Trees

CS 202 - Fundamental Structures of Computer Science II

Bilkent University
Computer Engineering Department

Outline

- Preliminaries
- What is Tree?
- Implementation of Trees using C++
- Tree traversals and applications
- Binary Trees
- Binary Search Trees
- Structure and operations
- Analysis
- AVL Trees
- Splay Trees
- B trees

What is a Tree

- A tree is a collection of nodes with the following properties:
- The collection can be empty.
- If collection is not empty, it consists of a distinguished node r, called root, and zero or more nonempty sub-trees $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{k}}$, each of whose roots are connected by a directed edge from r.
- The root of each sub-tree is said to be child of r, and r is the parent of each sub-tree root.
- If a tree is a collection of N nodes, then it has $\mathrm{N}-1$ edges.

What is a tree (continued)

- A node may have arbitrary number of children (including zero) - Node A above has 6 children: B, C, D, E, F, G.
- Nodes with no children are called leaves.
- B, C, H, I, P, Q, K, L, M, N are leaves in the tree above.
- Nodes with the same parent are called siblings.
- K, L, M are siblings since F is parent of all of them.

- A path from node n_{1} to n_{k} is defined as a sequence of nodes $n_{1}, n_{2}, \ldots, n_{k}$ such that n_{i} is parent of $n_{i+1}(1 \leq i<k)$
- The length of a path is the number of edges on that path.
- There is a path of length zero from every node to itself.
- There is exactly one path from the root to each node.
- The depth of node n_{i} is the length of the path from root to node n_{i}
- The height of node n_{i} is the length of longest path from node n_{i} to a leaf.

If there is a path from n_{1} to n_{2}, then n_{1} is ancestor of n_{2}, and n_{2} is descendent of n_{1}.

- If $n_{1} \neq n_{2}$ then n_{1} is proper ancestor of n_{2}, and n_{2} is proper descendent of n_{1}.

Implementation of Trees

```
|struct TreeNode { % Olement;
```


Tree Applications

- Tree Applications

- There many applications of trees in Computer Science and Engineering.
- Organization of filenames in a Unix File System
- Indexing large files in Database Management Systems
- Compiler Design.
- Routing Table representation for fast lookups of IP addresses
- Search Trees for fast access to stored items

An example Application: Unix Directory Structure

- Unix directory structure is organized as a tree.

- An asterisk next to a filename indicates that it is a directory that contains other files.
- A number next to a filename indicates how many disk blocks that file or directory occupies.

CS 202, Spring $2003 \quad \begin{gathered}\text { Fundamental Structures of Computer Science II } \\ \text { Bilkent University }\end{gathered}$

- We want to list files in the directory
- We want to computer the size of all files (in a recursive manner) in the directory.

Listing Files

Pseudocode to list a directory in a Unix file system
printName() function prints the name of the object after "depth" number of tabs -indentation. In this way, the output is nicely formatted on the screen.

Here, the a directory (which is a tree structured) is traversed: Every node Is visited and a work is done about each node.

The order of visiting the nodes in a tree is important while traversing a tree.
Here, the nodes are visited according to preorder traversal strategy.

Traversal strategies

- Preorder traversal
- Work at a node is performed before its children are processed.
- Postorder traversal
- Work at a node is performed after its children are processed.
- Inorder traversal (for binary trees)
- For each node:
- First left child is processed, then the work at the node is performed, and then the right child is processed.

Listing Files - Output

/usr
korpe
work
paper1.pdf
paper2.pdf
course
cs202
lecture1.ppt
lecture2.ppt
cs342
slides.ppt
junk
ali
course
cs547
main.cc
functions.cc
junk

The listing of the files are done using pre-order traversal.

A node is processed first: The filename is printed.

Then, the children of the node is processed starting from the left-most child.

Traversing a Tree

- For some applications, it is more suitable to traverse a tree using post-order strategy.
- As an example we want to computer the size of the directory which is defined the sum of all the sizes of the files and directories inside our directory.
- In this case, we want first computer the size of all children, add them up together with the size of the current directory and return the result.

Postorder Traversal

```
Void FileSystem::size () const
{
    int totalSize = sizeOfThisFile();
    if (isDirectory())
            for each file c in this directory (for each child)
                                    totalSize += c.size();
                                    Work
        return totalSize; 
                                is done
                        here!
Pseudocode to calculate the size of a directory
```

The nodes are visited using postorder strategy.
The work at a node is done after processing each child of that node. Here, the work is computation of the totalSum, which is obtained correctly at the last statement above (return totalSize).

