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What is a Tree

A tree is a collection of nodes with the following properties: 
The collection can be empty. 
If collection is not empty, it consists of a distinguished node r, called root, 
and zero or more nonempty sub-trees T1, T2, … , Tk, each of whose roots 
are connected by a directed edge from r. 

The root of each sub-tree is said to be child of r, and r is the 
parent of each sub-tree root. 
If a tree is a collection of N nodes, then it has N-1 edges. 

root

T1
T2 Tk

...
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What is a tree (continued)

A node may have arbitrary number of children (including zero)
Node A above has 6 children: B, C, D, E, F, G. 

Nodes with no children are called leaves. 
B, C, H, I, P, Q, K, L, M, N are leaves in the tree above.

Nodes with the same parent are called siblings. 
K, L, M are siblings since F is parent of all of them. 

A

B C D E F G

H I J K L M N

P Q
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What is a tree (continued)

A path from node n1 to nk is defined as a sequence of nodes n1, n2, …, nk such that ni
is parent of ni+1 (1 ≤i < k)

The length of a path is the number of edges on that path. 
There is a path of length zero from every node to itself. 
There is exactly one path from the root to each node. 

The depth of node ni is the length of the path from root to node ni
The height of node ni is the length of longest path from node ni to a leaf. 
If there is a path from n1 to n2, then n1 is ancestor of n2, and n2 is descendent of n1. 

If n1 ≠ n2 then n1 is proper ancestor of n2, and n2 is proper descendent of n1. 

A

B C D E F G

H I J K L M N

P Q
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Implementation of Trees
struct TreeNode {

Object       element; 
TreeNode *firstChild; 
TreeNode *nextSibling; 

};

struct TreeNode {
Object       element; 
TreeNode *firstChild; 
TreeNode *nextSibling; 

};

A

B C D E F G

H I J K L M N

P Q
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NULL

NULL

element
firstChild
nextSibling
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Tree Applications

Tree Applications
There many applications of trees in Computer Science 
and Engineering. 

Organization of filenames in a Unix File System
Indexing large files in Database Management Systems
Compiler Design. 
Routing Table representation for fast lookups of IP 
addresses
Search Trees for fast access to stored items
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An example Application: Unix 
Directory Structure

Unix directory structure is organized as a tree. 

/usr* (1)

korpe* (1) ali* (1)

work* (1) course* (1) junk (4)

paper1.pdf* (2) paper2.pdf* (4) cs202* (1) cs342* (1)

lecture1.ppt (5) lecture2.ppt (3) slides.ppt (6)

course* (1) junk (8)

cs547* (1)

main.cc (3) functions.cc (10)

- An asterisk next to a filename indicates that it is a directory that contains other files. 
- A number next to a filename indicates how many disk blocks that file or directory 
occupies.
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/usr

korpe ali

work course junk course junk

cs202 cs342

lecture1.ppt lecture2.ppt slides.ppt

paper1.pdf paper2.pdf cs547

main.cc functions.cc
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/usr

korpe ali

work course junk course junk

cs202 cs342

lecture1.ppt lecture2.ppt slides.ppt

paper1.pdf paper2.pdf cs547

main.cc functions.cc
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/usr

korpe ali

work course junk course junk

cs202 cs342

lecture1.ppt lecture2.ppt slides.ppt

paper1.pdf paper2.pdf cs547

main.cc functions.cc
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We want to list files in the directory
We want to computer the size of all files (in a 
recursive manner) in the directory. 
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Listing Files
Void FileSystem::listAll ( int depth = 0 ) const
{

printName ( depth );   /* print name of object */
if (isDirectory())

for each file c in  this directory (for each child)
c.listAll( depth+1 );

}

Pseudocode to list a directory in a Unix file system

Work 
Is done
here!

printName() function prints the name of the object after “depth” number of
tabs -indentation. In this way, the output is nicely formatted on the screen. 

