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Need for priority based retrievel

Some applications require different 
treatments for items

Printer queue
Items (files to be printed) can be prioritized depending on 
their size. 

OS scheduler
It may be better to schedule smaller sized programs before 
larger sized programs. 

Priority queue structure can be used to model 
these kind of applications

So that some operations (like finding the highest priority 
item) can be implemented very efficiently. 
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Model

A priority queue is a data structure that allows at the least the 
following two operations

Insert
Inserts an element to a priority queue and maintains the priority queue 
properties after insertion. 

deleteMin
Finds, returns, and removes the minimum element in the priority queue. 

Priority QueuePriority Queue
insert deleteMin
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Simple Implementations of priority 
queues

Use a simple linked list
Insert to the head of the list (O(1))
Search for an item by traversing the list from start 
to end or until item found (O(N)). 

Use a binary search tree
Insert into the tree. (O(logN))
Remove from the tree (O(logN)). 
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Binary Heap (or Heap)

It is a complete binary tree. 
A tree that is completely filled except the bottom level, 
which is strictly filled from left to right. 

A complete  binary tree of height h has between 2h
and 2h+1 – 1 nodes. 
The height of a complete binary tree is:  Nlog
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Binary Heap
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An element at position i will have children at positions 2i and 2i+1

An element at position i will have parent  at position  2/i



4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 7

4 5 6 7

9

2

10 11 13 14 15

16 17

8

18 19

1

3

20 21 22 23 24 25 26

12

28 29 30 3127

height = 4

When height = 4:
Minimum number of nodes   = 16 = 24

Maximum number of nodes   = 31 = 25 - 1
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Heap Order property

In a heap, for every node X,  the key in the parent of 
X is smaller or equal to the key in X. 
Root has the smallest key.
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40 45 19

A complete tree, but not a heap! A heap



5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 9

Heap Class
class BinaryHeap

{
public:
explicit BinaryHeap( int capacity = 100 );
bool isEmpty( ) const;
bool isFull( ) const;
const int & findMin( ) const;
void insert( const int & x );
void deleteMin( );
void deleteMin( int & minItem );
void makeEmpty( );

private:
int currentSize;  // Number of elements in heap
vector <int>    array;        // The heap array
void buildHeap( );
void percolateDown( int hole );

};
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Heap Insert
void BinaryHeap::insert( const int & x )

{
if( isFull( ) )

throw Overflow( );

// Percolate up
int hole = ++currentSize;
for( ; hole > 1 && x < array[ hole / 2 ]; hole /= 2 )

array[ hole ] = array[ hole / 2 ];
array[ hole ] = x;

}
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Heap Delete Minimum
void BinaryHeap::deleteMin( )

{
if( isEmpty( ) )

throw Underflow( );

array[ 1 ] = array[ currentSize-- ];
percolateDown( 1 );

}
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Heap Delete Minimum
void BinaryHeap::percolateDown( int hole )

{
int child;
int tmp = array[ hole ];

for( ; hole * 2 <= currentSize; hole = child )
{

child = hole * 2;
if( child != currentSize && array[ child + 1 ] < array[ child ])
child++;
if( array[ child ] < tmp )

array[ hole ] = array[ child ];
else

break;
}
array[ hole ] = tmp;

}
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Other Heap Operations

Heap provides fast access to minimum 
element

O(longN) worst case

But heap does not store any other ordering 
information. 
Searching for an arbitrary item is not easy 

Requires O(N)) time. 
An other data structure needs to be kept if we 
want to do other operations also.
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Other Heap Operations

If we assume that the position of other elements 
(other than minimum) is also known by some other 
methods, several operations become cheap

decreaseKey (p. ∆)
Lowers the value of the item at position p by ∆ amount. 

Requires percolate up
increseKey (p, ∆)

Increases the value of the item at position p by ∆ amount
Requires perculate down

remove (p)
Removes the item at position p

decreaseKey(p, ∞) and deleteMin();
BuildHeap

Take N items and place them into an empty heap. 
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buildHeap()

Takes N items and builds a heap. 
Simple method is: Insert N items successively. 

A more efficient method exists. 
O(N) running time. 

