
1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 1

Graph Algorithms – 3

CS 202 – Fundamental Structures of
Computer Science II

Bilkent University
Computer Engineering Department

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 2

Minimum Spanning Tree

Problem: Finding a minimum spanning tree in an
undirected and connected graph.
What is minimum spanning tree?

A tree
that covers (spans) all the vertices of a connected graph
that has the minimum total cost of edges in the tree.

A minimum spanning tree exists for a graph if and
only if the graph is connected.
The same problem makes sense for directed graphs
also, we the solution is more difficult.

2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 3

Example v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1 v2

v5v3

v6 v7

2

1

2

1

4 6

v4

An undirected,
connected Graph

The corresponding
minimum spanning tree

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 4

Minimum Spanning Tree (MST)

If the number of vertices of a connected
undirected graph is |V|, then its minimum
spanning tree will have

|V| vertices
|V| - 1 edges.

An MST does not contain any cycles, since it
is a tree.
If we add an extra edge to an MST, then it
will have a cycle.

3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 5

Minimum Spanning Tree (MST)

Greedy approach for finding an MST for a
graph works!
Given a graph G, we start with an initial one
vertex MST.
At each stage we add one more vertex and
one more edge (that connects this vertex to
the previous MST), so that the edge has
minimum possible value.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 6

MST Applications

Electrical
wiring

of a house
using

minimum
amount of

wires
(cables)

power outlet
or light

4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 7

MST Applications

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 8

MST Applications

5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 9

Graph
Representation

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 10

Minimum
Spanning

Tree
for

electrical
eiring

6

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 11

MST Algorithms

We will see two algorithms

Prim’s Algorithm

Kruskal’s Algorithm

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 12

Prim’s Algorithm

MST is grown in successive stages.
At each stage:

A new vertex is added to the tree by choosing the
edge (u,v) such that the cost of (u,v) is the
smallest among all edges where u is in the tree
and v is not.

7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 13

Prim’s Algorithm
Start with vertex v1. It is the initial current tree which

we will grow to an MST

A connected, undirected graph G is given above.

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 14

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1

Select an edge from graph:
that is not in the current tree,
that has the minimum cost,

and that can be connected to the current tree.
Step 1

8

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 15

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1

The edges that can be connected are:
(v1,v2): cost 2
(v1,v4): cost 1
(v1,v3): cost 2

Step 1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 16

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1

The edge that has the minimum cost is:
(v1,v4): cost 1

(there could be more than one.
In that case we could choose of

of them randomly)

Step 1

9

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 17

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1

We include the vertex v4, that is connected to the
selected edge, to the current tree.

In this way we grow the tree.

v4

Step 2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 18

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1

Repeat previous steps: 1, 2
You can add either edge (v1, v2) or (v1, v3). Do a random tie-break.

Lets add edge (v1, v2)

v4

v2

10

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 19

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1

v4

v2

Current tree grows!

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 20

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1

v4

v2

Repeat steps: 1, and 2
Add either edge (v4, v3)

v3

11

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 21

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8
4

7

3 10

6

v4

v1

v4

v2

Grow the tree!

v3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 22

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8
4

7

3 10

6

v4

v1 v2

Add edge (v4, v7)

v3

v7

v4

12

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 23

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8
4

7

3 10

6

v4

v1 v2

Grow the tree!

v3

v7

v4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 24

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8
4

7

3 10

6

v4

v1 v2

v3

v7

v4

v6

Add edge (v7, v6)

13

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 25

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1 v2

v3

v7

v4

v6

Grow the tree!

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 26

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1 v2

v3

v7

v4

v6

Add edge (v7, v5)

v5

14

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 27

Prim’s Algorithm

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1 v2

v3

v7

v4

v6

v5

Grow the tree!

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 28

Prim’s Algorithm

v1 v2

v5v3

v6 v7

2

1

2

1

4 6

v4

v1 v2

v3

v7

v4

v6

v5

Finished!
The resulting MST is shown below!

15

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 29

Algorithm Implementation

Very similar to Dijkstra’s shortest path algorithm.
Both are greedy type of algorithms

For each vertex v, we keep the following
information:

Known/unknown
Whether we have included the vertex in current tree or not.

