
1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 1

Hashing - 2

CS 202 – Fundamental Structures of  
Computer Science II

Bilkent University
Computer Engineering Department

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 2

Outline

Collision Resolution Techniques
Separate Chaining – (we have seen this)
Open Addressing

Linear Probing
Quadratic Probing
Double Hashing

Rehashing
Extendible Hashing



2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 3

Open Addressing

Separate chaining method was using linked 
lists. 

Requires implementation of a second data structures
For some languages, creating new nodes (for linked 
lists) is expensive and slows down the system.

In open addressing: 
All items are stored in the hash table itself. 
If a collision occurs, alternative cells are tried until an 
empty cell is found.  

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 4

Open Addressing

The cells that are tried successively can be 
expressed formally as: 

h0(x), h1(x), h2(x), …
h0(x) is the initial cells that causes a collision. 
h1(x), h2(x), …are alternative cells.

hi(x) = (hash(x) + f(i)) mode TableSize
f(i) is collision resolution strategy (function). 
f(0) = 0.  



3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 5

Open Addressing

There are varies methods as open 
addressing schemes: 

Linear Probing
hash(x) = hash(x)  +  f(i) = i,    where i >= 0

Quadratic Probing
hash(x) = hash(x)  +  f(i) = i2,,    where i >= 0

Double Hashing
hash(x) = hash1(x) +  i · hash2(x),    where i >= 0 

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 6

Linear Probing

In linear probing, f is a linear function of i. 
Typically f(i) = i. 
When a collision occurs, cells are tried 
sequentially in search of an empty cell. 

Wrap around when end of array is reached. 

Example: 
Insert items: 89, 18, 49, 58, 69 into an empty hash table. 
Table size is 10. 
Hash function is hash(x) = x mod 10. 
Collision resolution strategy is f(i) = i; 



4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 7

Example

89

18

58

49

After 
inserting 

58

898989899

1818188

7

6

5

4

3

692

581

49490

After 
inserting 

69

After 
inserting 

49

After 
inserting 

18

After 
inserting 

89

Empty 
Table

Cell 
number

Primary cluster cells: 8,9,0,1,2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 8

…..

2

1

h3(x)

410969

409858

310949

1818

1989

Number of 
Probesh2(x)h1(x)h0(x)x

Keys



5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 9

Primary Clustering

Blocks of occupied cells (a cluster) are 
starting forming
A key that is hashed into the cluster, will 
requires several attempts to resolve the 
collision. After several attempts it will add up 
to the cluster, making the cluster bigger. 
This is called primary clustering. 

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 10

factor load is 

Probes of Number Expected

Searchs Succesful for

Searchs lUnsuccesfu and Insertions for

λ

λ

λ









−

+









−

+

)1(
11

2
1

)1(
11

2
1

2

Performance



6

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 11

Collision Resolution Analysis

Assume collision resolution is random. 
f(i) = a random number between 0 and TableSize-1

Load factor is λ (fraction of cells that are full)
Fraction of cells that are empty is 1-λ
Then expected number of cells to probe for 
unsuccessful search is: 1/ (1-λ)

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 12

Cost of average successful searcgh

The cost of a successful search of item x is: 
Equal to the Cost of inserting that item x (that was done 
previously). 

When we insert items, load factor increasing, hence the 
insertion cost of later items is bigger
Compute average cost of N items from the insertion cost of N 
items. 

λ to 0 from changing  is factor load the Therefore,
λ :is factor load the inserted, is that element last the After

0 : is factor load the table,empty  For

                  







−

=







−∫

=

=
λλλ

λ

1
1ln1

1
11

0x

dx
x

x



7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 13

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5*(1+(1/(1-x)**2))
0.5*(1+(1/(1-x)))

1/(1-x)
(1/x)*log(1/(1-x))

Linear probing: unsuccessful search
Linear probing: successful search

Random probing: unsuccessful search
Random probing: successful search

Load Factor versus Number of Probes

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 14

Linear Probing

As a rule of thumb:
Linear probing is bad idea if load factor is 
expected to grow beyond 0.5
Rehashing should be used to grow the hash table 
if load factor is more than 0.5 and linear hashing 
is wanted to be used.

Comments
Linear probing causes primary clustering 
Simple collision resolution function to evaluate. 



