
1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 1

Trees

CS 202 – Fundamental Structures of
Computer Science II

Bilkent University
Computer Engineering Department

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 2

Outline

Preliminaries
What is Tree?
Implementation of Trees using C++
Tree traversals and applications

Binary Trees
Binary Search Trees

Structure and operations
Analysis

AVL Trees
Splay Trees
B- trees

2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 3

What is a Tree

A tree is a collection of nodes with the following properties:
The collection can be empty.
If collection is not empty, it consists of a distinguished node r, called root,
and zero or more nonempty sub-trees T1, T2, … , Tk, each of whose roots
are connected by a directed edge from r.

The root of each sub-tree is said to be child of r, and r is the
parent of each sub-tree root.
If a tree is a collection of N nodes, then it has N-1 edges.

root

T1
T2 Tk

...

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 4

What is a tree (continued)

A node may have arbitrary number of children (including zero)
Node A above has 6 children: B, C, D, E, F, G.

Nodes with no children are called leaves.
B, C, H, I, P, Q, K, L, M, N are leaves in the tree above.

Nodes with the same parent are called siblings.
K, L, M are siblings since F is parent of all of them.

A

B C D E F G

H I J K L M N

P Q

3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 5

What is a tree (continued)

A path from node n1 to nk is defined as a sequence of nodes n1, n2, …, nk such that ni
is parent of ni+1 (1 ≤i < k)

The length of a path is the number of edges on that path.
There is a path of length zero from every node to itself.
There is exactly one path from the root to each node.

The depth of node ni is the length of the path from root to node ni
The height of node ni is the length of longest path from node ni to a leaf.
If there is a path from n1 to n2, then n1 is ancestor of n2, and n2 is descendent of n1.

If n1 ≠ n2 then n1 is proper ancestor of n2, and n2 is proper descendent of n1.

A

B C D E F G

H I J K L M N

P Q

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 6

Implementation of Trees
struct TreeNode {

Object element;
TreeNode *firstChild;
TreeNode *nextSibling;

};

struct TreeNode {
Object element;
TreeNode *firstChild;
TreeNode *nextSibling;

};

A

B C D E F G

H I J K L M N

P Q

A

NULL

B
NULL

C
NULL

D

H
NULL

NULL

element
firstChild
nextSibling

4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 7

Tree Applications

Tree Applications
There many applications of trees in Computer Science
and Engineering.

Organization of filenames in a Unix File System
Indexing large files in Database Management Systems
Compiler Design.
Routing Table representation for fast lookups of IP
addresses
Search Trees for fast access to stored items

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 8

An example Application: Unix
Directory Structure

Unix directory structure is organized as a tree.

/usr* (1)

korpe* (1) ali* (1)

work* (1) course* (1) junk (4)

paper1.pdf* (2) paper2.pdf* (4) cs202* (1) cs342* (1)

lecture1.ppt (5) lecture2.ppt (3) slides.ppt (6)

course* (1) junk (8)

cs547* (1)

main.cc (3) functions.cc (10)

- An asterisk next to a filename indicates that it is a directory that contains other files.
- A number next to a filename indicates how many disk blocks that file or directory
occupies.

5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 9

/usr

korpe ali

work course junk course junk

cs202 cs342

lecture1.ppt lecture2.ppt slides.ppt

paper1.pdf paper2.pdf cs547

main.cc functions.cc

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 10

/usr

korpe ali

work course junk course junk

cs202 cs342

lecture1.ppt lecture2.ppt slides.ppt

paper1.pdf paper2.pdf cs547

main.cc functions.cc

6

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 11

/usr

korpe ali

work course junk course junk

cs202 cs342

lecture1.ppt lecture2.ppt slides.ppt

paper1.pdf paper2.pdf cs547

main.cc functions.cc

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 12

We want to list files in the directory
We want to computer the size of all files (in a
recursive manner) in the directory.

