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Minimum Spanning Tree

Problem: Finding a minimum spanning tree in an 
undirected and connected graph. 
What is minimum spanning tree? 

A tree
that covers (spans)  all the vertices of a connected graph
that has the minimum total cost of edges in the tree. 

A minimum spanning tree exists for a graph if and 
only if the graph is connected.  
The same problem makes sense for directed graphs 
also, we the solution is more difficult. 



2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 3

Example v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v1 v2

v5v3

v6 v7

2

1

2

1

4 6

v4

An undirected, 
connected Graph

The corresponding 
minimum spanning tree
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Minimum Spanning Tree (MST)

If the number of vertices of a connected 
undirected graph is |V|, then its minimum 
spanning tree will have

|V| vertices
|V| - 1 edges. 

An MST does not contain any cycles, since it 
is a tree. 
If we add an extra edge to an MST, then it 
will have a cycle.  
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Minimum Spanning Tree (MST)

Greedy approach for finding an MST for a 
graph works!
Given a graph G, we start with an initial one 
vertex MST. 
At each stage we add one more vertex and 
one more edge (that connects this vertex to 
the previous MST), so that the edge has 
minimum possible value. 
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MST Applications

Electrical
wiring

of a house
using

minimum 
amount of

wires 
(cables)

power outlet 
or light
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MST Applications
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MST Applications
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Graph
Representation
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Minimum 
Spanning

Tree
for

electrical
eiring
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MST Algorithms

We will see two algorithms

Prim’s Algorithm

Kruskal’s Algorithm
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Prim’s Algorithm

MST is grown in successive stages. 
At each stage: 

A new vertex is added to the tree by choosing the 
edge (u,v) such that the cost of (u,v) is the 
smallest among all edges where u is in the tree 
and v is not. 
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Prim’s Algorithm
Start with vertex v1. It is the initial current tree which 

we will grow to an MST

A connected, undirected graph G is given above. 
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Prim’s Algorithm
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Select an edge from graph:
that is not in the current tree, 
that has the minimum cost, 

and that can be connected to the current tree. 
Step 1
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Prim’s Algorithm
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The edges that can be connected  are: 
(v1,v2): cost 2
(v1,v4): cost 1
(v1,v3): cost  2

Step 1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 16

Prim’s Algorithm
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The edge that has the minimum cost is:  
(v1,v4): cost 1

(there could be more than one.
In that case we could choose of

of them randomly)

Step 1
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Prim’s Algorithm
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We include the vertex v4, that is connected to the
selected edge,  to the current tree.

In this way we grow the tree. 

v4

Step 2
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Prim’s Algorithm
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Repeat previous steps: 1, 2 
You can add either edge (v1, v2) or (v1, v3). Do a random tie-break. 

Lets add edge (v1, v2)

v4

v2
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Prim’s Algorithm
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Current tree grows!
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Prim’s Algorithm
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Repeat steps: 1, and 2 
Add either edge (v4, v3)

v3
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Prim’s Algorithm
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Grow the tree!

v3
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Prim’s Algorithm
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Add edge (v4, v7)

v3

v7

v4
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Prim’s Algorithm
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Grow the tree!

v3

v7

v4
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Prim’s Algorithm
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Add edge (v7, v6)
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Prim’s Algorithm
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Grow the tree!
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Prim’s Algorithm
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Add edge (v7, v5)

v5
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Prim’s Algorithm
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Grow the tree!
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Prim’s Algorithm
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Finished! 
The resulting MST  is shown below!
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Algorithm Implementation

Very similar to Dijkstra’s shortest path algorithm.
Both are greedy type of algorithms

For each vertex v, we keep the following 
information: 

Known/unknown
Whether we have included the vertex in current tree or not. 

Distance to previous node (dv): 
the cost of the edge that is connecting v to a known vertex that 
is part of current tree. 

