
1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 1

Hashing

CS 202 – Fundamental Structures of
Computer Science II

Bilkent University
Computer Engineering Department

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 2

Hashing

We will now see a data structure that will allow the
following operations to be done in O(1) time:

Insertion
Deletion
Find

This data structure,however, is not efficient in
operation that require any ordering information
among the elements

Sort
Find minimum
Find maximum

2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 3

Hashing

Hashing requires a Hash Table to be used.
There may various methods in implementing a hash table, but
the most simplest one is using an array of some fixed size.
The maximum size of the array is TableSize.
The items that are stored in the array (hash table) are indexed by
values from 0 to TableSize – 1.
A stored item need to have a data member, called A stored item need to have a data member, called keykey, that will , that will
be used in computing the index value for the item. be used in computing the index value for the item.

For student items, key could be the For student items, key could be the student IDstudent ID or or student Namestudent Name
For account balance records in a bank, the key could be the accoFor account balance records in a bank, the key could be the account unt
number of the customer, ….number of the customer, ….

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 4

Hashing- General Idea

When an item needs to be inserted into the Hash
Table:

The key of the item is mapped into an index value (between 0
and TableSize -1) using a special function, called Hash Table.
The item is then stored in the array at that index value.
If more than one key (items) are mapped into the same index
value, then we say that we have a collision.
Collisions must be resolved. We need to handle collisions.

When an item needs to be found (searched)
The key of the item is mapped into an index value again and
the item is tried to be retrieved from that index of the array. If
the item could not be stored at the location (at that index),
then appropriate error message could be returned.

3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 5

Hash Function

Hash function objectives:
Should be simple to compute
Theoretically: Should ensure (or try) that any two distinct keys
are mapped into different hash table entries (cells).
Practically: Should distribute the keys evenly among the cells.

Hash
Function

key Index into hash table

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 6

Example

Hash
Function

0
1
2
3
4
5
6
7
8
9

mary 28200

dave 27500

phil 31250

john 25000
Items

Hash
Table

key

key

Key could be an integer, a string, etc. Here it is a string.

mary 28200mary 28200

dave 27500dave 27500

phil 31250phil 31250

john 25000john 25000

4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 7

Hash Function

If the keys are integers:
Hash(Key) = Key mod TableSize
Table size of prime.

If the keys are strings:
It is more difficult.
The keys need to be well-distributed.
Table should be well utilized.

We will give 3 functions

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 8

Hash Function for Strings

Method: Sum up the ascii values of the characters of the key!
This method causes some part of the hash table to be unused.

A case for which the functions do not work well:
Let say TableSize is 10,007 (a prime number).
Assume all keys are 8 characters long.
8 x 127 = 1016 different 8 characters combinations possible.
Only the hash values in the range 0..1016 will be generated.
The rest of the table will be unused.

int hash(const string &key, int tableSize)
{

int hasVal = 0;

for (int i = 0; i < key.length(); i++)
hashVal += key[i];

return hashVal % tableSize;
}

int hash(const string &key, int tableSize)
{

int hasVal = 0;

for (int i = 0; i < key.length(); i++)
hashVal += key[i];

return hashVal % tableSize;
}

Function 1

5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 9

Hash function for strings

The functions uses the first 3 characters of the key string.
Computes the number of English words that can be generated by
the first 3 characters.

26 English alphabet character + 1 blank symbol = 27 symbols are
represented by a character.
Therefore there are 26 * 26 * 26 = 17576 different English words that can be
theoretically generated.
However, English dictionary contains 2851 three-character valid English
words.

Therefore, this function also does not utilize the entire hash table
and does not distribute the keys randomly to cells. Some cells are
always empty.

int hash (const string &key, int tableSize)
{

return (key[0] + 27 * key[1] + 729 key[2]) % tableSize;
}

Function 2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 10

Hash function for strings:
int hash (const string &key, int tableSize)
{

int hashVal = 0;

for (int i = 0; i < key.length(); i++)
hashVal = 37 * hashVal + key[i];

hashVal %=tableSize;
if (hashVal < 0) /* in case overflows occur in computation

*/
hashVal += tableSize;

return hashVal;
};

∑
−

=

⋅−−=
1

0

37]1[)(
KeySize

i

iiKeySizeKeykeyhash

6

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 11

Hash function for strings:

a l ikey

KeySize = 3;

98 108 105

hash(“ali”) = (105 * 1 + 108*37 + 98*372) % 10,007 = 8172

0 1 2 i

key[i]

hash
function

ali
……

……

0
1
2

8172

10,006 (TableSize)

“ali”

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 12

Resolving Collisions

When two or more different keys are mapped
to the same hash value (index), this is called
collision.

We have to find some way of storing the items
mapped to this hash value.

We have a single array cell at the hash value index that
can store only a single item

There are various methods to resolve
collisions.

