Priority Queues (Heaps)

CS 202 - Fundamental Structures of
Computer Science II
Bilkent University
Computer Engineering Department

Need for priority based retrievel

- Some applications require different treatments for items
- Printer queue
- Items (files to be printed) can be prioritized depending on their size.
- OS scheduler
- It may be better to schedule smaller sized programs before larger sized programs.
- Priority queue structure can be used to model these kind of applications
- So that some operations (like finding the highest priority item) can be implemented very efficiently.

Model

- A priority queue is a data structure that allows at the least the following two operations
- Insert
- Inserts an element to a priority queue and maintains the priority queue properties after insertion.
- deleteMin
- Finds, returns, and removes the minimum element in the priority queue.

Simple Implementations of priority queues

- Use a simple linked list
- Insert to the head of the list (O(1))
- Search for an item by traversing the list from start to end or until item found (O(N)).
- Use a binary search tree
- Insert into the tree. ($\mathrm{O}(\operatorname{logN})$)
- Remove from the tree $(\mathrm{O}(\log \mathrm{N}))$.

Binary Heap (or Heap)

- It is a complete binary tree.
- A tree that is completely filled except the bottom level, which is strictly filled from left to right.
- A complete binary tree of height h has between $2 h$ and $2^{h+1}-1$ nodes.
- The height of a complete binary tree is: $\lfloor\log N\rfloor$

An element at position \boldsymbol{i} will have children at positions $\mathbf{2 i}$ and $\mathbf{2 i + 1}$
An element at position \boldsymbol{i} will have parent at position $\lfloor i / 2\rfloor$

Heap Order property

- In a heap, for every node X, the key in the parent of X is smaller or equal to the key in X.
- Root has the smallest key.

A complete tree, but not a heap!

A heap

Heap Class

```
class BinaryHeap
    {
    public:
        explicit BinaryHeap( int capacity = 100 );
        bool isEmpty( ) const;
        bool isFull( ) const;
        const int & findMin( ) const;
        void insert( const int & x );
        void deleteMin( );
        void deleteMin( int & minItem );
        void makeEmpty();
        private:
            int currentSize; // Number of elements in heap
        vector <int> array; // The heap array
        void buildHeap( );
        void percolateDown( int hole );
    };
```


Heap Insert

void BinaryHeap::insert(const int \& x)
\{
if(isFull()) throw Overflow();
// Percolate up
int hole $=++$ currentSize;
for (; hole > $1 \& \& x$ < array[hole / 2]; hole /= 2) array[hole] = array[hole / 2];
array[hole] = x;
\}

Heap Delete Minimum

```
void BinaryHeap::deleteMin( )
    {
        if( isEmpty( ) )
        throw Underflow( );
        array[ 1 ] = array[ currentSize-- ];
        percolateDown( 1 );
    }
```


Heap Delete Minimum

```
void BinaryHeap::percolateDown( int hole )
    {
        int child;
        int tmp = array[ hole ];
        for( ; hole * 2 <= currentSize; hole = child )
        {
            child = hole * 2;
            if( child != currentSize && array[ child + 1 ] < array[ child ])
            child++;
            if( array[ child ] < tmp )
                        array[ hole ] = array[ child ];
            else
                        break;
        }
        array[ hole ] = tmp;
    }
```


Other Heap Operations

- Heap provides fast access to minimum element
- O(longN) worst case
- But heap does not store any other ordering information.
- Searching for an arbitrary item is not easy
- Requires $\mathrm{O}(\mathrm{N})$) time.
- An other data structure needs to be kept if we want to do other operations also.

Other Heap Operations

- If we assume that the position of other elements (other than minimum) is also known by some other methods, several operations become cheap
- decreaseKey (p. Δ)
- Lowers the value of the item at position p by Δ amount.
- Requires percolate up
- increseKey (p, Δ)
- Increases the value of the item at position p by Δ amount - Requires perculate down
- remove (p)
- Removes the item at position p
" decreaseKey(p, ∞) and deleteMin();
- BuildHeap
- Take N items and place them into an empty heap.

buildHeap()