Previous vertex (pv)
The last known vertex, that causes a change in the value of dv
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Initial configuration of table used in 
Prim’s Algorithm implementation

0∞Fv7

0∞Fv6

0∞Fv5

0∞Fv4

0∞Fv3

0∞Fv2

00Fv1

pvdvknownVertex
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v1 v2
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0∞Fv7

0∞Fv6

0∞Fv5

0∞Fv4

0∞Fv3

0∞Fv2

00Fv1

pvdvknownVertex

F, dv:0 , pv:0 F, dv:∞ , pv:0

F, dv:∞ , pv:0

F, dv:∞ , pv:0 F, dv:∞ , pv:0

F, dv:∞ , pv:0

F, dv:∞ , pv:0

Initial 
Configuration
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0∞Fv7

0∞Fv6

0∞Fv5

v11Fv4

v14Fv3

v12Fv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 F, dv:2 , pv:v1

F, dv:4 , pv:v1

F, dv:∞ , pv:0 F, dv:∞ , pv:0

F, dv:∞ , pv:0

F, dv:1 , pv:v1

After v1 is
declared known

v1
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v44Fv7

v48Fv6

v47Fv5

v11Tv4

v42Fv3

v12Fv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 F, dv:2 , pv:v1

F, dv:2 , pv:v4

F, dv:8 , pv:v4 F, dv:4 , pv:v4

F, dv:7 , pv:v4

T, dv:1 , pv:v1

After v4 is
declared known

v1

v4
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v44Fv7

v48Fv6

v47Fv5

v11Tv4

v42Fv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

F, dv:2 , pv:v4

F, dv:8 , pv:v4 F, dv:4 , pv:v4

F, dv:7 , pv:v4

T, dv:1 , pv:v1

After v2 is
declared known

v1

v4

v2
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v35Fv6
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v11Tv4

v42Tv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

T, dv:2 , pv:v4

F, dv:5, pv:v3 F, dv:4 , pv:v4

F, dv:7 , pv:v4

T, dv:1 , pv:v1

After v3 is
declared known

v1

v4

v2

v3
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v44Tv7

v71Fv6

v76Fv5

v11Tv4

v42Tv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

T, dv:2 , pv:v4

F, dv:1, pv:v7 T, dv:4 , pv:v4

F, dv:6 , pv:v7

T, dv:1 , pv:v1

After v7 is
declared known

v1

v4

v2

v3

v7
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v1 v2

v5v3

v6 v7

4

2

1

2

5
1

8 4

7

3 10

6

v4

v44Tv7

v71Tv6

v76Fv5

v11Tv4

v42Tv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

T, dv:2 , pv:v4

T, dv:1, pv:v7 T, dv:4 , pv:v4

F, dv:6 , pv:v7

T, dv:1 , pv:v1

After v6 is
declared known

v1

v4

v2

v3

v7v6
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v1 v2
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v4

v44Tv7

v71Tv6

v76Tv5

v11Tv4

v42Tv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

T, dv:2 , pv:v4

T, dv:1, pv:v7 T, dv:4 , pv:v4

T, dv:6 , pv:v7

T, dv:1 , pv:v1

After v5 is
declared known

v1

v4

v2

v3

v7v6

v5
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v44Tv7

v71Tv6

v76Tv5

v11Tv4

v42Tv3

v12Tv2

00Tv1

pvdvknownVertex

T, dv:0 , pv:0 T, dv:2 , pv:v1

T, dv:2 , pv:v4

T, dv:1, pv:v7 T, dv:4 , pv:v4

T, dv:6 , pv:v7

T, dv:1 , pv:v1

From the Table, 
read the 
edges of

MST

v1 v2

v3

v7v6

v5v4
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void Graph::find_prim_mst( vector<Vertex> &s /* initial vertex */)
{

Vertex v, w; 
s.dist = 0; 
s.known = T;
for ( ; ; )
{

v = an unknown vertex whose distance value is minimum. 
if (v == NOT_A_VERTEX) 

break; // we are finished 
v.known = TRUE; 

for each w adjacent to v
{

if (w.known == FALSE) {
if (cost_v_w < w.dist) {

w.dist = cost_v_w;
w.path = v;  

}
}

}
}

}

cost_v_w is the cost of edge from vertex v to w. cost_v_w is the cost of edge from vertex v to w. 

class Vertex
{

boolean known; // T or F
int dist;      // dv
Vertex   path;    //pv

}

class Vertex
{

boolean known; // T or F
int dist;      // dv
Vertex   path;    //pv

}



21

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 41

void Graph::print_prim_mst()
{

Vertex v, w; 

for (each vertex v in G)
{

w = v.path; 
print edge (v,w); 

}

The output is the set of edges in the spanning tree. 
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Running Time

We execute the outer for loop at most |V| 
times (for each vertex). 