Binary Trees

- A binary tree is a tree in which no node can have more than two children
- Average depth of a binary tree is $O(\sqrt{N})$
- For a special binary tree, called binary search tree, the average depth is $O(\log N)$
- The depth can be as large as $N-1$ in the worst case.

Binary Trees - Implementation

```
struct BinaryNode {
    Object element; // the data in the node
    BinaryNode *firstChild; // left child
    BinaryNode *nextSibling; // right child
};
```

- Binary trees have many important uses.
- One of the applications is in compiler design.
- Mathematical expressions may be represented as binary trees in compiler design.
- A expression consist of operands and operators that operate on these operands.
- Most operators operate on two operands (+, -, x, ...)
- Some operators may operate on only one operand (unary minus)
- A operand could be a constant or a variable name.

Expression Trees

There are three notations for a mathematical expression:

1) Infix notation $:(a+(b \times c))+(((d \times e)+f) \times c)$
2) Postfix notation: $a b c \times+d e \times f+g$ * +
3) Prefix notation : + +a×bcx+xdefg

Expression Tree traversals

- Depending on how we traverse the expression tree, we can produce one of these notations for the expression represented by the three.
- Inorder traversal produces infix notation.
- This is a overly parenthesized notation.
- Print out the operator, then print put the left subtree inside parentheses, and then print out the right subtree inside parentheses.
- Postorder traversal produces postfix notation.
- Print out the left subtree, then print out the right subtree, and then printout the operator.
- Preorder traversal produces prefix notation.
- Print out the operator, then print out the right subtree, and then print out the left subtree.

Postorder traversal

Postfix notation: $a b c \times+d e \times f+g \times+$

Construction an expression tree

- Given an expression tree, we can obtain the corresponding expression in postfix notation by traversing the expression tree in postorder fashion.
- Now, given an expression in postfix notation, we will see an algorithm to obtain the corresponding expression tree.

Sketch of the algorithm

- Read the expression (given in postfix notation) one symbol at a time.
- If the symbol is an operand:
- We create a one-node tree (that keeps the operand) and push a pointer to this tree on top of a stack.
- If the symbol is an operator:
- We fist pop up two pointers from the stack. The pointers point to trees T_{1} and T_{2}.
- Then we generate a new tree whose root is the operator (the symbol just read) and the root's left and right children point to trees T_{1} and T_{2} respectively.
- A point to the root of this new tree is pushed onto the stack.

Example

We are given an expression in postfix notation:

After reading and processing symbols \mathbf{a} and \mathbf{b} :

After reading and processing symbol $\boldsymbol{+}$:

Binary Search Trees

- Assume each node of a binary tree stores a data item
- Assume data items are of some type that be ordered and all items are distinct. No two items have the same value.
- A binary search tree is a binary tree such that
- for every node X in the tree:
- the values of all the items in its left subtree are smaller than the value of the item in X
- the values of all items in its right subtree are greater than the value of the item in X.

Not a binary search tree, but a binary tree

Definition

```
template <class Comparable>
class BinarySearchTree;
template <class Comparable>
class BinaryNode
{
    Comparable element; // this is the item stored in the node
    BinaryNode *left;
    BinaryNode *right;
    BinaryNode( const Comparable & theElement, BinaryNode *It,
                                    BinaryNode *rt )
        : element( theElement ), left( lt ), right( rt ) { }
    friend class BinarySearchTree<Comparable>;
};
```

BinaryNode class

BinarySearchTree class is defined as friend so that it can access the private members of BinaryNode class.

	FundamentalStructures of Computer Science II Bilkent University	31

Operations on BSTs

- Find
- Given a value find the item in the tree that has the same value
- If the item is not found return a special value.
- Find Minimum
- Find the item that has the minimum value in the tree
- Find Maximum
- Find the item that has the maximum value in the tree
- Insert
- Insert a new item in the tree
- Check for duplicates.
- Delete
- Delete an item from the tree.
- Check if the item exists in the tree
- Copy
- Obtain a new binary search tree from a given binary search tree. Both should have the same structure and values.
- Print
- Print the values of all items in the tree using a traversal strategy that is appropriate for the application

[^0]
Most of the operation on binary trees are $\mathrm{O}(\log N)$.