Distance to previous node (dv):
the cost of the edge that is connecting v to a known vertex that
is part of current tree.

Previous vertex (pv)
The last known vertex, that causes a change in the value of dv

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 30

Initial configuration of table used in
Prim’s Algorithm implementation

0∞Fv7

0∞Fv6

0∞Fv5

0∞Fv4

0∞Fv3

0∞Fv2

00Fv1

pvdvknownVertex

16

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 31

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

0∞Fv7

0∞Fv6

0∞Fv5

0∞Fv4

0∞Fv3

0∞Fv2

00Fv1

pvdvknownVertex

F, dv:0 , pv:0 F, dv:∞ , pv:0

F, dv:∞ , pv:0

F, dv:∞ , pv:0 F, dv:∞ , pv:0

F, dv:∞ , pv:0

F, dv:∞ , pv:0

Initial
Configuration

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 32

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

0∞Fv7

0∞Fv6

0∞Fv5

v11Fv4

v14Fv3

v12Fv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 F, dv:2 , pv:v1

F, dv:4 , pv:v1

F, dv:∞ , pv:0 F, dv:∞ , pv:0

F, dv:∞ , pv:0

F, dv:1 , pv:v1

After v1 is
declared known

v1

17

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 33

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v44Fv7

v48Fv6

v47Fv5

v11Tv4

v42Fv3

v12Fv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 F, dv:2 , pv:v1

F, dv:2 , pv:v4

F, dv:8 , pv:v4 F, dv:4 , pv:v4

F, dv:7 , pv:v4

T, dv:1 , pv:v1

After v4 is
declared known

v1

v4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 34

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v44Fv7

v48Fv6

v47Fv5

v11Tv4

v42Fv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

F, dv:2 , pv:v4

F, dv:8 , pv:v4 F, dv:4 , pv:v4

F, dv:7 , pv:v4

T, dv:1 , pv:v1

After v2 is
declared known

v1

v4

v2

18

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 35

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v44Fv7

v35Fv6

v47Fv5

v11Tv4

v42Tv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

T, dv:2 , pv:v4

F, dv:5, pv:v3 F, dv:4 , pv:v4

F, dv:7 , pv:v4

T, dv:1 , pv:v1

After v3 is
declared known

v1

v4

v2

v3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 36

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v44Tv7

v71Fv6

v76Fv5

v11Tv4

v42Tv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

T, dv:2 , pv:v4

F, dv:1, pv:v7 T, dv:4 , pv:v4

F, dv:6 , pv:v7

T, dv:1 , pv:v1

After v7 is
declared known

v1

v4

v2

v3

v7

19

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 37

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v44Tv7

v71Tv6

v76Fv5

v11Tv4

v42Tv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

T, dv:2 , pv:v4

T, dv:1, pv:v7 T, dv:4 , pv:v4

F, dv:6 , pv:v7

T, dv:1 , pv:v1

After v6 is
declared known

v1

v4

v2

v3

v7v6

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 38

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v44Tv7

v71Tv6

v76Tv5

v11Tv4

v42Tv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

T, dv:2 , pv:v4

T, dv:1, pv:v7 T, dv:4 , pv:v4

T, dv:6 , pv:v7

T, dv:1 , pv:v1

After v5 is
declared known

v1

v4

v2

v3

v7v6

v5

20

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 39

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v44Tv7

v71Tv6

v76Tv5

v11Tv4

v42Tv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

T, dv:2 , pv:v4

T, dv:1, pv:v7 T, dv:4 , pv:v4

T, dv:6 , pv:v7

T, dv:1 , pv:v1

From the Table,
read the
edges of

MST

v1 v2

v3

v7v6

v5v4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 40

void Graph::find_prim_mst(vector<Vertex> &s /* initial vertex */)
{

Vertex v, w;
s.dist = 0;
s.known = T;
for (; ;)
{

v = an unknown vertex whose distance value is minimum.
if (v == NOT_A_VERTEX)

break; // we are finished
v.known = TRUE;

for each w adjacent to v
{

if (w.known == FALSE) {
if (cost_v_w < w.dist) {

w.dist = cost_v_w;
w.path = v;