In each iteration we try to find the unknown node 
that have the minimum distance: O(|V|)

We execute the inner for loop O(|E|) times. 
Therefore the running time of the algorithm in 
the given form is: 

O(|E| + |V|2)
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Running Time

The given bound is good if the graph is 
dense: 

In a dense graph |E| = Ө(|V|2)
In that case, the running time O(|V|2) which is 
O(|E|)
Therefore the algorithm is very efficient in this 
case. 
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Running Time

The algorithm in the given form is not good if 
the graph is dense. 

It  is inefficient. 
The running time can be improved if we use 
priority queue (binary heap). 
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Running Time

If we use priority queue of vertices
The vertex with minimum distance is kept at the root of the 
heap. 

The outer loop is executed O(|V|) times. 
The search inside the outer for loop for a vertex that has 
the minimum distance takes O(log|V|) time. 

The inner loop is executed O(|E|) times. 
The distances can be updates O(|E|) times. 
The distance value of a vertex can be updated using 
decreaseKey() operation of binary heaps, which works in 
O(|V|) time. (|V| is the size of the binary heap). 

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 46

Running Time

Therefore the running time of MST algorithm 
using priority queues is: 

O(|V| x log(|V|)+ |E| x log(|V|)) = O(|E| x log(|V|))
If |E| is O(|V|) then

Running time is O(|V| x log(|V|) )
This is for sparse graphs. 

Compare this with the running time of the 
original algorithm (the one that does not use 
priority queues) for sparse graphs, which is 
O(|V|2)



24

CS 202, Spring 2003
Fundamental Structures of Computer Science II

© Bilkent University 47

Kruskal’s Algorithm

Select edges in the order of smallest weights and 
accept an edge if it does not cause a cycle. 
Kruskal’s algoritm maintains a forest of trees. 

Initially each vertex is a tree with single node
There are |V| trees. 

Then, adding an accepted edge merges two trees in the 
forest

When algorithm terminates, there is a single tree 
with |V| vertices and it is  a minimum spanning tree. 
. 
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Initial Forest

v1 v2

v5v3

v6 v7
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v4
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Initial Forest

v1 v2

v5v3

v6 v7

4
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1

2

5
1

8 4

7

3 10

6

v4

Candidate edges are shown 
(edges that have low cost and 
edges that connect two trees)Step 1
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Initial Forest

v1 v2

v5v3

v6 v7
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8 4
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3 10
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v4

Accept one of the candidate edges: (v1, v4)
(we can do random accept here). Step 2
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Initial Forest

v1 v2

v5v3

v6 v7
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8 4
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3 10

6

v4

Merge the two trees connected by that edge.
Obtain a new tree in this way.  Step 3
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v1 v2

v5v3

v6 v7
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8 4

7

3 10

6

v4

Repeat previous steps!
Edge (v6-v7) is accepted. 
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v1 v2

v5v3

v6 v7
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v4

Merge the two trees connected by that edge!
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v1 v2

v5v3

v6 v7
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v4

Accept edge (v1, v2)
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v1 v2

v5v3

v6 v7
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v4

Merge the two trees connected by that edge!
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v1 v2

v5v3

v6 v7
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v4

Accept edge (v3, v4)
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v1 v2

v5v3

v6 v7
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8 4
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3 10
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v4

Merge the two trees connected by that edge!
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v1 v2

v5v3

v6 v7
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Accept edge (v4, v7)
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v1 v2

v5v3

v6 v7
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8 4
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3 10
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v4

Merge the two trees connected by that edge!
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v1 v2

v5v3

v6 v7
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Accept edge (v7, v5)
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v1 v2

v5v3

v6 v7
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v4

Merge the two trees connected by that edge!
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v1 v2

v5v3

v6 v7

2

1

2

1

4 6

v4

Finished! 
The resulting MST  is shown below!
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void Graph::kruskal()
{

int edgesAccepted;  DisjSet s(NUM_VERTICES); 
PriorityQueue h(NUM_EDGES); 
Vertex u, v;    SetType uset, vset;    Edge e; 

h = readGraphIntoHeapArray(); 
h.buildHeap(); 
edgesAccepted = 0; 

while (edgesAccepted < NUM_VERTICES – 1) 
{

h.deleteMin(e); // Edge e = (u,v) 
uset = s.find(u); 
vset = s.find(v); 
if (uset != vset) 
{

// Accept the edge
edgesAccepted++
s.unionSets (uset,m vset); 

}
}

}