- Takes N items and builds a heap.
- Simple method is: Insert N items successively.
- A more efficient method exists.
- $\mathrm{O}(\mathrm{N})$ running time.
- Sketch of Algorithm
- 1. Position = lowerbound(heapSiz/2); // initial position
- 2. perculateDown item at that position.
- 3. Decrement position by one.
- 4. Repeat steps 2,3,4 until position is 0 .

buildHeap()

```
template <class Comparable>
    void BinaryHeap<Comparable>::buildHeap( )
        {
            for( int i = currentSize / 2; i > 0; i-- )
            percolateDown(i);
    }
```


[^0]

Analysis of BuildHeap

- The cost of BuildHeap is bounded by the number of dashed red lines, which is bounded by the sum of heights of all nodes of the heap.
- We will show that this sum is $\mathrm{O}(\mathrm{N})$, where N is the number of nodes in the heap.

Theorem:

For the perfect binary tree of height h containing $2^{h+1}-1$ nodes, the sum of the heights of the nodes is: $2^{h+1}-1-(h+1)$.

Proof :
A perfect binary contains :
1 node at height h
2 nodes at height $\mathrm{h}-1$
4 nodes at height $\mathrm{h}-2$
2^{3} nodes at height $h-3$.

2^{h} nodes at height 0 .
Sum of heights of all nodes $=S=\sum_{i=0}^{\mathrm{h}} 2^{\mathrm{i}}(h-i)$

	Fundamental Structures of Computer Science II
CS 202, Spring 2003 University	22

$$
\begin{aligned}
& S=\sum_{i=0}^{h} 2^{i}(h-i) \\
& \begin{array}{l}
S=h+2(h-1)+4(h-2)+8(h-3)+16(h-4)+\ldots \ldots+2^{h-1}(1) \\
2 S=2 h+4(h-1)+8(h-2)+16(h-3)+\ldots \ldots+2^{h}(1)
\end{array} \\
& \begin{aligned}
2 S-S & =-h+2+4+8+16+\ldots \ldots+2^{h-1}+2^{h}
\end{aligned} \quad=-h-1+1+2+4+8+16+\ldots . .+2^{h-1}+2^{h}= \\
& \quad=-h-1+2^{h+1}-1 \\
& \quad=2^{h+1}-1-(h+1)
\end{aligned} \quad \begin{array}{r}
S=2^{h+1}-1-(h+1), \text { where } \quad N=2^{h} \\
\quad \Rightarrow S=O(N)
\end{array}
$$

- A complete tree is not a perfect binary tree, but number of nodes in a complete tree of height h is:
- $2^{h}<=N<2^{h+1}$
- The sum we came up is an upperbound on the sum of height of all nodes in a complete tree.

Application of Priority Queues

- We have talked about application in
- Operating Systems - scheduling
- Printer queue
- Some more applications
- Implementation of several graph algorithms
- Selection Problem
- ...
- Discrete event simulation

The Selection Problem

- Given a list of N elements and an integer k (1 $<=\mathrm{k}<=\mathrm{N}$)
- Find out the $\mathrm{k}^{\text {th }}$ largest element in the list.
- Example:
- List of elements: 4, 9, 0, 3, 5, 7, 10, 12, 2, 8
- $1^{\text {st }}$ largest element is: 12
- $10^{\text {th }}$ largest element is: 0
- $6^{\text {th }}$ largest element is: 6
- 121098754320 (sorted order of items)

The Selection Problem

- Some solutions

- Alg-1)
- Sort N elements: $O\left(N^{2}\right)$ (for a simple sort algorithm)
- Retrieve the $\mathrm{k}^{\text {th }}$ largest element: $\mathrm{O}(1)$
- Alg-2)
- 1. Read k elements into an array: $O(k)$
- 2. Sort the elements in the array: $O\left(k^{2}\right)$
- 3. For each of the remaining elements: ($\mathrm{N}-\mathrm{k}$)
- 3.1 Compare it to the last element in array, if it is larger than the last element in the array, replace it with the last element and put it into correct spot in the array: $\mathrm{O}(\mathrm{k})$
- Total Running time: $\mathrm{O}\left(\mathrm{k}+\mathrm{k}^{2+}(\mathrm{N}-\mathrm{k})^{*} \mathrm{k}\right)=\mathrm{O}(\mathrm{Nk})$.