- This is the main motivation for using binary trees rather than using ordinary lists to store items.
Most of the operations can be implemented using recursion.
- Since the average depth of binary search trees is $\mathrm{O}(\log N)$, we usually do not need to worry about running out of stack space while using recursion.

```
// BinarySearchTree class
    template <class Comparable>
    class BinarySearchTree
    {
    public:
            explicit BinarySearchTree( const Comparable & notFound );
            BinarySearchTree( const BinarySearchTree & rhs );
            ~BinarySearchTree( );
            const Comparable & findMin( ) const;
            const Comparable & findMax( ) const;
            const Comparable & find( const Comparable & x ) const;
            bool isEmpty( ) const;
            void printTree( ) const;
            void makeEmpty( );
            void insert( const Comparable & x );
            void remove( const Comparable & x );
            const BinarySearchTree & operator=( const BinarySearchTree & rhs );
            //continued on the next page
```

Fundamental Structures of Computer Science II

```
private:
    BinaryNode<Comparable> *root;
    const Comparable ITEM_NOT_FOUND;
    const Comparable & elementAt( BinaryNode<Comparable> *t ) const;
    void insert( const Comparable & x, BinaryNode<Comparable> * & t ) const;
    void remove( const Comparable & x, BinaryNode<Comparable> * & t )
const;
    BinaryNode<Comparable> * findMin( BinaryNode<Comparable> *t ) const;
    BinaryNode<Comparable> * findMax( BinaryNode<Comparable> *t ) const;
    BinaryNode<Comparable> * find( const Comparable & x,
                                    BinaryNode<Comparable> *t ) const;
    void makeEmpty( BinaryNode<Comparable> * & t ) const;
    void printTree( BinaryNode<Comparable> *t ) const;
    BinaryNode<Comparable> * clone( BinaryNode<Comparable> *t ) const;
};
```

- There are public members and private members in the class definition.
- They have the same but different signatures.
- Private member functions are recursive.
- Public member functions make use of the private member functions.
- For example public find() calls private recursive find() function.

insert

```
Inserting X into tree T
- Proceed down the tree as you would with
a find operation.
- If }X\mathrm{ is found
    - do nothing, OR
    - give an error, OR
    - increment the item count in the node
    else
        - insert X at the last spot on the
        path traversed.
```

Sketch of algorithm for insert

Duplicates can be handled by keeping an extra field In the node record indicating the frequency of occurrence.
202 Spring 2003 Fundamental Structures of Computer Science II

Insertion routine

```
/**
* Internal method to insert into a subtree.
* x is the item to insert.
* t is the node that roots the tree.
* Set the new root.
*/ passing a pointer to a node
template <class Comparable>
void BinarySearchTree<Comparable>::
                                using call by reference
insert( const Comparable & x, BinaryNod&<Comparable> * & t ) const
{
if( }\textrm{t}===NULL 
        t = new BinaryNode<Comparable>( x, NULL, NULL );
    else if( x < t->element )
        insert( x, t-> left );
    else if( t->element < x )
                insert( x, t-> right );
            else
            ; // Duplicate; do nothing
    }
```

| | Fundamental Structures of Computer Science II |
| :--- | :---: | :---: |
| Bilkent University | | 40

Remove

- Deleting an item is more difficult
- There are several cases to consider:
- If the node (that contains the item) is leaf:
- then we can delete it immediately.
- If the node has one child:
- then the node can be deleted after its parent adjust a link to bypass the node.
- If the node has two children:
- then the general strategy is:
- Replace the data of this node with the smallest data on the right subtree of this node.
- Recursively delete that node on the right subtree.

Deleting a node with one child

Deletion of node 4.
before
after

Deleting a node with two children

Deletion of node 2.
before


```
template <class Comparable>
void BinarySearchTree<Comparable> : 
remove( const Comparable & x,
                            BinaryNode<Comparable> * & t ) const
{
    if( t == NULL )
        return; // Item not found; do nothing
    if( x < t->element )
        remove( }x,t->\mathrm{ left );
    else if( t->element < x )
            remove( }x,t->\mathrm{ right );
    else if( t->left != NULL && t->right != NULL ) // Two children
    {
        t->element = findMin( t->right )->element;
        remove( t->element, t->right );
    }
    else
    {
        BinaryNode<Comparable> *oldNode = t;
        t = ( t-> left != NULL ) ? t-> left : t-> right;
        delete oldNode;
    }
}
```


Average case analysis

- The running time of all operations (find, insert, remove, findMin, findMax) are O(d), where d is the depth of the node containing the accessed item
- The average depth over all nodes in a binary search tree is $\mathrm{O}(\log N)$, where N is number of nodes in the tree.
- Assuming that insertion sequences are equally likely.

Average case analysis

- Definition: The sum of depths of all nodes in a tree is called internal path length.
- Computing average internal path length of a BST will give as average depth.
- Assuming all insertion sequences are equally likely.
- Let $D(N)$ denote the internal path length for some tree T of N nodes.
- $D(1)=0$

Derivation of average depth

$D(N)$

$\mathrm{T} \equiv \mathrm{T}_{1}-\operatorname{root}-\mathrm{T}_{2}$
The depth of a node in T_{1} or T_{2} will have one less then
the corresponding node in T .
Therefore, we have the $\mathrm{N}-1$ term in the above equation for $\mathrm{D}(\mathrm{N})$.

