Graph Algorithms

CS 202 — Fundamental Structures of
Computer Science Il

Bilkent University
Computer Engineering Department

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

‘ Motivation

= We will now see how several problems in
Graph Theory can be modeled and solved
using Graph algorithms

= Many real life problems can be modeled with
graphs

= We will give algorithms that solve some
common graph problems

= \We will see how choice of data structures is
important in increasing the performance of
algorithms

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

 Definitions

A graph G =(V,E) consists of a set of vertices, V,
and a set of edges, E.

Each edgeis a pair (u,w), where u,w €E.
Edges are also called as arcs

If the pair is ordered, then the graph is directed (digraph),
otherwise it is unidirected graph.

Vertex w is adjascent to v if and only if (v,w) e E.

In an undirected graph with edge (v,w), and hence (w, V),
w is adjascent to v, and v is adjascent to w.

An edge may have a third component which is called
weight or cost.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

‘ Example
Directed Graph G

G=(V,E)

V={1,234,5,6,7}

E ={(1,2),(1,4),(1,3),(2,4).(2,5).(3,6).(4,3).(4,6),(4.7).(5,4).(5,7),(7.6)
3 is adjacent to 1, but 1 is not adjacent to 3.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

 Definitions

A pathina graphis a sequence of vertices wq, Wo, ..., Wy,
such that (wj, wj, 1) € E for 1<i<N.

The length of such a path is the number of edges on
the path, whichis equal toN-1.

There can be a path from a vertes to itself. If this path
contains no edges, than the path length is 0.

If graph contains a path from a vertex v to itself, then
we say that the graph contains a loop.

A simple path is a path that all vertices are distinct,
except that the first and last vertex could be the same.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

A cycle in a directed graph is a path at least 1such
that wq =wy. For undirected graphs, we requires that
the edges are distinct.

A directed graphis acylic if it has no cycles. Such a graps
is also referred as DAG.

An undirected graph is connected if there is a path from
every vertext to every other vertex.

If such a graphis directed, thenitis said that it
is strongly connected.

If a directed graph is not strongly connected, but the
underlying graph (without directions)is connected,
then the graphis said to be weakly connected.

A complete graph is a graph in which there is an
edge between every pair of vertices.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

| Representation of Graphs

= We will consider representation of directed
graphs. Undirected graphs are similarly
represented.

= Support we number the vertices, starting
from one.
= There are two methods
1. Adjacency matrix representation
2. Adjacency list representation

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

‘ Some Common Graph Problems and
Algorithms

= Topological Sort

Shortest-Path Algorithms

Network Flow Problems

Minimum Spanning Tree

Depth First Search and Applications

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University

| Representation of Graphs

= We will represent the graph above as an example.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 9

| Adjacency Matrix Representation

= Use a two-dimensional array A.
= For each edge (u,v), set A[u][v] to true, otherwise to
false.

= If the edge has a weight (cost) associated with it
than we set the Afu][v] equal to the weight.

o Use a very large or very small weight as a sentinel to
indicate nonexistent edges.

= Space requirement O(|V|?)
= Good if the graph is dense.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 10

| Adjacency Matrix Representation

1 2 3 4 5 6 7

1 0 1 1 1 0 0 0

2 0 0 0 1 1 0 0

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 11

| Adjacency List Representation

= For each vertex, keep a list of all adjacent
vertices.

= Space requirement is O(|E| + |V|)
o Linear in the size of the graph.

= Standard way to represent graphs

= Undirected graphs can be similarly
represented; each edge (u,v) appears in two
lists.
o Space usage doubles.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 12

| Adjacency List Representation

e el e
2 el e

s el

R A C S AL S NG
ERRDEE AN

6 L

7 oe o

(&)
?

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 13

‘ Some Common Graph Problems and
Algorithms

= Topological Sort

Shortest-Path Algorithms

Network Flow Problems

Minimum Spanning Tree

Depth First Search and Applications

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 14

| Topological Sort

= A topological sort is an ordering of vertices in
a directed acyclic graph, such that if there is
a path from v, to v, then v, appears after v; in
ordering.
o A topological ordering is not possible if the graph
contains cycles, since for two vertices v and w on
a cycle, v precedes w and w precedes v.
= Ordering is not necessarily unique.
Q V4, Vy, Vs, Vg, Vg, V4, Vg (ONe ordering)
Q V4, V,, Vs, Vg, V7, Vs, Vg (a@n other ordering)

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 15

Topologicalﬁ_‘_‘}Qrdering

»

A topological ordering @ @ @ @ @ : :
An other topological ordering @ @ @ @ @ @ @

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 16

| Topological Sort Algorithm Sketch

= 1. Find a vertex, v, with no incoming edges.

