 5 4 7 3 6

A topological ordering

An other topological ordering
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Topological Sort Algorithm Sketch 

1. Find a vertex, v, with no incoming edges. 
2. Print this vertex v; and  remove it, along 
with all its edges, from the graph.
3. Repeat steps 1 and 2 until graph is empty.  
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Topological Sort Algorithm - Formally

Definition: 
Indegree of a vertex v is the number of edges in 
the form (u,v). 

Algorithm: 
Compute the indegrees of all vertices in the 
graph. 
Read the graph into an adjacency list. 
Apply the algorithm in the previous slide.  
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Topological Sort Algorithm - Formally

Running time = O(|V|2)

void 
Graph::topsort()
{

Vertex v;     // vertex, v, that has indegree equal to 0 
Vertex w;    // vertex adjacent to v
int counter; // keeps the topological order number: 0,1,2,….

for (counter = 0; counter < NUM_VERTICES; counter++)
{

v = findNewVertexOfDegreeZero();     // O(N) 
if (v == NOT_A_VERTEX)

throw CycleFound();
v.topNum = counter; // index in topological order 
for each w adhacent to v       

w.indegree--;
}

}
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More efficient algorithm

Keep the vertices which have indegree equal to zero 
in a separate box (stack or queue).

1. Start with an empty box.  
2. Scan all the vertices in the graph
3. Put vertices that have indegree equal to zero into the 
box. 
4. While the box (queue) is not empty

4.1. Remove head of queue: vertex v. 
4.2. Print v
4.3. Decrease the indegrees of all the vertices adjacent to v by 
one. 
4.4. Go to step 4. 
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v1

v2

v3

v4

v5

v6

v7

0
1
2
3
1
3
2

Indegrees

….

v1

….

After
Enqueue

After
Dequeue Print

v1

1
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v1

v2

v3

v4

v5

v6

v7

0
0
1
2
1
3
2

Updated Indegrees

….

v2

….

After
Enqueue

After
Dequeue Print

v2

1 2
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v1

v2

v3

v4

v5

v6

v7

0
0
1
1
0
3
2

Updated Indegrees

….

v5

….

After
Enqueue

After
Dequeue Print

v5

1 2
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v1

v2

v3

v4

v5

v6

v7

0
0
1
0
0
3
1

Updated Indegrees

….

v4

….

After
Enqueue

After
Dequeue Print

v4

1 2

54
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v1

v2

v3

v4

v5

v6

v7

0
0
0
0
0
2
0

Updated Indegrees

v7

….

v3

v7

….

After
Enqueue

After
Dequeue Print

v3

1 2

543
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v1

v2

v3

v4

v5

v6

v7

0
0
0
0
0
1
0

Updated Indegrees

….

v7

….

After
Enqueue

After
Dequeue Print

v3

1 2

543

7
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1

4

2

53

6 7

v1

v2

v3

v4

v5

v6

v7

0
0
0
0
0
0
0

Updated Indegrees

….

v6

….

After
Enqueue

After
Dequeue Print

v6

1 2

543

76

Finished! Result: 1,2,5,4,3,7,6
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void Graph::topsort()
{

Queue q(NUM_VERTICES); 
int counter = 0; //topological order of a vertex:1,2,3,…,NUM_VERTICES
Vertex v, w; 

q.makeEmpty(); 
for each vertex v

if (v.indegree == 0)
q.enqueue(v):

while (!q.isEmpty())
{

v = q.dequeue(); 
v.topNum = ++counter; 

for each w adjacent to v 
if (--w.indegree ==0)

q.enqueue(w); 
}
if (counter != NUM_VERTICES)

throw CycleFound(); 
}

Pseudocode
of Efficient 

Topological Sort
Algorithm