7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 13

Listing Files
Void FileSystem::listAll (int depth = 0) const
{

printName (depth); /* print name of object */
if (isDirectory())

for each file c in this directory (for each child)
c.listAll(depth+1);

}

Pseudocode to list a directory in a Unix file system

Work
Is done
here!

printName() function prints the name of the object after “depth” number of
tabs -indentation. In this way, the output is nicely formatted on the screen.

Here, the a directory (which is a tree structured) is traversed: Every node
Is visited and a work is done about each node.

The order of visiting the nodes in a tree is important while traversing a tree.

Here, the nodes are visited according to preorder traversal strategy.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 14

Traversal strategies

Preorder traversal
Work at a node is performed before its children are
processed.

Postorder traversal
Work at a node is performed after its children are
processed.

Inorder traversal (for binary trees)
For each node:

First left child is processed, then the work at the node is
performed, and then the right child is processed.

8

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 15

Listing Files - Output
/usr

korpe
work

paper1.pdf
paper2.pdf

course
cs202

lecture1.ppt
lecture2.ppt

cs342
slides.ppt

junk
ali

course
cs547

main.cc
functions.cc

junk

/usr
korpe

work
paper1.pdf
paper2.pdf

course
cs202

lecture1.ppt
lecture2.ppt

cs342
slides.ppt

junk
ali

course
cs547

main.cc
functions.cc

junk

The listing of the files are done
using pre-order traversal.

A node is processed first:
The filename is printed.

Then, the children of the node is
processed starting from the left-most
child.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 16

Traversing a Tree

For some applications, it is more suitable to
traverse a tree using post-order strategy.
As an example we want to computer the size
of the directory which is defined the sum of all
the sizes of the files and directories inside our
directory.
In this case, we want first computer the size
of all children, add them up together with the
size of the current directory and return the
result.

9

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 17

Postorder Traversal
Void FileSystem::size () const
{

int totalSize = sizeOfThisFile();

if (isDirectory())
for each file c in this directory (for each child)

totalSize += c.size();
return totalSize;

}

Pseudocode to calculate the size of a directory

Work
is done
here!

The nodes are visited using postorder strategy.

The work at a node is done after processing each child of that node.
Here, the work is computation of the totalSum, which is obtained
correctly at the last statement above (return totalSize).

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 18

Size of a directory - Output
paper1.pdf
paper2.pdf

work
lecture1.ppt
lecture2.ppt

cs202
slides.ppt

cs342
course
junk

korpe
main.cc
functions.cc

cs547
course
junk

ali
/usr

paper1.pdf
paper2.pdf

work
lecture1.ppt
lecture2.ppt

cs202
slides.ppt

cs342
course
junk

korpe
main.cc
functions.cc

cs547
course
junk

ali
/usr

2
4
7
5
3
9
6
7
17
4
29
3
10
14
15
8
24
54

size of each
directory
or file.

Computation
order

10

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 19

Binary Trees

A binary tree is a tree in which no node can have more than
two children
Average depth of a binary tree is
For a special binary tree, called binary search tree, the
average depth is
The depth can be as large as N-1 in the worst case.

)(NO

)(logNO

root

TL
TR

A binary tree consisting
of a root and

two subtrees TL and TR,
both of which could
possibly be empty.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 20

Binary Trees - Implementation

Binary trees have many important uses.
One of the applications is in compiler design.
Mathematical expressions may be represented as binary
trees in compiler design.
A expression consist of operands and operators that operate
on these operands.

Most operators operate on two operands (+, -, x, …)
Some operators may operate on only one operand (unary minus)
A operand could be a constant or a variable name.

struct BinaryNode {
Object element; // the data in the node
BinaryNode *firstChild; // left child
BinaryNode *nextSibling; // right child

};

struct BinaryNode {
Object element; // the data in the node
BinaryNode *firstChild; // left child
BinaryNode *nextSibling; // right child

};

11

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 21

Expression Trees

+

a

b c

×

× +

×

d e

f

g

+

Expression tree for (a + b × c) + ((d ×e + f) × c)

There are three notations for a mathematical expression:
1) Infix notation : (a + (b × c)) + (((d ×e) + f) × c)
2) Postfix notation: a b c × + d e × f + g * +
3) Prefix notation : + + a × b c × + × d e f g

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 22

Expression Tree traversals

Depending on how we traverse the expression tree,
we can produce one of these notations for the
expression represented by the three.

