Graph Algorithms

CS 202 - Fundamental Structures of Computer Science II
Bilkent University
Computer Engineering Department

Motivation

- We will now see how several problems in Graph Theory can be modeled and solved using Graph algorithms
- Many real life problems can be modeled with graphs
- We will give algorithms that solve some common graph problems
- We will see how choice of data structures is important in increasing the performance of algorithms

Definitions

A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consists of a set of vertices, V , and a set of edges, E .

Each edge is a pair (u, w), where $u, w \in E$.
Edges are also called as arcs
If the pair is ordered, then the graph is directed (digraph), otherwise it is unidirected graph.

Vertex w is adjascent to v if and only if $(v, w) \in E$.
In an undirected graph with edge (v, w), and hence (w, v), w is adjascent to v , and v is adjascent to w .

An edge may have a third component which is called weight or cost.

Example

$$
\begin{aligned}
& \mathrm{G}=(\mathrm{V}, \mathrm{E}) \\
& \mathrm{V}=\{1,2,3,4,5,6,7\} \\
& \mathrm{E}=\{(1,2),(1,4),(1,3),(2,4),(2,5),(3,6),(4,3),(4,6),(4,7),(5,4),(5,7),(7,6) \\
& 3 \text { is adjacent to } 1, \text { but } 1 \text { is not adjacent to } 3 .
\end{aligned}
$$

Definitions

A path in a graph is a sequence of vertices $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{N}}$, such that $\left(w_{i}, w_{i+1}\right) \in E$ for $1 \leq i<N$.

The length of such a path is the number of edges on the path, which is equal to $\mathrm{N}-1$.

There can be a path from a vertes to itself. If this path contains no edges, than the path length is 0 .

If graph contains a path from a vertex v to itself, then we say that the graph contains a loop.

A simple path is a path that all vertices are distinct, except that the first and last vertex could be the same.
CS 202, Spring $2003 \quad$ Fundamental Structures of Computer Science II

A cycle in a directed graph is a path at least 1 such that $w_{1}=w_{N}$. For undirected graphs, we requires that the edges are distinct.

A directed graph is acylic if it has no cycles. Such a graps is also referred as DAG.

An undirected graph is connected if there is a path from every vertext to every other vertex.

If such a graph is directed, then it is said that it is strongly connected.

If a directed graph is not strongly connected, but the underlying graph (without directions) is connected, then the graph is said to be weakly connected.

A complete graph is a graph in which there is an edge between every pair of vertices.

Representation of Graphs

- We will consider representation of directed graphs. Undirected graphs are similarly represented.
- Support we number the vertices, starting from one.
- There are two methods

1. Adjacency matrix representation
2. Adjacency list representation

Some Common Graph Problems and Algorithms

- Topological Sort
- Shortest-Path Algorithms
- Network Flow Problems
- Minimum Spanning Tree
- Depth First Search and Applications

Representation of Graphs

- We will represent the graph above as an example.

Adjacency Matrix Representation

- Use a two-dimensional array A.
- For each edge (u, v), set $A[u][v]$ to true, otherwise to false.
- If the edge has a weight (cost) associated with it than we set the $A[u][v]$ equal to the weight.
- Use a very large or very small weight as a sentinel to indicate nonexistent edges.
- Space requirement $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- Good if the graph is dense.

Adjacency Matrix Representation

	1	2	3	4	5	6	7
1	0	1	1	1	0	0	0
2	0	0	0	1	1	0	0
3	0	0	0	0	0	1	0
4	0	0	1	0	0	1	1
5	0	0	0	1	0	0	1
6	0	0	0	0	0	0	0
7	0	0	0	0	0	1	0

Adjacency List Representation

- For each vertex, keep a list of all adjacent vertices.
- Space requirement is $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$
- Linear in the size of the graph.
- Standard way to represent graphs
- Undirected graphs can be similarly represented; each edge (u,v) appears in two lists.
- Space usage doubles.

Adjacency List Representation

Some Common Graph Problems and Algorithms

- Topological Sort
- Shortest-Path Algorithms
- Network Flow Problems
- Minimum Spanning Tree
- Depth First Search and Applications

Topological Sort

- A topological sort is an ordering of vertices in a directed acyclic graph, such that if there is a path from v_{i} to v_{j}, then v_{j} appears after v_{i} in ordering.
- A topological ordering is not possible if the graph contains cycles, since for two vertices v and w on a cycle, v precedes w and w precedes v.
\square Ordering is not necessarily unique.
- $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{5}, \mathrm{v}_{4}, \mathrm{v}_{3}, \mathrm{v}_{7}, \mathrm{v}_{6}$ (one ordering)
- $\mathrm{V}_{1}, \mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{4}, \mathrm{v}_{7}, \mathrm{v}_{3}, \mathrm{v}_{6}$ (an other ordering)

Topological Ordering

Topological Sort Algorithm Sketch

- 1. Find a vertex, v, with no incoming edges.
- 2. Print this vertex v; and remove it, along with all its edges, from the graph.
- 3. Repeat steps 1 and 2 until graph is empty.

Topological Sort Algorithm - Formally

- Definition:
- Indegree of a vertex v is the number of edges in the form (u, v).
- Algorithm:
- Compute the indegrees of all vertices in the graph.
- Read the graph into an adjacency list.
\square Apply the algorithm in the previous slide.

Topological Sort Algorithm - Formally

```
void
Graph::topsort()
{
    Vertex v; // vertex, v, that has indegree equal to 0
    Vertex w; // vertex adjacent to v
    int counter; // keeps the topological order number: 0,1,2,\ldots.
    for (counter = 0; counter < NUM_VERTICES; counter++)
    {
        v = findNewVertexOfDegreeZero(); // O(N)
        if (v == NOT_A_VERTEX)
                        throw CycleFound();
        v.topNum = counter; // index in topological order
        for each w adhacent to v
                            w.indegree--;
        }
    - Running time = O(|V|}\mp@subsup{}{}{2}
```


More efficient algorithm

- Keep the vertices which have indegree equal to zero in a separate box (stack or queue).
- 1. Start with an empty box.
- 2. Scan all the vertices in the graph
- 3. Put vertices that have indegree equal to zero into the box.
- 4. While the box (queue) is not empty
- 4.1. Remove head of queue: vertex v .
- 4.2. Print v
- 4.3. Decrease the indegrees of all the vertices adjacent to v by one.
- 4.4. Go to step 4.

CS 202, Spring 2003	Fundamental Structures of Computer Science II Bilkent University	20

Finished! Result: 1,2,5,4,3,7,6

```
void Graph::topsort()
{
    Queue q(NUM_VERTICES);
    int counter = 0; //topological order of a vertex:1,2,3,\ldots,NUM_VERTICES
    Vertex v, w;
    q.makeEmpty();
    for each vertex v
        if (v.indegree == 0)
                q.enqueue(v):
    while (!q.isEmpty())
    {
        v = q.dequeue();
        v.topNum = ++counter;
        Pseudocode
        of Efficient
        for each w adjacent to v
        if (--w.indegree ==0)
                                q.enqueue(w);
    }
    if (counter != NUM_VERTICES)
        throw CycleFound();
}
```