Here, the a directory (which is a tree structured) is traversed: Every node
Is visited and a work is done about each node. 

The order of visiting the nodes in a tree is important while traversing a tree. 

Here, the nodes are visited according to preorder traversal strategy. 
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Traversal strategies

Preorder traversal
Work at a node is performed before its children are 
processed. 

Postorder traversal
Work at a node is performed after its children are 
processed. 

Inorder traversal (for binary trees)
For each node: 

First left child is processed, then the work at the node is 
performed, and then the right child is processed. 
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Listing Files - Output
/usr

korpe
work

paper1.pdf
paper2.pdf

course
cs202

lecture1.ppt
lecture2.ppt

cs342
slides.ppt

junk
ali

course
cs547

main.cc
functions.cc

junk

/usr
korpe

work
paper1.pdf
paper2.pdf

course
cs202

lecture1.ppt
lecture2.ppt

cs342
slides.ppt

junk
ali

course
cs547

main.cc
functions.cc

junk

The listing of the files are done
using pre-order traversal. 

A node is processed first:
The filename is printed.

Then, the children of the node is
processed starting from the left-most
child. 
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Traversing a Tree

For some applications, it is more suitable to 
traverse a tree using post-order strategy.
As an example we want to computer the size 
of the directory which is defined the sum of all 
the sizes of the files and directories inside our 
directory. 
In this case, we want first computer the size 
of all children, add them up together with the 
size of the current directory and return the 
result.  
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Postorder Traversal
Void FileSystem::size () const
{

int totalSize = sizeOfThisFile(); 

if (isDirectory())
for each file c in  this directory (for each child)

totalSize += c.size(); 
return totalSize; 

}

Pseudocode to calculate the size of a directory

Work 
is done
here!

The nodes are visited using postorder strategy. 

The work at a node is done after  processing each child of that node. 
Here, the work is computation of the totalSum, which is obtained 
correctly at the last statement above (return totalSize). 
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Size of a directory - Output
paper1.pdf            
paper2.pdf

work
lecture1.ppt
lecture2.ppt

cs202
slides.ppt

cs342
course       
junk

korpe
main.cc
functions.cc

cs547
course
junk 

ali
/usr

paper1.pdf            
paper2.pdf

work
lecture1.ppt
lecture2.ppt

cs202
slides.ppt

cs342
course       
junk

korpe
main.cc
functions.cc

cs547
course
junk 

ali
/usr

2
4
7
5
3
9
6
7
17
4
29
3
10
14
15
8
24
54

size of each 
directory
or file. 

Computation
order
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Binary Trees

A binary tree is a tree in which no node can have more than 
two children
Average depth of a binary tree is
For a special binary tree, called binary search tree, the 
average depth is
The depth can be as large as N-1 in the worst case.   

)( NO

)(logNO

root

TL
TR

A binary tree consisting
of a root and

two subtrees TL and TR, 
both of which could
possibly be empty. 
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Binary Trees - Implementation

Binary trees have many important uses. 
One of the applications is in compiler design. 
Mathematical expressions may be represented as binary 
trees in compiler design. 
A expression consist of operands and operators that operate 
on these operands. 

Most operators operate on two operands (+, -, x, …)
Some operators may operate on only one operand (unary minus)
A operand could be a constant or a variable name. 

struct BinaryNode {
Object          element;       // the data in the node 
BinaryNode *firstChild;      // left child
BinaryNode *nextSibling;   // right child

};

struct BinaryNode {
Object          element;       // the data in the node 
BinaryNode *firstChild;      // left child
BinaryNode *nextSibling;   // right child

};
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Expression Trees

+

a

b c

×

× +

×

d e

f

g

+

Expression tree for ( a + b × c) + ((d ×e + f) × c)

There are three notations for a mathematical  expression: 
1) Infix notation    : ( a + (b × c)) + (((d ×e) + f) × c)
2) Postfix notation: a b c × + d e × f + g * +
3) Prefix notation : + + a × b c × + × d e f g 
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Expression Tree traversals

Depending on how we traverse the expression tree, 
we can produce one of these notations for the 
expression represented by the three. 