Inorder traversal produces infix notation.
This is a overly parenthesized notation.
Print out the operator, then print put the left subtree inside
parentheses, and then print out the right subtree inside
parentheses.

Postorder traversal produces postfix notation.
Print out the left subtree, then print out the right subtree, and
then printout the operator.

Preorder traversal produces prefix notation.
Print out the operator, then print out the right subtree, and then
print out the left subtree.

12

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 23

Postorder traversal

+

a

b c

×

× +

×

d e

f

g

+

Expression tree for (a + b × c) + ((d ×e + f) × c)

Postfix notation: a b c × + d e × f + g × +

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 24

Construction an expression tree

Given an expression tree, we can obtain the
corresponding expression in postfix notation
by traversing the expression tree in postorder
fashion.
Now, given an expression in postfix notation,
we will see an algorithm to obtain the
corresponding expression tree.

13

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 25

Sketch of the algorithm

Read the expression (given in postfix notation) one symbol
at a time.
If the symbol is an operand:

We create a one-node tree (that keeps the operand) and push
a pointer to this tree on top of a stack.

If the symbol is an operator:
We fist pop up two pointers from the stack. The pointers point
to trees T1 and T2.
Then we generate a new tree whose root is the operator (the
symbol just read) and the root’s left and right children point to
trees T1 and T2 respectively.
A point to the root of this new tree is pushed onto the stack.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 26

Example

a b + c d e e + × ×

We are given an expression in postfix notation:

Our AlgorithmOur Algorithm

?
Expression tree

Input >

Output >

14

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 27

bottom of stack

stack grows in this directionstack

a b

After reading and processing symbols a and b:

After reading and processing symbol +:

stack

+

a b

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 28

After reading and processing symbols c, d, and e:

stack

+

a b c d e

After reading and processing symbol +:

stack

+

a b c

d e

+

15

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 29

After reading and processing symbol ×:

stack

+

a b

c

d e

+

× After reading and processing last symbol ×:

stack

+

a b c

d e

+

×

×

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 30

Binary Search Trees
Assume each node of a binary
tree stores a data item
Assume data items are of
some type that be ordered and
all items are distinct. No two
items have the same value.

A binary search tree is a binary
tree such that

for every node X in the tree:
the values of all the items in its
left subtree are smaller than
the value of the item in X
the values of all items in its
right subtree are greater than
the value of the item in X.

6

2 8

1 4

3
6

2 8

1 4

3 7

A binary search tree

Not a binary search tree,
but a binary tree

16

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 31

Definition
template <class Comparable>
class BinarySearchTree;

template <class Comparable>
class BinaryNode
{

Comparable element; // this is the item stored in the node
BinaryNode *left;
BinaryNode *right;

BinaryNode(const Comparable & theElement, BinaryNode *lt,
BinaryNode *rt)

: element(theElement), left(lt), right(rt) { }
friend class BinarySearchTree<Comparable>;

};

BinaryNode class

BinarySearchTree class is defined as friend so that it can access the private
members of BinaryNode class.

A class template is used so that we
don’t need to define a separate class
for each element type.

The type of element here is generic
“Comparable”.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 32

Operations on BSTs

Find
Given a value find the item in the tree that has the same value.
If the item is not found return a special value.

Find Minimum
Find the item that has the minimum value in the tree

Find Maximum
Find the item that has the maximum value in the tree

Insert
Insert a new item in the tree.

Check for duplicates.
Delete

Delete an item from the tree.
Check if the item exists in the tree.

Copy
Obtain a new binary search tree from a given binary search tree. Both should have the same
structure and values.