8

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 15

Quadratic Probing

Eliminates primary clustering
Collision resolution function is a quadratic 
function

f(i) = i2

Causes secondary clustering
Rule of thumbs for using quadratic probing

TableSize should be prime
Load factor should be less than 0.5, otherwise 
table needs to rehashed. 

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 16

Example

89

18

58

49

After 
inserting 

58

898989899

1818188

7

6

5

4

693

582

1

49490

After 
inserting 

69

After 
inserting 

49

After 
inserting 

18

After 
inserting 

89

Empty 
Table

Cell 
number

Primary clusters eliminated. 



9

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 17

…..h3(x)

330969

329 858

20949

1818

1989

Number of 
Probesh2(x)h1(x)h0(x)x

Keys

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 18

Quadratic Probing

There is no guarantee to find an empty cell is 
table is more than half full. 
If table is less than half full, it is guaranteed 
that we can find an empty cell by quadratic 
probing where we can insert a colliding item. 

Table size must be prime to have this condition hold. 



10

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 19

Theorem
If quadratic probing is used, and the table 
size is prime, than a new element can always 
be inserted if the table is at least half empty. 
Proof: 

Let the table size (T) be a prime number greater 
than 3. 
We will first show that: 

For a given key x, that need to be inserted, the first k= 
upper(T/2) alternative locations are all distinct. 

Namely, h1(x), h2(x), h2(x),…. hk-1(x) are all distinct. 

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 20

 

 
 

  probing.quadratic  used
by  cellempty  an find fill  wethat  guaranteed are  wethen

 most), at full-half is (table table hash the in items  most at
 are there and different are that probes  are there Since

 equal. be not can )(locations probes thj and  thi Therefore,

 zero. be not can j)(i distinct, arethey 
and zero to equal or greater are j and i Since

 zero. be not can j)-(i j, to equal not is i Since

 zero. to equal be should j)(i or j)-(i either prime, is T Since

)              
)                     
)(                          
)      

:location same the to map probes the that Suppose
j  i that so probes two be j and i Let

   

2/

2/,0,)()(

2/

(mod0))((
(mod022
mod22
(mod2)(2)(

2

T

Tjiixhashxhash

T

 Tjiji
 Tji
 Tji
 Tjxhixh

+

+

=+−
=−

=

+=+

≠
<=<=+=



11

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 21

Notes to keep in mind

Table must be at least half empty
Load  factor smaller than 0.5

Table size must be prime
Deletions should be lazy. 

The item should not be removed, but just marked as 
invalid. 

Otherwise, the deleted cell might have 
caused a collision to go past it. 

That item is needed to find the next item in probe 
sequence. 

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 22

template <class HashedObj>
class HashTable
{

public:
explicit HashTable( const HashedObj & notFound, int size = 101 );
HashTable( const HashTable & rhs )

: ITEM_NOT_FOUND( rhs.ITEM_NOT_FOUND ),
array( rhs.array ), currentSize( rhs.currentSize ) { }

const HashedObj & find( const HashedObj & x ) const;
void makeEmpty( );
void insert( const HashedObj & x );
void remove( const HashedObj & x );
const HashTable & operator=( const HashTable & rhs );
enum EntryType { ACTIVE, EMPTY, DELETED };

Hash Table Class with Quadratic 
Probing



12

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 23

private:
struct HashEntry
{

HashedObj element;
EntryType info;

HashEntry( const HashedObj & e = HashedObj( ), 
EntryType i = EMPTY )

: element( e ), info( i ) { }
}
vector<HashEntry> array;
int currentSize;
const HashedObj ITEM_NOT_FOUND;
bool isActive( int currentPos ) const;
int findPos( const HashedObj & x ) const;
void rehash( );

}

Hash Table Class with Quadratic 
Probing

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 24

Find

template <class HashedObj>
const HashedObj & HashTable<HashedObj>::find( const HashedObj & x ) 

const
{

int currentPos = findPos( x );
if( isActive( currentPos ) )

return array[ currentPos ].element;
else

return ITEM_NOT_FOUND;
}



13

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 25

FindPos

template <class HashedObj>
int HashTable<HashedObj>::findPos( const HashedObj & x ) const
{

int collisionNum = 0;
int currentPos = hash( x, array.size( ) );

while( array[ currentPos ].info != EMPTY &&
array[ currentPos ].element != x )      /* search for item */

{
currentPos += 2 * (++collisionNum) - 1;  // Compute ith probe
if   ( currentPos >= array.size( ) )

currentPos -= array.size( );
}

return currentPos;
}

(i-1)2 = i2 – 2i + 1 
then  i2 = (i-1)2 + (2i – 1)

ith probe is (2i-1) more than the (i-1)th probe. 