Inorder traversal produces infix notation.
This is a overly parenthesized notation.  
Print out the operator, then print put the left subtree inside 
parentheses, and then print out the right subtree inside 
parentheses. 

Postorder traversal produces postfix notation.
Print out the left subtree, then print out the right subtree, and 
then printout the operator. 

Preorder traversal produces prefix notation. 
Print out the operator, then print out the right subtree, and then 
print out the left subtree. 
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Postorder traversal

+

a

b c

×

× +

×

d e

f

g

+

Expression tree for ( a + b × c) + ((d ×e + f) × c)

Postfix notation: a b c × + d e × f + g × +

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 24

Construction an expression tree

Given an expression tree, we can obtain the 
corresponding expression in postfix notation 
by traversing the expression tree in postorder
fashion. 
Now, given an expression in postfix notation,  
we will see an algorithm to obtain the 
corresponding expression tree.
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Sketch of the algorithm

Read the expression (given in postfix notation) one symbol
at a time. 
If the symbol is an operand:  

We create a one-node tree (that keeps the operand) and push 
a pointer to this tree on top of a stack.

If the symbol is an operator: 
We fist pop up two pointers from the stack. The pointers point 
to trees T1 and T2. 
Then we generate a new tree whose root is the operator (the 
symbol just read) and the root’s left and right children point to 
trees T1 and T2 respectively. 
A point to the root of this new  tree is pushed onto the stack.
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Example

a b + c d e e + × ×

We are given an expression in postfix notation: 

Our AlgorithmOur Algorithm

?
Expression tree

Input >

Output >
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bottom of stack

stack grows in this directionstack

a b

After reading and processing symbols a and b: 

After reading and processing symbol  +: 

stack

+

a b
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After reading and processing symbols  c, d, and e: 

stack

+

a b c d e

After reading and processing symbol +: 

stack

+

a b c

d e

+
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After reading and processing symbol ×: 

stack

+

a b

c

d e

+

× After reading and processing last symbol ×: 

stack

+

a b c

d e

+

×

×
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Binary Search Trees
Assume each node of a binary 
tree stores a data item
Assume data items are of 
some type that be ordered and 
all items are distinct. No two 
items have the same value. 

A binary search tree is a binary 
tree such that

for every node X in the tree:
the values of all the items in its 
left subtree are smaller than 
the value of the item in X 
the values of all items in its 
right subtree are greater than 
the value of the item in X. 

6

2 8

1 4

3
6

2 8

1 4

3 7

A binary search tree

Not a binary search tree, 
but a binary tree
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Definition
template <class Comparable>
class BinarySearchTree;

template <class Comparable>
class BinaryNode
{

Comparable element;   // this is the item stored in the node
BinaryNode *left;
BinaryNode *right;

BinaryNode( const Comparable & theElement, BinaryNode *lt, 
BinaryNode *rt )

: element( theElement ), left( lt ), right( rt ) { }
friend class BinarySearchTree<Comparable>;

};

BinaryNode class

BinarySearchTree class is defined as friend so that it can access the private 
members of BinaryNode class. 

A class template is used so that we
don’t need to define a separate class 
for each element type. 

The type of element here is generic 
“Comparable”.
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Operations on BSTs

Find
Given a value find the item in the tree that has the same value.
If the item is not found return a special value. 

Find Minimum
Find the item that has the minimum value in the tree

Find Maximum
Find the item that has the maximum value in the tree

Insert
Insert a new item in the tree. 

Check for duplicates. 
Delete

Delete an item from the tree.
Check if the item exists in the tree. 

Copy
Obtain a new binary search  tree from a given binary search tree. Both should have the same 
structure and values. 