The Selection Problem

- New algorithms
- They will make use of heaps.
- A1
- Assume we want to find the $\mathrm{k}^{\text {th }}$ smallest element.
- 1. Read N elements into an array $O(N)$
- 2. Apply BuildHeap to the array $\mathrm{O}(\mathrm{N})$
- 3. Perform k deleteMin operations. $\mathrm{O}(\mathrm{klog} \mathrm{N})$
- Last operation will five us the $\mathrm{k}^{\text {th }}$ smallest one.
- The solution is symmetric for finding $\mathrm{k}^{\text {th }}$ largest element
- The total running time is $\mathrm{O}(\mathrm{N}+\mathrm{klog} \mathrm{N})$

The Selection Problem

- A2
- Use the idea of Alg-2
- At any time maintain a set S of k largest element.
- We want to find the $k^{\text {th }}$ largest element.
- 1. Read k elements into a heap S (of size k). $O(k)$
- 2. For each remaining element ($N-k$) elements
- 2.1 Compare it with the smallest element (root) in heap S
- 2.2 If element is larger than root, then put it into S instead of root.
- 2.3 Percolate down the root if necessary. O(logk)
- Running time $=\mathrm{O}(k+(\mathrm{N}-k) \log k)=\mathrm{O}(\mathrm{Nlog} k)$.

d-Heaps

- Exactly like a binary heap, except that all nodes have d children
- A binary heap is a 2-heap.

Other Heap Operations

- Merge
- Combining two heaps into one.
- Is not a very simple operation
- O(logN) cost
- We will discuss three data structure that will support merge operation efficiently
- Leftist Heaps
- Skew Heaps
- Binomial Queues

Leftist Heaps

- If we use arrays to implement heaps:
- We will have two input arrays (two heaps).
\square Combining them requires copying one array into an other: $\mathrm{O}(\mathrm{N})$ time for equal-sized heaps
- Therefore, we use a linked data structure (like a binary) to perform merge operation more efficiently.

FS 202, Spring 2003	Fundamental Structures of Computer Science II Bilkent University

Leftist Heaps

- A leftist heap has
- A structural property
- An order property
- Order property is the same with ordinary binary heaps.
- Structural property is little bit different.

Leftist Heap Property

- Definition:
- Null path length, npl (X), of any node X is defined as the length of the shortest path from X to a node without two children.
- Null path length of a node with zero or one child is 0 .
- Null path length of a NULL node is defined to be -1 .
- Null path length of a node is 1 more than the minimum of the null path lengths of its children.

$$
\begin{aligned}
\operatorname{npl}(\mathrm{A}) & =1+\min \{\mathrm{npl}(\mathrm{~B}), \mathrm{npl}(\mathrm{C})\} \\
& =1+\min \{1,0\} \\
& =1+0=1
\end{aligned}
$$

Leftist Heap Property

- Leftist heap property is: for every node X, in the heap, the null path length of the left child is at least as large as that of the right child.

A Leftist Heap

Not a Leftist Heap

Theorem

- Theorem:
- A leftist tree with r nodes on the right path must have at least $2^{r}-1$ nodes.

$$
\begin{gathered}
\text { npl(root) }=\text { legth_of_right_path } \\
\text { Fundamental Structures of Computer Science II } \\
\text { Bilkent University }
\end{gathered}
$$

Theorem - Proof

- Proof:

- By induction
- If $r=1$ then, there has to be at least one node
- $2^{r}-1=2^{1}-1=1$
- Assume theorem is true for $1,2,3, \ldots$.
- A tree with $\mathrm{r}+1$ right path nodes would look like the following:

$$
=2 \times 2^{r}-1
$$

$$
=2^{r+1}-1
$$

From the previous theorem it follows that the maximum number of nodes in the right path of a leftist heap of size N nodes is:

$$
\lfloor\log (N+1)\rfloor
$$

General idea for leftist heap operations is to perform all the work on the right path, which is the shortest.

Since, inserts and merges on the right path could destroy the Leftist heap property, we need to restore the property.