7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 13

Separate Chaining

Method is
Keep a list of items (elements) that hash to the same
value.
The array cell which has the hash-value as the index,
will have a pointer to the first element of the list.
When a new item is to be inserted into the list, it can be
inserted to the front of the list

We don’t need to traverse to the end of the list.
If duplicate items are to be inserted:

A reference count can be kept at each item node, that
points how many items are present at that node.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 14

Separate Chaining – an Example

0
1
2
3
4
5
6

7
8
9

0

81 1

64 4
25
36 16

49 9

We have items (keys): 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

hask(key) = key % 10.

8

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 15

#include "vector.h"
#include "mystring.h"
#include "LinkedList.h“

template <class HashedObj>
class HashTable
{
public:
explicit HashTable(const HashedObj & notFound, int size = 101);
HashTable(const HashTable & rhs)
: ITEM_NOT_FOUND(rhs.ITEM_NOT_FOUND), theLists(rhs.theLists) { }

const HashedObj & find(const HashedObj & x) const;

void makeEmpty();
void insert(const HashedObj & x);
void remove(const HashedObj & x);

const HashTable & operator=(const HashTable & rhs);
private:
vector<List<HashedObj> > theLists; // The array of Lists
const HashedObj ITEM_NOT_FOUND;

};

int hash(const string & key, int tableSize);
int hash(int key, int tableSize);

Hash Table
Class for
Separate
Chaining

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 16

/* A hash routine for string objects. */
int hash(const string & key, int tableSize)

{
int hashVal = 0;

for(int i = 0; i < key.length(); i++)
hashVal = 37 * hashVal + key[i];

hashVal %= tableSize;
if(hashVal < 0)

hashVal += tableSize;

return hashVal;
}

/** A hash routine for ints */
int hash(int key, int tableSize)

{
if(key < 0) key = -key;
return key % tableSize;

}

Hash Table
Hash()

Member function

9

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 17

/**
* Construct the hash table.
*/

template <class HashedObj>
HashTable<HashedObj>::HashTable(const HashedObj &

notFound, int size)
: ITEM_NOT_FOUND(notFound), theLists(nextPrime(size))

{ }

/**
* Make the hash table logically empty.
*/

template <class HashedObj>
void HashTable<HashedObj>::makeEmpty()
{

for(int i = 0; i < theLists.size(); i++)
theLists[i].makeEmpty();

}

}

Hash Table
Constructor

And
makeEmpty
operations

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 18

/**
* Construct the hash table.
*/

template <class HashedObj>
HashTable<HashedObj>::HashTable(const HashedObj &

notFound, int size)
: ITEM_NOT_FOUND(notFound), theLists(nextPrime(size))

{ }

/**
* Make the hash table logically empty.
*/

template <class HashedObj>
void HashTable<HashedObj>::makeEmpty()
{

for(int i = 0; i < theLists.size(); i++)
theLists[i].makeEmpty();

}

}

Hash Table
Constructor

And
makeEmpty
operations

10

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 19

/**
* Insert item x into the hash table. If the item is
* already present, then do nothing.
*/

template <class HashedObj>
void HashTable<HashedObj>::insert(const HashedObj & x)
{

List<HashedObj> & whichList = theLists[hash(x, theLists.size())];
ListItr<HashedObj> itr = whichList.find(x);

if(itr.isPastEnd())
whichList.insert(x, whichList.zeroth());

}

Hash Table
Insert

operation

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 20

/**
* Remove item x from the hash table.
*/

template <class HashedObj>
void HashTable<HashedObj>::remove(const HashedObj & x)
{

theLists[hash(x, theLists.size())].remove(x);
}

Hash Table
remove

operation

11

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 21

/**
* Find item x in the hash table.
* Return the matching item or ITEM_NOT_FOUND if not found
*/

template <class HashedObj>
const HashedObj & HashTable<HashedObj>::find(const HashedObj & x) const
{

ListItr<HashedObj> itr;
itr = theLists[hash(x, theLists.size())].find(x);
if(itr.isPastEnd())

return ITEM_NOT_FOUND;
else

return itr.retrieve();
}

Hash Table
find

operation

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 22

Linked list solution for collision resolution can
be replaces by:

Binary search tree
An other hash table.
….

Load factor λ definition:
Ratio of number of elements (N) in a hash table to the
hash TableSize.

λ = N/TableSize

12

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 23

The average length of a list is λ
Effort required for search

Unsuccessful:
We have to traverse the list, so we need to examine λ nodes on
the average.

Successful search:
Hash function computation (O(1)) – constant, 1 node
processing for the item found, x nodes processing for other
items in the list.
x = (N-1) / M = λ-1 / M
(N: number of nodes, M: number of lists). M is large.
So, x ~= λ
On the average, we need to check half of the other nodes
while searching for a certain element.
So the total cost is: 1 + λ/2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 24

General Rules for separate chaining

Not the TableSize,but the load factor (λ) is
important in defining the cost of operations.
TableSize should be as large the number of
expected elements in the hash table.

To keep load factor around 1.

TableSize should be prime for even
distribution of keys to hash table cells.