Print
Print the values of all items in the tree using a traversal strategy that is appropriate for the
application

17

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 33

Most of the operation on binary trees are
O(logN).

This is the main motivation for using binary trees rather
than using ordinary lists to store items.

Most of the operations can be implemented
using recursion.

Since the average depth of binary search trees is
O(logN), we usually do not need to worry about running
out of stack space while using recursion.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 34

// BinarySearchTree class

template <class Comparable>
class BinarySearchTree
{
public:

explicit BinarySearchTree(const Comparable & notFound);
BinarySearchTree(const BinarySearchTree & rhs);
~BinarySearchTree();

const Comparable & findMin() const;
const Comparable & findMax() const;
const Comparable & find(const Comparable & x) const;
bool isEmpty() const;
void printTree() const;

void makeEmpty();
void insert(const Comparable & x);
void remove(const Comparable & x);

const BinarySearchTree & operator=(const BinarySearchTree & rhs);

//continued on the next page

18

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 35

private:
BinaryNode<Comparable> *root;
const Comparable ITEM_NOT_FOUND;

const Comparable & elementAt(BinaryNode<Comparable> *t) const;

void insert(const Comparable & x, BinaryNode<Comparable> * & t) const;
void remove(const Comparable & x, BinaryNode<Comparable> * & t)

const;
BinaryNode<Comparable> * findMin(BinaryNode<Comparable> *t) const;
BinaryNode<Comparable> * findMax(BinaryNode<Comparable> *t) const;
BinaryNode<Comparable> * find(const Comparable & x,

BinaryNode<Comparable> *t) const;
void makeEmpty(BinaryNode<Comparable> * & t) const;
void printTree(BinaryNode<Comparable> *t) const;
BinaryNode<Comparable> * clone(BinaryNode<Comparable> *t) const;

};

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 36

There are public members and private
members in the class definition.

They have the same but different signatures.

Private member functions are recursive.
Public member functions make use of the
private member functions.
For example public find() calls private
recursive find() function.

19

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 37

/**
* Find item x in the tree.
* Return the matching item or ITEM_NOT_FOUND if not found.
*/
template <class Comparable>
const Comparable & BinarySearchTree<Comparable>::

find(const Comparable & x) const
{

return elementAt(find(x, root));
}

template <class Comparable>
const Comparable & BinarySearchTree<Comparable>::
elementAt(BinaryNode<Comparable> *t) const
{

if(t == NULL)
return ITEM_NOT_FOUND;

else
return t->element;

}

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 38

/**
* Internal method to find an item in a subtree.
* x is item to search for.
* t is the node that roots the tree.
* Return node containing the matched item.
*/
template <class Comparable>
BinaryNode<Comparable> *
BinarySearchTree<Comparable>::
find(const Comparable & x, BinaryNode<Comparable> *t) const
{

if(t == NULL)
return NULL;

else if(x < t->element)
return find(x, t->left);

else if(t->element < x)
return find(x, t->right);

else
return t; // Match

}

20

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 39

insert
Inserting X into tree T

- Proceed down the tree as you would with
a find operation.
- If X is found

- do nothing, OR
- give an error, OR
- increment the item count in the node

else
- insert X at the last spot on the
path traversed.

Inserting X into tree T

- Proceed down the tree as you would with
a find operation.
- If X is found

- do nothing, OR
- give an error, OR
- increment the item count in the node

else
- insert X at the last spot on the
path traversed.