}
}

}
}

}

cost_v_w is the cost of edge from vertex v to w. cost_v_w is the cost of edge from vertex v to w.

class Vertex
{

boolean known; // T or F
int dist; // dv
Vertex path; //pv

}

class Vertex
{

boolean known; // T or F
int dist; // dv
Vertex path; //pv

}

21

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 41

void Graph::print_prim_mst()
{

Vertex v, w;

for (each vertex v in G)
{

w = v.path;
print edge (v,w);

}

The output is the set of edges in the spanning tree.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 42

Running Time

We execute the outer for loop at most |V|
times (for each vertex).

In each iteration we try to find the unknown node
that have the minimum distance: O(|V|)

We execute the inner for loop O(|E|) times.
Therefore the running time of the algorithm in
the given form is:

O(|E| + |V|2)

22

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 43

Running Time

The given bound is good if the graph is
dense:

In a dense graph |E| = Ө(|V|2)
In that case, the running time O(|V|2) which is
O(|E|)
Therefore the algorithm is very efficient in this
case.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 44

Running Time

The algorithm in the given form is not good if
the graph is dense.

It is inefficient.
The running time can be improved if we use
priority queue (binary heap).

23

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 45

Running Time

If we use priority queue of vertices
The vertex with minimum distance is kept at the root of the
heap.

The outer loop is executed O(|V|) times.
The search inside the outer for loop for a vertex that has
the minimum distance takes O(log|V|) time.

The inner loop is executed O(|E|) times.
The distances can be updates O(|E|) times.
The distance value of a vertex can be updated using
decreaseKey() operation of binary heaps, which works in
O(|V|) time. (|V| is the size of the binary heap).

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 46

Running Time

Therefore the running time of MST algorithm
using priority queues is:

O(|V| x log(|V|)+ |E| x log(|V|)) = O(|E| x log(|V|))
If |E| is O(|V|) then

Running time is O(|V| x log(|V|))
This is for sparse graphs.

Compare this with the running time of the
original algorithm (the one that does not use
priority queues) for sparse graphs, which is
O(|V|2)

24

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 47

Kruskal’s Algorithm

Select edges in the order of smallest weights and
accept an edge if it does not cause a cycle.
Kruskal’s algoritm maintains a forest of trees.

Initially each vertex is a tree with single node
There are |V| trees.

Then, adding an accepted edge merges two trees in the
forest

When algorithm terminates, there is a single tree
with |V| vertices and it is a minimum spanning tree.
.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 48

Initial Forest

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

25

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 49

Initial Forest

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Candidate edges are shown
(edges that have low cost and
edges that connect two trees)Step 1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 50

Initial Forest

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Accept one of the candidate edges: (v1, v4)
(we can do random accept here). Step 2

26

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 51

Initial Forest

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Merge the two trees connected by that edge.
Obtain a new tree in this way. Step 3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 52

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Repeat previous steps!
Edge (v6-v7) is accepted.

27

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 53

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Merge the two trees connected by that edge!

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 54

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Accept edge (v1, v2)

28

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 55

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Merge the two trees connected by that edge!

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 56

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Accept edge (v3, v4)

29

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 57

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Merge the two trees connected by that edge!

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 58

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Accept edge (v4, v7)

30

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 59

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Merge the two trees connected by that edge!

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 60

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Accept edge (v7, v5)

31

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 61

v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

Merge the two trees connected by that edge!

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 62

v1 v2

v5v3

v6 v7

2

1

2

1

4 6

v4

Finished!
The resulting MST is shown below!

32

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 63

void Graph::kruskal()
{

int edgesAccepted; DisjSet s(NUM_VERTICES);
PriorityQueue h(NUM_EDGES);
Vertex u, v; SetType uset, vset; Edge e;

h = readGraphIntoHeapArray();
h.buildHeap();
edgesAccepted = 0;

while (edgesAccepted < NUM_VERTICES – 1)
{

h.deleteMin(e); // Edge e = (u,v)
uset = s.find(u);
vset = s.find(v);
if (uset != vset)
{

// Accept the edge
edgesAccepted++
s.unionSets (uset,m vset);

}
}

}