Print
Print the values of all items in the tree using a traversal strategy that is appropriate for the 
application
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Most of the operation on binary trees are 
O(logN). 

This is the main motivation for using binary trees rather 
than using ordinary lists to store items. 

Most of the operations can be implemented 
using recursion. 

Since the average depth of binary search  trees is 
O(logN), we usually do not need to worry about running 
out of stack space while using recursion. 
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// BinarySearchTree class

template <class Comparable>
class BinarySearchTree
{
public:

explicit BinarySearchTree( const Comparable & notFound );
BinarySearchTree( const BinarySearchTree & rhs );
~BinarySearchTree( );

const Comparable & findMin( ) const;
const Comparable & findMax( ) const;
const Comparable & find( const Comparable & x ) const;
bool isEmpty( ) const;
void printTree( ) const;

void makeEmpty( );
void insert( const Comparable & x );
void remove( const Comparable & x );

const BinarySearchTree & operator=( const BinarySearchTree & rhs );

//continued on the next page
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private:
BinaryNode<Comparable> *root;
const Comparable ITEM_NOT_FOUND;

const Comparable & elementAt( BinaryNode<Comparable> *t ) const;

void insert( const Comparable & x, BinaryNode<Comparable> * & t ) const;
void remove( const Comparable & x, BinaryNode<Comparable> * & t ) 

const;
BinaryNode<Comparable> * findMin( BinaryNode<Comparable> *t ) const;
BinaryNode<Comparable> * findMax( BinaryNode<Comparable> *t ) const;
BinaryNode<Comparable> * find( const Comparable & x,

BinaryNode<Comparable> *t ) const;
void makeEmpty( BinaryNode<Comparable> * & t ) const;
void printTree( BinaryNode<Comparable> *t ) const;
BinaryNode<Comparable> * clone( BinaryNode<Comparable> *t ) const;

};
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There are public members and private 
members in the class definition.

They have the same but different signatures. 

Private member functions are recursive. 
Public member functions make use of the 
private member functions. 
For example public find() calls private 
recursive find() function. 
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/**
* Find item x in the tree.
* Return the matching item or ITEM_NOT_FOUND if not found.
*/
template <class Comparable>
const Comparable & BinarySearchTree<Comparable>::

find( const Comparable & x ) const
{

return elementAt( find( x, root ) );
}

template <class Comparable>
const Comparable & BinarySearchTree<Comparable>::
elementAt( BinaryNode<Comparable> *t ) const
{

if( t == NULL )
return ITEM_NOT_FOUND;

else
return t->element;

}
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/**
* Internal method to find an item in a subtree.
* x is item to search for.
* t is the node that roots the tree.
* Return node containing the matched item.
*/
template <class Comparable>
BinaryNode<Comparable> *
BinarySearchTree<Comparable>::
find( const Comparable & x, BinaryNode<Comparable> *t ) const
{

if( t == NULL )
return NULL;

else if( x < t->element )
return find( x, t->left );

else if( t->element < x )
return find( x, t->right );

else
return t;    // Match

}
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insert
Inserting X into tree T

- Proceed down the tree as you would with 
a find operation. 
- If X is found 

- do nothing, OR
- give an error, OR
- increment the item count in the node

else
- insert X at the last spot on the 
path traversed. 

Inserting X into tree T

- Proceed down the tree as you would with 
a find operation. 
- If X is found 

- do nothing, OR
- give an error, OR
- increment the item count in the node

else
- insert X at the last spot on the 
path traversed. 