Sketch of algorithm for insert

6

2 8

1 4

3 5

Insert 5

Duplicates can be handled by keeping an extra field
In the node record indicating the frequency of occurrence.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 40

Insertion routine
/**

* Internal method to insert into a subtree.
* x is the item to insert.
* t is the node that roots the tree.
* Set the new root.
*/
template <class Comparable>
void BinarySearchTree<Comparable>::
insert(const Comparable & x, BinaryNode<Comparable> * & t) const
{

if(t == NULL)
t = new BinaryNode<Comparable>(x, NULL, NULL);

else if(x < t->element)
insert(x, t->left);

else if(t->element < x)
insert(x, t->right);

else
; // Duplicate; do nothing

}

passing a pointer to a node
using call by reference

21

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 41

6

2 8 NULL NULL

1 NULL NULL 4 NULL

3 NULL NULL

t
Tree node

5 NULL NULL

New Node

t

t

Inserting Item 5 to the Tree

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 42

Remove

Deleting an item is more difficult
There are several cases to consider:

If the node (that contains the item) is leaf:
then we can delete it immediately.

If the node has one child:
then the node can be deleted after its parent adjust a link to
bypass the node.

If the node has two children:
then the general strategy is:

Replace the data of this node with the smallest data on
the right subtree of this node.
Recursively delete that node on the right subtree.

22

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 43

Deleting a node with one child

6

2 8

1 4

3

6

2 8

1 4

3

Deletion of node 4.

before after

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 44

Deleting a node with two children

6

2 8

1 5

3

4

6

3 8

1 5

3

4Deletion of node 2.

before after

23

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 45

template <class Comparable>
void BinarySearchTree<Comparable>::
remove(const Comparable & x,

BinaryNode<Comparable> * & t) const
{

if(t == NULL)
return; // Item not found; do nothing

if(x < t->element)
remove(x, t->left);

else if(t->element < x)
remove(x, t->right);

else if(t->left != NULL && t->right != NULL) // Two children
{

t->element = findMin(t->right)->element;
remove(t->element, t->right);

}
else
{

BinaryNode<Comparable> *oldNode = t;
t = (t->left != NULL) ? t->left : t->right;
delete oldNode;

}
}

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 46

Average case analysis

The running time of all operations (find,
insert, remove, findMin, findMax) are O(d),
where d is the depth of the node containing
the accessed item
The average depth over all nodes in a binary
search tree is O(logN), where N is number of
nodes in the tree.

Assuming that insertion sequences are equally likely.

24

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 47

Average case analysis

Definition: The sum of depths of all nodes in
a tree is called internal path length.
Computing average internal path length of a
BST will give as average depth.

Assuming all insertion sequences are equally likely.

Let D(N) denote the internal path length for
some tree T of N nodes.

D(1) = 0

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 48

Derivation of average depth

N nodes

D(N)

i
Nodes

N-i+1
nodes

root root

D(N) = D(i) + D(N-i+1) + N - 1

N-1 nodes

1 node

T

T1 T2

T ≡ T1 – root – T2
The depth of a node in T1 or T2 will have one less then

the corresponding node in T.
Therefore, we have the N - 1 term in the above equation for D(N).

25

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 49

Derivation of average depth

1)(2)(
1

0
−+








= ∑

−

=

NjD
N

ND
N

j

∑
−

=

=+−=
1

0
)(1))1(())((

N

j
jD

N
iNDavgiDavg

Assuming all subtree sizes are equally likely, then the average value of
both D(i) and D(N-i+1) is equal to:

This yields:

)(loglog_

)log()(

NO
N
NNOdepthaverage

NNOND

=





=

=

The above formula is a recurrence relation. The solution of this yields:

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 50

AVL Trees

A binary search tree with a balance condition
Balance condition must be easy to maintain.
Balance condition ensures that the depth of the tree is
O(logN).

AVL Tree definition:
A tree that is identical to a binary search tree, except
that for every node in the tree, the height of the left and
right subtrees can differ by at most 1.

(The height of an empty tree is defined to be -1).

