
1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 1

Graph Algorithms

CS 202 – Fundamental Structures of
Computer Science II

Bilkent University
Computer Engineering Department

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 2

Motivation

We will now see how several problems in
Graph Theory can be modeled and solved
using Graph algorithms
Many real life problems can be modeled with
graphs
We will give algorithms that solve some
common graph problems
We will see how choice of data structures is
important in increasing the performance of
algorithms

2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 3

Definitions

 . or
 called is whichcomponent third a havemay edge An

 w.to adjascent is v and v, to adjascent isw
 ,v)(w, hence and w),(v, edge withgraph undirected an In

E. w)(v, ifonly and if v to isVertex w

 graph. is it otherwise
 , is graph the then ordered, is pair the If

 as called also are Edges

E. w u, wherew),(u, a is edge Each

 E. , of set a and
 V,, of set a of consists E)(V, G A

costweight

adjascent

dunidirecte
(digraph) directed

arcs

pair

edges
verticesgraph

∈

∈

=

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 4

Example
1

4

2

53

6 7

Directed Graph G

G = (V,E)
V = {1,2,3,4,5,6,7}
E = {(1,2),(1,4),(1,3),(2,4),(2,5),(3,6),(4,3),(4,6),(4,7),(5,4),(5,7),(7,6)
3 is adjacent to 1, but 1 is not adjacent to 3.

3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 5

Definitions

 same. the be couldvertex last and first the that except
 distinct, are vertices all that path a is A

 . a contains graph the thatsay we
 then itself, to vvertex a from path a contains graph If

0. is length path the than edges, no contains
 path this If itself. to vertes a from path a be can There

 1.-N to equal is whichpath, the
 on edges of number the is path a such of The

N. i 1 for E) w,(w that such
 , w..., , w, wvertices of sequence a is graph a in A

1ii
N21

path simple

loop

length

path
<≤∈+

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 6

 vertices. of pairevery between edge
 an is there whichin graph a is A

 . be to said is graph the then
 connected, is)directions (without graph underlying

the but connected,strongly not is graph directed a If

 . is
 it that said is it then directed, is graph a such If

 vertex. otherevery to vertextevery
 from path a is there if is graph undirected An

 .as referred also is
graps a Such cycles. no has it if is graph directedA

 distinct. are edges the
 that requires wegraphs, undirected For . w wthat

such 1 least at path a is graph directed a in A
N 1

graph complete

connected weakly

connected strongly

connected

DAG
acylic

cycle
=

4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 7

Representation of Graphs

We will consider representation of directed
graphs. Undirected graphs are similarly
represented.
Support we number the vertices, starting
from one.
There are two methods

1. Adjacency matrix representation
2. Adjacency list representation

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 8

Some Common Graph Problems and
Algorithms

Topological Sort
Shortest-Path Algorithms
Network Flow Problems
Minimum Spanning Tree
Depth First Search and Applications

5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 9

Representation of Graphs

We will represent the graph above as an example.

1

4

2

53

6 7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 10

Adjacency Matrix Representation

Use a two-dimensional array A.
For each edge (u,v), set A[u][v] to true, otherwise to
false.
If the edge has a weight (cost) associated with it
than we set the A[u][v] equal to the weight.

Use a very large or very small weight as a sentinel to
indicate nonexistent edges.

Space requirement O(|V|2)
Good if the graph is dense.

6

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 11

Adjacency Matrix Representation

01000007

00000006

10010005

11001004

01000003

00110002

00011101

7654321

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 12

Adjacency List Representation

For each vertex, keep a list of all adjacent
vertices.
Space requirement is O(|E| + |V|)

Linear in the size of the graph.
Standard way to represent graphs
Undirected graphs can be similarly
represented; each edge (u,v) appears in two
lists.

Space usage doubles.

7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 13

Adjacency List Representation

2 4 3

4 5

6

6 7 3

4 7

6

1

2

3

4

5

6

7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 14

Some Common Graph Problems and
Algorithms

Topological Sort
Shortest-Path Algorithms
Network Flow Problems
Minimum Spanning Tree
Depth First Search and Applications

8

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 15

Topological Sort

A topological sort is an ordering of vertices in
a directed acyclic graph, such that if there is
a path from vi to vj, then vj appears after vi in
ordering.