Sketch of algorithm for insert

6

2 8

1 4

3 5

Insert 5

Duplicates can be handled by keeping an extra field
In the node record indicating the frequency of occurrence. 
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Insertion routine
/**

* Internal method to insert into a subtree.
* x is the item to insert.
* t is the node that roots the tree.
* Set the new root.
*/
template <class Comparable>
void BinarySearchTree<Comparable>::
insert( const Comparable & x, BinaryNode<Comparable> * & t ) const
{

if( t == NULL )
t = new BinaryNode<Comparable>( x, NULL, NULL );

else if( x < t->element )
insert( x, t->left );

else if( t->element < x )
insert( x, t->right );

else
;  // Duplicate; do nothing

}

passing a pointer to a node
using call by reference 
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6

2 8 NULL NULL

1 NULL NULL 4 NULL

3 NULL NULL

t
Tree node

5 NULL NULL

New Node

t

t

Inserting Item 5 to the Tree
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Remove

Deleting an item is more difficult
There are several cases to consider: 

If the node (that contains the item)  is leaf:
then we can delete it immediately. 

If the node has one child:
then the node can be deleted after its parent adjust a link to 
bypass the node. 

If the node has two children: 
then the general strategy is:  

Replace the data of this node with the smallest data on 
the right subtree of this node. 
Recursively delete that node on the right subtree. 



22

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 43

Deleting a node with one child

6

2 8

1 4

3

6

2 8

1 4

3

Deletion of node 4. 

before after
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Deleting a node with two children

6

2 8

1 5

3

4

6

3 8

1 5

3

4Deletion of node 2. 

before after
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template <class Comparable>
void BinarySearchTree<Comparable>::
remove( const Comparable & x, 

BinaryNode<Comparable> * & t ) const
{

if( t == NULL )
return;   // Item not found; do nothing

if( x < t->element )
remove( x, t->left );

else if( t->element < x )
remove( x, t->right );

else if( t->left != NULL && t->right != NULL ) // Two children
{

t->element = findMin( t->right )->element;
remove( t->element, t->right );

}
else
{

BinaryNode<Comparable> *oldNode = t;
t = ( t->left != NULL ) ? t->left : t->right;
delete oldNode;

}
}
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Average case analysis

The running time of all operations (find, 
insert, remove, findMin, findMax) are O(d), 
where d is the depth of the node containing 
the accessed item
The average depth over all nodes in a binary 
search tree is O(logN), where N is number of 
nodes in the tree. 

Assuming that insertion sequences are equally likely. 
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Average case analysis

Definition: The sum of depths of all nodes in 
a tree is called internal path length.
Computing average internal path length of a 
BST will give as average depth. 

Assuming all insertion sequences are equally likely. 

Let D(N) denote the internal path length for 
some tree T of N nodes. 

D(1) = 0
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Derivation of average depth 

N nodes

D(N)

i
Nodes

N-i+1
nodes

root root

D(N) = D(i) + D(N-i+1) + N - 1

N-1 nodes

1 node

T

T1 T2

T ≡ T1 – root – T2
The depth of a node in T1 or T2 will have one less then

the corresponding node in T. 
Therefore, we have the N - 1 term in the above equation for D(N).  
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Derivation of average depth
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Assuming all subtree sizes are equally likely, then the average value of
both D(i) and D(N-i+1) is equal to:  
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The above formula is a recurrence relation. The solution of this yields:
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AVL Trees

A binary search tree with a balance condition
Balance condition must be easy to maintain. 
Balance condition ensures that the depth of the tree is 
O(logN). 

AVL Tree definition: 
A tree that is identical to a binary search tree, except 
that for every node in the tree, the height of the left and 
right subtrees can differ by at most 1. 