CS 202, Spring 2003 Fundamental Structures of Computer Science II | Bilkent University |
| :---: |$\quad 38$

Operations

- We will see the following leftist heap operations
- Merge
- Merges two leftist heaps into a single one.
- Insert
- DeleteMin

Merge

- Merge two heaps H 1 and H 2 .
- A recursive algorithm
- 1. If either one is empty than it is trivial to merge: return the non-empty heap as the result of merge.
- 2. Else:
- 2. 1 Merge the heap with the larger root with the right subheap of the heap with the smaller root. (this is ca recursive call)
- 2.2 Make the resulting heap as the right child of the heap with the smaller root.
- Swap the children of the root of the new heap, if npl(rightchild) is greater than npl(left-child).
- Update npl(root): $\mathrm{npl}($ root $)=$ npl(right-child $)+1$;

Example - Merge the following heaps

merge $\left(H_{1}, H_{2}\right)$

H_{1}

H_{2}

Both are leftist heaps

Level 1

Since 6 is greater than 3 , we should recursively merge H_{2} with Right subheap of H_{1}

Level 3

CS 202, Spring 2003	Fundamental Structures of Computer Science II Bilkent University	46

Level 5

18

Now, start backtracking

CS 202, Spring 2003	Fundamental Structures of Computer Science II Bilkent University	48

Back to Level 4

Back to level 3

Swap 37 and 8 rooted subtrees.

Back to level 2

(26) 0

No need for swapping, since

$$
\operatorname{npl}(12)=\operatorname{npl}(7)
$$

Back to level 1

Swap 10 and 6

Back to level 1

(26) 0

This is the new heap after merge!

Implementation

```
template <class Comparable>
    class LeftistNode
    {
        Comparable element;
        LeftistNode *left;
        LeftistNode *right
        int
            npl;
        LeftistNode( const Comparable & theElement, LeftistNode *It = NULL,
            LeftistNode *rt = NULL, int np = 0)
        : element( theElement ), left( lt ), right( rt ), npl( np ) { }
        friend class LeftistHeap<Comparable>;
    };
```

```
template <class Comparable>
    class LeftistHeap
    {
        public:
        LeftistHeap( );
        LeftistHeap( const LeftistHeap & rhs );
        ~LeftistHeap( );
        bool isEmpty( ) const;
        bool isFull( ) const;
        void insert( const Comparable & x );
        void deleteMin( );
        void deleteMin( Comparable & minItem );
        void merge( LeftistHeap & rhs );
        private:
            LeftistNode<Comparable> *root; /* data member */
        LeftistNode<Comparable> * merge(LeftistNode<Comparable> *h1,
                        LeftistNode<Comparable> *h2 ) const;
        LeftistNode<Comparable> * merge1(LeftistNode<Comparable> *h1
                                LeftistNode<Comparable> *h2 ) const;
        void swapChildren( LeftistNode<Comparable> * t ) const;
};
```

// Merge right handside heap into this heap. rhs becomes empty.
template <class Comparable> void LeftistHeap<Comparable>::merge(LeftistHeap \& rhs) \{
if(this == \&rhs) // Avoid aliasing problems return;
root $=$ merge(root, rhs.root); rhs.root = NULL; \}

```
// calls merge1 to to actual merge. Makes sure that when merge1 is called,
// h1 is the node that has smaller root than h2.
    template <class Comparable>
        LeftistNode<Comparable> *
        LeftistHeap<Comparable>::merge( LeftistNode<Comparable> * h1,
                        LeftistNode<Comparable> * h2 ) const
    {
        if( h1 == NULL )
            return h2;
        if( h2 == NULL )
            return h1;
        if( h1->element < h2->element )
            return merge1( h1, h2 );
        else
            return merge1( h2, h1 );
        }
// assumes heaps are not empty
// assumes that h1 has smaller root.
template <class Comparable>
LeftistNode<Comparable> *
LeftistHeap<Comparable> ::merge1( LeftistNode<Comparable> * h1, LeftistNode<Comparable> * h2 ) const
\{
if( h1->left \(==\) NULL ) // Single node
h1->left = h2; // Other fields in h1 already accurate
else
\{
h1->right = merge( h1-> right, h2 ); if( h1->left->npl < h1->right->npl ) swapChildren( h1 ); h1->npl \(=\) h1->right->npl + 1;
        \}
        return h1;
    \}
```


[^0]: CS 202, Spring 2003