26

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 51

Example

5

2 8

1 4

3

7 7

2 8

1 4

3 5

An AVL tree

A binary search tree, but
not an AVL tree

3

2

1 0

1

0

0

= height(subtree)

0 0

10

2 0

3 Node that does not
satisfy the balance

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 52

Minimum number of nodes in an AVL
of height h

Empty
Tree

Height
h

Minimum
Number of
Nodes: S(h)

-1 0 1 2 3

0 1 2 4 7

h: Height of Tree
S(h): Minimum number of nodes in the Tree

S(h) = S(h-1) + S(h-2) +1

27

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 53

Minimum number of nodes in an AVL
of height h

S(h) S(h)
S(h+1)

Height = h Height = h+2S(h+2) = S(h)+S(h+1)+1

S(h) = S(h-1)+S(h-2)+1

Height of an AVL tree is O(logN)

S(h) is closely related to the Fibonacci Numbers

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 54

Since, height is O(logN), most operations can be done in O(logN)
time.
Deletion is simple assuming lazy deletion and it is O(logN): we
just have to find the node that contains the value

In lazy deletion, we just invalidate the value, but do not remove the
node – hence the balance is not affected.

Insertion is more difficult
After inserting a node into proper place in the search tree, the
balance of the tree may be violated.
Therefore, the balancing information in all nodes on the path from
inserted node to the root should be updated.
After this updates, we may find some nodes violating the AVL tree
balance condition.
Therefore the balance should be restored by some operation on the
tree.
We will show that this can be done always by operations, called
rotations.

28

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 55

Insertions: sketch

Path to the root from inserted node.

We have to update the balance information
in all nodes on the path from inserted node to
the root.

Let say the first node on this path (deepest
dode) that violates the balance condition is
called α

(That means no node below α on the path violated the
balance condition).

Then it is enough to do rotation around α to
restore the balance in the tree. We do not
Need to repeat the rotation on other nodes
on the path that may have unbalanced condition.

inserted node

root

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 56

Violation conditions

T2 T3T1 T4

+1

Insert node

T2 T3T1 T4

+2

After insert

T2 T3T1 T4

+1

Insert node

T2 T3T1 T4

+2

After insert

Case 1:
Insert to the

left subtree of
left child of α

Case 2:
Insert to the

right subtree of
left child of α

α

α

+1 means: height (left_subtree)
- height (right_subtree)

29

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 57

Violation conditions

T2 T3T1 T4

-1

insert node

T2 T3T1 T4

-2

After insert

T2 T3T1 T4

-21

insert node

T2 T3T1 T4

-2

After insert

Case 3:
Insert to the

left subtree of
right child of α

Case 4:
Insert to the

right subtree of
right child of α

α

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 58

Balancing Operations: Rotations

Case 1 and case 4 are symmetric and
requires the some operation for balance.
Case 2 and case 3 are symmetric and
requires the some operation for balance.

Case 1,4 is handle by an operation called single
rotation.
Case 2,3 are handled by an operation called
double rotation.

30

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 59

Case 1: Insertion

Z

k2

k1

X Y

+1

1

Z

k2

k1

X
Y

+2

2

1

1

After
insertion

(intially X, Y, X are
subtrees, which may
possible be empty)

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 60

Case 1: Singe (right) Rotation

Z

k2

k1

k1

k2

X
Y

+2
0

2

1

1

After
Rotation

Hold up!

Rotation between parent k2 and child k1:
child goes up.

k1 < k2

X
Y Z

Rebalanced subtree

31

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 61

Case 4: Single (left) Rotation

Z

k1 k2

k1

Y

-2 0

After
Rotation

k2

X
Z

YX

2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 62

Single rotation preserves the original height:
The height of the subtree where rotation is
performed (root at α) is the same before insertion
and after insertion+rotation

Therefore it is enough to do rotation only at
the first node, where imbalance exists, on
the path from inserted node to root.
Therefore the rotation takes O(1) time.
Hence insertion is O(logN)

32

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 63

Example: Insertion of items
3,2,1,4,5,6,7 into an empty AVL tree.

3 3

2

3

2

1 2

1 3

After single right rotation

After inserting 1

After inserting 2After inserting 3
Rotate right

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 64

Example continued

2

1 3

5

4 53

2

1 4

After inserting 5 After single left rotation
between 3 and 4.