(The height of an empty tree is defined to be -1). 
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Example

5

2 8

1 4

3

7 7

2 8

1 4

3 5

An AVL tree

A binary search tree, but
not an AVL tree

3

2

1 0

1

0

0

= height(subtree)

0 0

10

2 0

3 Node that does not
satisfy the balance
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Minimum number of nodes in an AVL 
of height h

Empty
Tree

Height
h

Minimum
Number of
Nodes: S(h)

-1 0 1 2 3

0 1 2 4 7

h: Height of Tree                                           
S(h): Minimum number of nodes in the Tree

S(h) = S(h-1) + S(h-2) +1



27

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 53

Minimum number of nodes in an AVL 
of height h

S(h) S(h)
S(h+1)

Height = h Height = h+2S(h+2) = S(h)+S(h+1)+1

S(h) = S(h-1)+S(h-2)+1

Height of an AVL tree is O(logN)

S(h) is closely related to the Fibonacci Numbers
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Since, height is O(logN), most operations can be done in O(logN) 
time. 
Deletion is simple assuming lazy deletion and it is O(logN): we 
just have to find the node that contains the value

In lazy deletion, we just invalidate the value, but do not remove the 
node – hence the balance is not affected. 

Insertion is more difficult
After inserting a node into proper place in the search tree, the
balance of the tree may be violated.
Therefore, the balancing information in all nodes on the path from 
inserted node to the root should be updated.  
After this updates, we may find some nodes violating the AVL tree 
balance condition. 
Therefore the balance should be restored by some operation on the 
tree. 
We will show that this can be done always by operations, called 
rotations. 
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Insertions: sketch

Path to the root from inserted node. 

We have to update the balance information 
in all nodes on the path from inserted node to 
the root. 

Let say the first node on this path (deepest
dode) that  violates the balance condition is 
called α  

(That means no node below α on the path  violated the
balance condition). 

Then it is enough to do rotation around  α to 
restore the balance in the tree. We do not
Need to repeat the rotation on other nodes
on the path that may have unbalanced condition. 

inserted node

root
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Violation conditions

T2 T3T1 T4

+1

Insert node

T2 T3T1 T4

+2

After insert

T2 T3T1 T4

+1

Insert node

T2 T3T1 T4

+2

After insert

Case 1: 
Insert to the 

left subtree of
left child of α

Case 2: 
Insert to the 

right subtree of
left child of α

α

α

+1 means: height (left_subtree) 
- height (right_subtree)
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Violation conditions

T2 T3T1 T4

-1

insert node

T2 T3T1 T4

-2

After insert

T2 T3T1 T4

-21

insert node

T2 T3T1 T4

-2

After insert

Case 3: 
Insert to the 

left subtree of
right child of α

Case 4: 
Insert to the 

right subtree of
right child of α

α
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Balancing Operations: Rotations

Case 1 and case 4 are symmetric and 
requires the some operation for balance. 
Case 2 and case 3 are symmetric and 
requires the some operation for balance.

Case 1,4 is handle by an operation called single 
rotation. 
Case 2,3 are handled by an operation called 
double rotation.
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Case 1: Insertion

Z

k2

k1

X Y

+1

1

Z

k2

k1

X
Y

+2

2

1

1

After
insertion

(intially X, Y, X are 
subtrees, which may 
possible be empty)
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Case 1: Singe (right) Rotation

Z

k2

k1

k1

k2

X
Y

+2
0

2

1

1

After
Rotation

Hold up!

Rotation between parent k2 and  child k1: 
child goes up.

k1 < k2

X
Y Z

Rebalanced subtree
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Case 4: Single (left) Rotation

Z

k1 k2

k1

Y

-2 0

After
Rotation

k2

X
Z

YX

2
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Single rotation preserves the original height: 
The height of the subtree where rotation is 
performed  (root at α) is the same before insertion
and after insertion+rotation

Therefore it is enough to do rotation only at 
the first node, where imbalance exists,  on 
the path from  inserted node to root.
Therefore the rotation takes O(1) time.
Hence insertion is O(logN) 
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Example: Insertion of items 
3,2,1,4,5,6,7 into an empty AVL tree. 

3 3

2

3

2

1 2

1 3

After single right rotation

After inserting 1

After inserting 2After inserting 3
Rotate right
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Example continued

2

1 3

5

4 53

2

1 4

After inserting 5 After single left rotation
between 3 and 4.