= 2. Print this vertex v; and remove it, along
with all its edges, from the graph.

= 3. Repeat steps 1 and 2 until graph is empty.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 17

‘ Topological Sort Algorithm - Formally

= Definition:
o Indegree of a vertex v is the number of edges in
the form (u,v).
= Algorithm:
o Compute the indegrees of all vertices in the
graph.
o Read the graph into an adjacency list.
o Apply the algorithm in the previous slide.

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 18

‘ Topological Sort Algorithm - Formally

void

au
J

Graph::topsort()
{

Vertex v; // vertex, v, that has indegree equal to 0
Vertex w; // vertex adjacent to v
int counter; // keeps the topological order number: 0,1,2,....

for (counter = 0; counter < NUM_VERTICES; counter++)
{
v = findNewVertexOfDegreeZero(); // O(N)
if (v == NOT_A_VERTEX)
throw CycleFound();
v.topNum = counter; // index in topological order
for each w adhacent to v
w.indegree--;

b

= Running time = O(|V|?)

Fundamental Structures of Computer Science Il

CS 202, Spring 2003 Bilkent University 19

'More efficient algorithm

= Keep the vertices which have indegree equal to zero
in a separate box (stack or queue).

o 1.
o 2.
o 3.

Start with an empty box.
Scan all the vertices in the graph
Put vertices that have indegree equal to zero into the

box.

o 4.

While the box (queue) is not empty
4.1. Remove head of queue: vertex v.
4.2. Printv

4.3. Decrease the indegrees of all the vertices adjacent to v by
one.

4.4. Go to step 4.

Fundamental Structures of Computer Science Il

CS 202, Spring 2003 Bilkent University 20

10

Indegrees
v 0 After After
1 Enqueue Dequeue Print
v, |1
\
2 vy 1

Vs

v, |3

vy |1

Vg |3

v, |2

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 21

Updated Indegrees
v 0 After After
1 Enqueue Dequeue Print
v, |0 v
v, |1 V2 ?
v, |2
Vg 1
Ve |3
v, |2

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 22

Updated Indegrees

v 0 After After
1 Enqueue Dequeue Print
\7)
1 Vg Vs

Vs

v, |1

vg |0

Vg |3

v, |2

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 23

Updated Indegrees
v After After
1 Enqueue Dequeue Print
v, |0 v
v, |1 Ve !
v, |0
vs |0
Ve |3
v, |1

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 24

12

Updated Indegrees

v 0 After After
1 Enqueue Dequeue Print

V, v

V. Vv 3
v; |0 3 7

V.

7
v, |0
vg |0
Vg |2
v; |0
Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 25

Updated Indegrees
v 0 After After
1 Enqueue Dequeue Print
v, |0 v
v; |0 Vi ?
v, |0
vs |0
Vg |1
v; |0

Fundamental Structures of Computer Science Il
CS 202, Spring 2003 Bilkent University 26

13

v 0 After After
1 Enqueue Dequeue Print
v, |0 y v
v; |0 6
v, | 0]
vg |0
vg |0
v, |0 Finished! Result: 1,2,5,4,3,7,6

CS 202, Spring 2003

Fundamental Structures of Computer Science Il
Bilkent University 27

{

void Graph::topsort()
Queue q(NUM_VERTICES);
int counter = 0; //topological order of a vertex:1,2,3,...,NUM_VERTICES
Vertex v, w;

g.makeEmpty();

for each vertex v Pseudocode
if (v.indegree == 0) ., .
g.enqueue(v): of Efficient
while (1q.1sEmpty () Topological Sort
v = g.dequeue(); Algorithm

v.topNum = ++counter;

for each w adjacent to v
if (--w.indegree ==0)
g.enqueue(w);

if (counter '= NUM_VERTICES)

throw CycleFound();

CS 202, Spring 2003

Fundamental Structures of Computer Science Il
Bilkent University 28

14