(i-1)2 = i2 – 2i + 1 
then  i2 = (i-1)2 + (2i – 1)

ith probe is (2i-1) more than the (i-1)th probe. 

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 26

Insert

template <class HashedObj>
void HashTable<HashedObj>::insert( const HashedObj & x )
{

// Insert x as active
int currentPos = findPos( x );
if( isActive( currentPos ) )

return; // return without inserting
array[ currentPos ] = HashEntry( x, ACTIVE ); // create an active hash entry

// Rehash; see Section 5.5
if( ++currentSize > array.size( ) / 2 )  /* load factor greater then 0.5

rehash( ); /* double the hash table size. 
}



14

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 27

Remove

/**
* Remove item x from the hash table.
*/

template <class HashedObj>
void HashTable<HashedObj>::remove( const HashedObj & x )
{

int currentPos = findPos( x );
if( isActive( currentPos ) )  .// item to be deleted found

array[ currentPos ].info = DELETED;
}

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 28

Quadratic Probing Review

Causes secondary clustering. 
Elements that hash to the same position will probe 
the same alternative cells. 

Load factor should not exceed 0.
Table size should be a prime number. 



15

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 29

Double Hashing

Two hash functions are used. 
hash(x) = hash1(x) + i*hash2(x),   where i >= 0. 

hash1(x)

+hash2(x)

+2hash2(x)
+3hash2(x)

hash2(x)

0 TableSize-1

initial try

1st probe

2nd probe

Hash Table

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 30

Double Hashing Tips

Choice of hash2(x) is very important. 
A poor choice would not help to resolve collisions. 

hash2 should never evaluate to zero. 
Table size should be prime. 
hash2(x) =  R – (x mod R) would work as a 
second hash function. 

R is a prime number here. 



16

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 31

Example

TableSize is again 10. 
1st hash function  = x mod 10
2nd has function  = 7 - x mode 7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 32

Example

89

18

49

58

After 
inserting 

58

898989899

1818188

7

49496

5

4

3

582

1

690

After 
inserting 

69

After 
inserting 

49

After 
inserting 

18

After 
inserting 

89

Empty 
Table

Cell 
number

Primary and secondary clusters eliminated. 



17

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 33

…..h3(x)

20969

23858

26949

1818

1989

Number of 
Probesh2(x)h1(x)h0(x)x

Keys

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 34

Double Hashing

Eliminates primary and secondary clustering
Two hash functions computed. 

More cost per operation. 
If table size is not prime, than we can run out 
of alternative positions much quickly. 



18

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 35

Extendible Hashing

All methods so far assumed that hash table 
can fit in memory.
For large amount of data, this may not be 
true

Data items should reside in disk in this case. 
A directory that will ease to reach data items 
can be kept in memory

If it is too big, it too can be stored in disk. 

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 36

00 01 10 11

000100
001000
001010
001010

000100
001000
001010
001010

010100
011000

010100
011000

100000
101000
101100
101110

100000
101000
101100
101110

111000
111001

111000
111001

Directory
(root)

Disk 
Blocks
(leafs)

dL: number of bits of a leaf that are common

D: number of bits used by the root – directory (here it is 2)

N: Number of items to be stored
M: Maximum number of items that can be stored in a disk block. 

(2) (2) (2) (2)



19

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 37

000 001 010 011 100 101 110 111

000100
001000
001010
001011

000100
001000
001010
001011

010100
011000

010100
011000

100000
100100

100000
100100

101000
101100
101110

101000
101100
101110

111000
111001

111000
111001

(2) (2) (3) (3) (2)

After insertion of 100100 and leaf and directory split

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 38

000 001 010 011 100 101 110 111

001000
001010
001011

001000
001010
001011

010100
011000

010100
011000

100000
100100

100000
100100

101000
101100
101110

101000
101100
101110

111000
111001

111000
111001

(3) (2) (3) (3) (2)

After insertion of 000000 and leaf split

000000
000100

000000
000100

(3)