Rotate left

2

1 3

4

After inserting 4
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Example continued

53

2

1 4

6

61

4

52

3

After inserting 6 After singe left rotation
between 2 and 4.

Rotate left
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Example continued

61

4

52

3

7

Rotate left

751 3

4

2 6

After inserting 7

After singe left rotation
between 5 and 6.
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Double Rotation

We have solved cases 1 and 4. 
An insertion in these cases requires single left
or right rotation, depending on whether the case1 
or case 4 occurs. 

Single rotation in cases 3 and 4 do not work. 
It does not rebalance the tree.

We need a new operation which called 
double rotation. 
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Need for Double Rotation

Z

X
Y

-2

Z

Y

X

+2

Single rotation does not provide rebalance in cases 2 and 3  

2 2

k2

k1

k1

k2
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Case 2 

k2

+2

2

≡

k3

+2
k1 ≤ k2 ≤ k3

B, C and k2 makes Y

One of B or C is at the same level with A, 
the other one is one level down. 

Which one does not matter. So let say B is one level down (item is inserted into B)

Z

X

Y

D
(Z)

A
(X)

B
C

Re-label

Insertion path

k1 k1

k2
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Left-Right Double Rotation

k3
+2

D

A

B
C

k1

k2

Lift this up:
first rotate left between (k1,k2), 
then rotate right betwen (k3,k2)

k2
0

A B
C

D

After left-right double rotation

k1 k3
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A left-right double rotation can be done as a 
sequence of two single rotations: 

1st rotation on the original tree: 
a left rotation between left-child and grandchild
2nd rotation on the new tree: 
a right rotation between a node and its left child. 
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Rotation 1: Single Left rotation

k3
+2

D

A

B
C

k1

k2

k3
+2

D

A

k2

k1

B

C
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Rotation 2: Single Right rotation

k3
+2

D

A

k2

k1

B

C

k2
0

k1 k3

A B
C

D

Result is Balanced AVL tree
Resulting tree has the same height with the 

original tree before insertion
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Case 3: Right-Left Double Rotation

k1
+2

D

A

B
C

k3

k2

k2
+2

k1 k3

A B
C

D

After inserting After right-left double rotation

2
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Example

Insert 16, 15, 14, 13, 12, 10, and 8, and 9 to the 
previous tree obtained in the previous single rotation 
example.

51 3

4

2 6

16

7

After inserting 16
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51 3

4

2 6

7

After inserting 15

51 3

2 6

7 16

15

4After right-left double rotation
among 7, 16, 15

15

16

k1

k3

k2

Case 3
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51 3

2 6

16

15

4

14

k1

k2

k3

7

1 3

2 7

4

k1 k3

5

6

1614

15

k2

After inserting 14

After right-left double rotation
among 6,15,7 

Case 3
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1 3

2 7

4 k1

5

6

16

15

k2

13

14

Case 4

4

5

6

31

2

7

16

13

14

After inserting 13

After single left rotation
between 4 and 7

15
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4

5

6

31

2

7

1614

15

12

13

4

5

6

31

2

k2

k1

k1

12

16

7

15

After inserting 12

After singe right rotation
between 14 and 13

14

13

k2
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4

5

6

31

2 k1 16

7

15

14

13

k2

11

12

4

5

6

31

2 12

11 14 16

15

13

7

After inserting 11

After single right rotation
between 15 and 13.
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4

5

6

31

2 12

14 16

15

13

7

10

11

4

5

6

31

2

14 16

15

13

7

10 12

11

After inserting 10

After single right rotation
Between 12 and 11
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4

5

6

31

2

14 16

15

13

7

12

11

8

10

After inserting 8
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4

5

6

31

2

14 16

15

13

7

12

11

10

4

5

6

31

2

14 16

15

13

7

12

11

8 10

9

After inserting 8

After left-right double
rotation

among 10, 8 and 9

9

8


