
1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 1

Splay trees

CS 202 – Fundamental Structures of
Computer Science II

Bilkent University
Computer Engineering Department

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 2

Spay Trees

So far we have seen:
BST: binary search trees

Worst-case running time per operation = O(N)
Worst case average running time = O(N)

Think about inserting a sorted item list
AVL tree:

Worst-case running time per operation = O(logN)
Worst case average running time = O(logN)

We will now wee a new data structure, called splay
trees, for which:

Worst-case running time of one operation = O(N)
Worst case running time of M operations = O(MlogN)

O(logN) amortized running time.
A spay tree is a binary search tree.

2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 3

Splay trees

A splay tree guarantees that, for M
consecutive operations, the total running time
is O(MlogN).
A single operation on a splay tree can take
O(N) time.

So the bound is not as strong as O(logN) worst-
case bound in AVL trees.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 4

Amortized running time

Definition: For a series of M consecutive
operations:

If the total running time is O(M*f(N)), we say that
the amortized running time (per operation) is
O(f(N)).

Using this definition:
A splay tree has O(logN) amortized cost (running
time) per operation.

3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 5

Splay tree idea:

Try to make the worst-case situation occur less
frequently.

In a Binary search tree, the worst case situation can occur
with every operation. (while inserting a sorted item list).
In a splay tree, when a worst-case situation occurs for an
operation:

The tree is re-structured (during or after the operation), so that the
subsequent operations do not cause the worst-case situation to
occur again.

The basic idea of splay tree is:
After a node is accessed, it is pushed to the root by a series of
AVL tree-like operations (rotations).
For most applications, when a node is access, it is likely that it
will be accessed again in the near future.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 6

Splay tree idea:

By pushing the accessed node to the root the
tree:

1) If the accessed node is accessed again, the
future accesses will be much less costly.
2) During the push to the root operation, the tree
might be more balanced than the previous tree.

Accesses to other nodes can also be less costly.

4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 7

Splay tree: a bad method for pushing
to the root

A simple idea, which is not working, is:
When a node K is accessed, push it towards the
root by the following algorithm:

On the path from k to root:
Do a singe rotation between node k’s parent and node k
itself.

Every single rotation will push k to one level higher.
Finally, it will reach to the root.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 8

Splay tree: a bad method for pushing
to the root

F
k4

E

D

A

k1

BB

k5

k3

k2

access path

Accessing node k1

5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 9

F
k4

E

D

B

k5

k3

After rotation between k2 and k1

A

k2

Pushing k1 to the root

C

k1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 10

F
k4

E

B

k5

k1

After rotation between k3 and k1

A

Pushing k1 to the root

k2

DC

k3

6

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 11

F
k1

B

k5

After rotation between k4 and k1

A

Pushing k1 to the root

k2

DC

E

k4

k3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 12

k1

B

After rotation between k5 and k1

A

Pushing k1 to the root

k2

DC

F

k3

k5

E

k4

k1 is now root

But k3 is nearly as deep as k1 was.
An access to k3 will push some other node nearly as deep as k3 is.

So, this method does not work!

7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 13

Splaying – A method that works

Now, we will give a method that works.
It will push the accessed node to the root.
With this pushing operation it will also balance the
tree somewhat.

So that further operations on the new will be less costly
compared to operations that would be done on the
original tree.

A deep tree will be spayed:
Will be less deep, more wide.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 14

Splaying - algorithm

Assume we access a node.
We will splay along the path from access
node to the root.
At every splay step:

We will selectively rotate the tree.
Selective operation will depend on the structure of
the tree around the node around which rotation
will be performed

8

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 15

Splaying - algorithm

Let X be a non-root node on the access path at which we are
rotating.

If parent of X is root,
We rotate between X and root. X becomes root. And we are done!

Otherwise, X has a parent P which is non-root.
X certainly has also a grand-parent G.

There two cases to consider
Zig-zag case: P is left child of G and X is right child of P
Zig-zig case: P is left child of G and X is left child of P

We will have also symmetric cases of the two cases above. The
operations for these symmetric cases will be very similar to the
operations for the two cases above. Symetric cases are:

P is right child of G and X is left child of P
P is right child of G and X is right child of P.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 16

Splaying - algorithm

Depending on the case that is determined
from the interconnection of X, P, and G, we
will perform one of the two operations we will
describe below:

Zig-zag case:
Perform double rotation (an AVL tree operation).

Zig-zig case
Transform the tree to an other one as described below.

9

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 17

Case 1: Zig-zag case operation

CB

X
A

P

G

D
P

X

G

A B C D

double-rotation between
G, P, and X

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 18

Case 2: Zig-zig case operation

P

G

D

X
C

BA X

D

A

P

C

G

B

10

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 19

A general example:

F
k4

E

D

A

k1

BB

k5

k3

k2

node k1 is accessed and
it will be pushed to root.

X

P

G

This is case 1: Zig-zag case
Double rotate

Original tree

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 20

A general example:

F
k4

E

A B

k5

k1

After double rotation

k2

C D

k3

X

P

G

This is case 2:
Requires

zig-zig case
operation

11

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 21

A general example – final tree

k1

After zig-zig
case operation

E F

k5

k4

A B

k2

C D

k3

k1 is root

The tree is more balanced than the original tree
The depth of the new tree is nearly
half of the depth of the original tree

New tree

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 22

A specific example
Assume 7,6,5,4,3,2,1 are inserted into an empty
splay tree.

7

6

5

4

3

2

1

Splaying at
node with

item 1

X

P

G

7

6

5

4

1 2

3

7

6

1

4

5
X

P

G

2

3

1

6

7

2

3

4

5

X

P

G

original tree
new tree

after splaying