Derivation of average depth

Assuming all subtree sizes are equally likely, then the average value of

$$
\begin{aligned}
& \text { both } \mathrm{D}(\mathrm{i}) \text { and } \mathrm{D}(\mathrm{~N}-\mathrm{i}+1) \text { is equal to: } \\
& \qquad \begin{array}{l}
\operatorname{avg}(D(i))=\operatorname{avg}(D(N-i+1))=\frac{1}{N} \sum_{j=0}^{N-1} D(j) \\
\text { This yields: } \\
D(N)=\frac{2}{N}\left[\sum_{j=0}^{N-1} D(j)\right]+N-1
\end{array}
\end{aligned}
$$

The above formula is a recurrence relation. The solution of this yields:

$$
\begin{gathered}
D(N)=O(N \log N) \\
\text { average }_{-} \text {depth }=O\left(\frac{N \log N}{N}\right)=O(\log N)
\end{gathered}
$$

AVL Trees

- A binary search tree with a balance condition
- Balance condition must be easy to maintain.
- Balance condition ensures that the depth of the tree is O(logN).

- AVL Tree definition:

- A tree that is identical to a binary search tree, except that for every node in the tree, the height of the left and right subtrees can differ by at most 1 .
- (The height of an empty tree is defined to be -1).

Example

- Since, height is $O(\log N)$, most operations can be done in $O(\log N)$ time.
- Deletion is simple assuming lazy deletion and it is $\mathrm{O}(\log \mathrm{N})$: we just have to find the node that contains the value
- In lazy deletion, we just invalidate the value, but do not remove the node - hence the balance is not affected.
- Insertion is more difficult
- After inserting a node into proper place in the search tree, the balance of the tree may be violated.
- Therefore, the balancing information in all nodes on the path from inserted node to the root should be updated.
- After this updates, we may find some nodes violating the AVL tree balance condition.
- Therefore the balance should be restored by some operation on the tree.
- We will show that this can be done always by operations, called rotations.

Insertions: sketch

We have to update the balance information in all nodes on the path from inserted node to the root.

Let say the first node on this path (deepest dode) that violates the balance condition is called α
(That means no node below α on the path violated the balance condition).

Then it is enough to do rotation around α to restore the balance in the tree. We do not Need to repeat the rotation on other nodes on the path that may have unbalanced condition.

CS 202, Spring 2003	Fundamental Structures of Computer Science II
Bilkent University	55

Violation conditions

Case 3: Insert to the left subtree of right child of α

Case 4:
Insert to the right subtree of

Balancing Operations: Rotations

- Case 1 and case 4 are symmetric and requires the some operation for balance.
- Case 2 and case 3 are symmetric and requires the some operation for balance.
- Case 1,4 is handle by an operation called single rotation.
- Case 2,3 are handled by an operation called double rotation.

Case 1: Insertion

Case 1: Singe (right) Rotation

Rotation between parent k2 and child k1: child goes up.

Case 4: Single (left) Rotation

- Single rotation preserves the original height:
- The height of the subtree where rotation is performed (root at α) is the same before insertion and after insertion+rotation
- Therefore it is enough to do rotation only at the first node, where imbalance exists, on the path from inserted node to root.
- Therefore the rotation takes $\mathrm{O}(1)$ time.
- Hence insertion is $\mathrm{O}(\operatorname{logN})$

Example: Insertion of items

 $3,2,1,4,5,6,7$ into an empty AVL tree.

Example continued

Example continued

\qquad

Example continued

Double Rotation

- We have solved cases 1 and 4.
- An insertion in these cases requires single left or right rotation, depending on whether the case1 or case 4 occurs.
- Single rotation in cases 3 and 4 do not work.
- It does not rebalance the tree.
- We need a new operation which called double rotation.

Need for Double Rotation

Single rotation does not provide rebalance in cases 2 and 3

Left-Right Double Rotation
 Lift this up:

first rotate left between $\left(k_{1}, k_{2}\right)$,

\qquad

- A left-right double rotation can be done as a sequence of two single rotations:
- $1^{\text {st }}$ rotation on the original tree: a left rotation between left-child and grandchild
- $2^{\text {nd }}$ rotation on the new tree: a right rotation between a node and its left child.

Rotation 1: Single Left rotation

Case 3: Right-Left Double Rotation

Example

- Insert 16, 15, 14, 13, 12, 10, and 8, and 9 to the previous tree obtained in the previous single rotation example.

[^0]: CS 202, Spring 2003