Rotate left

2

1 3

4

After inserting 4

33

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 65

Example continued

53

2

1 4

6

61

4

52

3

After inserting 6 After singe left rotation
between 2 and 4.

Rotate left

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 66

Example continued

61

4

52

3

7

Rotate left

751 3

4

2 6

After inserting 7

After singe left rotation
between 5 and 6.

34

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 67

Double Rotation

We have solved cases 1 and 4.
An insertion in these cases requires single left
or right rotation, depending on whether the case1
or case 4 occurs.

Single rotation in cases 3 and 4 do not work.
It does not rebalance the tree.

We need a new operation which called
double rotation.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 68

Need for Double Rotation

Z

X
Y

-2

Z

Y

X

+2

Single rotation does not provide rebalance in cases 2 and 3

2 2

k2

k1

k1

k2

35

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 69

Case 2

k2

+2

2

≡

k3

+2
k1 ≤ k2 ≤ k3

B, C and k2 makes Y

One of B or C is at the same level with A,
the other one is one level down.

Which one does not matter. So let say B is one level down (item is inserted into B)

Z

X

Y

D
(Z)

A
(X)

B
C

Re-label

Insertion path

k1 k1

k2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 70

Left-Right Double Rotation

k3
+2

D

A

B
C

k1

k2

Lift this up:
first rotate left between (k1,k2),
then rotate right betwen (k3,k2)

k2
0

A B
C

D

After left-right double rotation

k1 k3

36

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 71

A left-right double rotation can be done as a
sequence of two single rotations:

1st rotation on the original tree:
a left rotation between left-child and grandchild
2nd rotation on the new tree:
a right rotation between a node and its left child.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 72

Rotation 1: Single Left rotation

k3
+2

D

A

B
C

k1

k2

k3
+2

D

A

k2

k1

B

C

37

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 73

Rotation 2: Single Right rotation

k3
+2

D

A

k2

k1

B

C

k2
0

k1 k3

A B
C

D

Result is Balanced AVL tree
Resulting tree has the same height with the

original tree before insertion

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 74

Case 3: Right-Left Double Rotation

k1
+2

D

A

B
C

k3

k2

k2
+2

k1 k3

A B
C

D

After inserting After right-left double rotation

2

38

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 75

Example

Insert 16, 15, 14, 13, 12, 10, and 8, and 9 to the
previous tree obtained in the previous single rotation
example.

51 3

4

2 6

16

7

After inserting 16

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 76

51 3

4

2 6

7

After inserting 15

51 3

2 6

7 16

15

4After right-left double rotation
among 7, 16, 15

15

16

k1

k3

k2

Case 3

39

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 77

51 3

2 6

16

15

4

14

k1

k2

k3

7

1 3

2 7

4

k1 k3

5

6

1614

15

k2

After inserting 14

After right-left double rotation
among 6,15,7

Case 3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 78

1 3

2 7

4 k1

5

6

16

15

k2

13

14

Case 4

4

5

6

31

2

7

16

13

14

After inserting 13

After single left rotation
between 4 and 7

15

40

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 79

4

5

6

31

2

7

1614

15

12

13

4

5

6

31

2

k2

k1

k1

12

16

7

15

After inserting 12

After singe right rotation
between 14 and 13

14

13

k2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 80

4

5

6

31

2 k1 16

7

15

14

13

k2

11

12

4

5

6

31

2 12

11 14 16

15

13

7

After inserting 11

After single right rotation
between 15 and 13.

41

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 81

4

5

6

31

2 12

14 16

15

13

7

10

11

4

5

6

31

2

14 16

15

13

7

10 12

11

After inserting 10

After single right rotation
Between 12 and 11

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 82

4

5

6

31

2

14 16

15

13

7

12

11

8

10

After inserting 8

42

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 83

4

5

6

31

2

14 16

15

13

7

12

11

10

4

5

6

31

2

14 16

15

13

7

12

11

8 10

9

After inserting 8

After left-right double
rotation

among 10, 8 and 9

9

8