A topological ordering is not possible if the graph
contains cycles, since for two vertices v and w on
a cycle, v precedes w and w precedes v.

Ordering is not necessarily unique.
v1, v2, v5, v4, v3, v7, v6 (one ordering)
v1, v2, v5, v4, v7, v3, v6 (an other ordering)

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 16

Topological Ordering
1

4

2

53

6 7

1 2 5 4 3 7 6

1 2 5 4 7 3 6

A topological ordering

An other topological ordering

9

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 17

Topological Sort Algorithm Sketch

1. Find a vertex, v, with no incoming edges.
2. Print this vertex v; and remove it, along
with all its edges, from the graph.
3. Repeat steps 1 and 2 until graph is empty.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 18

Topological Sort Algorithm - Formally

Definition:
Indegree of a vertex v is the number of edges in
the form (u,v).

Algorithm:
Compute the indegrees of all vertices in the
graph.
Read the graph into an adjacency list.
Apply the algorithm in the previous slide.

10

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 19

Topological Sort Algorithm - Formally

Running time = O(|V|2)

void
Graph::topsort()
{

Vertex v; // vertex, v, that has indegree equal to 0
Vertex w; // vertex adjacent to v
int counter; // keeps the topological order number: 0,1,2,….

for (counter = 0; counter < NUM_VERTICES; counter++)
{

v = findNewVertexOfDegreeZero(); // O(N)
if (v == NOT_A_VERTEX)

throw CycleFound();
v.topNum = counter; // index in topological order
for each w adhacent to v

w.indegree--;
}

}

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 20

More efficient algorithm

Keep the vertices which have indegree equal to zero
in a separate box (stack or queue).

1. Start with an empty box.
2. Scan all the vertices in the graph
3. Put vertices that have indegree equal to zero into the
box.
4. While the box (queue) is not empty

4.1. Remove head of queue: vertex v.
4.2. Print v
4.3. Decrease the indegrees of all the vertices adjacent to v by
one.
4.4. Go to step 4.

11

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 21

1

4

2

53

6 7

v1

v2

v3

v4

v5

v6

v7

0
1
2
3
1
3
2

Indegrees

….

v1

….

After
Enqueue

After
Dequeue Print

v1

1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 22

1

4

2

53

6 7

v1

v2

v3

v4

v5

v6

v7

0
0
1
2
1
3
2

Updated Indegrees

….

v2

….

After
Enqueue

After
Dequeue Print

v2

1 2

12

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 23

1

4

2

53

6 7

v1

v2

v3

v4

v5

v6

v7

0
0
1
1
0
3
2

Updated Indegrees

….

v5

….

After
Enqueue

After
Dequeue Print

v5

1 2

5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 24

1

4

2

53

6 7

v1

v2

v3

v4

v5

v6

v7

0
0
1
0
0
3
1

Updated Indegrees

….

v4

….

After
Enqueue

After
Dequeue Print

v4

1 2

54

13

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 25

1

4

2

53

6 7

v1

v2

v3

v4

v5

v6

v7

0
0
0
0
0
2
0

Updated Indegrees

v7

….

v3

v7

….

After
Enqueue

After
Dequeue Print

v3

1 2

543

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 26

1

4

2

53

6 7

v1

v2

v3

v4

v5

v6

v7

0
0
0
0
0
1
0

Updated Indegrees

….

v7

….

After
Enqueue

After
Dequeue Print

v3

1 2

543

7

14

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 27

1

4

2

53

6 7

v1

v2

v3

v4

v5

v6

v7

0
0
0
0
0
0
0

Updated Indegrees

….

v6

….

After
Enqueue

After
Dequeue Print

v6

1 2

543

76

Finished! Result: 1,2,5,4,3,7,6

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 28

void Graph::topsort()
{

Queue q(NUM_VERTICES);
int counter = 0; //topological order of a vertex:1,2,3,…,NUM_VERTICES
Vertex v, w;

q.makeEmpty();
for each vertex v

if (v.indegree == 0)
q.enqueue(v):

while (!q.isEmpty())
{

v = q.dequeue();
v.topNum = ++counter;

for each w adjacent to v
if (--w.indegree ==0)

q.enqueue(w);
}
if (counter != NUM_VERTICES)

throw CycleFound();
}

Pseudocode
of Efficient

Topological Sort
Algorithm