Sketch of Algorithm
1. Position = lowerbound(heapSiz/2); // initial 
position
2. perculateDown item at that position. 
3. Decrement position by one. 
4. Repeat steps 2,3,4 until position is 0. 
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buildHeap()
template <class Comparable>

void BinaryHeap<Comparable>::buildHeap( )
{

for( int i = currentSize / 2; i > 0; i-- )
percolateDown( i );

}
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After percolateDown(7)
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Analysis of BuildHeap

The cost of BuildHeap is bounded by the 
number of dashed red lines, which is 
bounded by the sum of heights of all nodes of 
the heap. 
We will show that this sum is O(N), where N 
is the number of nodes in the heap. 
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A complete tree is not a perfect binary tree, 
but number of nodes in a complete tree of 
height h is: 

2h <= N < 2h+1

The sum we came up is an upperbound on 
the sum of height of all nodes in a complete 
tree. 
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Application of Priority Queues

We have talked about application in 
Operating Systems – scheduling
Printer queue

Some more applications
Implementation of several graph algorithms

Selection Problem
…

Discrete event simulation
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The Selection Problem

Given a list of N elements and an integer k (1 
<= k <= N)

Find out the kth largest element in the list. 
Example:

List of elements: 4, 9, 0, 3, 5, 7, 10, 12, 2, 8
1st largest element is: 12
10th largest element is: 0
6th largest element is: 6

12 10 9 8 7 5 4 3 2 0  (sorted order of items)



14

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 27

The Selection Problem

Some solutions
Alg-1) 

Sort N elements:  O(N2) (for a simple sort algorithm)
Retrieve the kth largest element: O(1)

Alg-2) 
1. Read k elements into an array: O(k)
2. Sort the elements in the array: O(k2)
3. For each of the remaining elements: (N-k)

3.1 Compare it to the last element in array, if it is larger 
than the last element in the array, replace it with the last 
element and put it into correct spot in the array: O(k)

Total Running time: O(k + k2 + (N-k) * k) = O(Nk). 
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The Selection Problem

New algorithms
They will make use of heaps. 

A1
Assume we want to find the kth smallest element.

1. Read N elements into an array   O(N)
2. Apply BuildHeap to the array      O(N)
3. Perform k deleteMin operations. O(klogN)

Last operation will five us the kth smallest one. 

The solution is symmetric for finding kth largest element
The total running time is O(N + klogN)



15

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 29

The Selection Problem

A2
Use the idea of Alg-2
At any  time maintain a set S of k largest element.
We want to find the kth largest element.  

1. Read k elements into a heap S (of size k).      O(k)
2. For each  remaining element                (N-k) elements

2.1 Compare it with the smallest element (root) in heap S 
2.2 If element is larger than root, then put it into S instead of 
root. 
2.3 Percolate down the root if necessary. O(logk)

Running time = O(k+(N-k)logk) = O(Nlogk). 
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d-Heaps

Exactly like a binary heap, except that all nodes 
have d children

A binary heap is a 2-heap.
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1211 13

14 15

5

A 3-Heap
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Other Heap Operations

Merge
Combining two heaps into one. 
Is not a very simple operation

O(logN) cost

We will discuss three data structure that will 
support merge operation efficiently

Leftist Heaps
Skew Heaps
Binomial Queues
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Leftist Heaps

If we use arrays to implement heaps: 
We will have two input arrays (two heaps). 
Combining them requires copying one array into 
an other: O(N) time for equal-sized heaps

Therefore, we use a linked data structure 
(like a binary) to perform merge operation 
more efficiently. 
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Leftist Heaps

A leftist heap has
A structural property
An order property

Order property is the same with ordinary 
binary heaps. 
Structural property is little bit different. 
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Leftist Heap Property

Definition: 
Null path length, npl(X), of any node X is defined as the length of 
the shortest path from X to a node without two children. 
Null path length of a node with zero or one child is 0. 
Null path length of a NULL node is defined to be -1. 

Null path length of a node is 1 more  than the minimum of the 
null path lengths of its children. 

A

B C

FD E

G0
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0

0

1

npl(A) = 1 + min{npl(B), npl(C)}
= 1 + min{1,0}
= 1 + 0 = 1
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Leftist Heap Property

Leftist heap property is: for every node X, in the 
heap, the null path length of the left child is at least 
as large as that of the right child. 
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A Leftist Heap Not a Leftist Heap
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Theorem
Theorem: 

A leftist tree with r nodes on the right path must 
have at least 2r-1 nodes. 

A

B

D

0

00

1

2

E

H

F 0 G 0

1C

Right path

Right path: A, C, G
Length of the right path = 2
Nodes on the right path = 3

Minimum number of nodes
of leftist tree: 23-1 = 7

npl(root) = legth_of_right_path
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Theorem - Proof
Proof: 

By induction
If r = 1 then, there has to be at least one node 

2r-1 =21-1 = 1 
Assume theorem is true for 1,2,3,…r.
A tree with r+1 right path nodes would look like the following: 

R

r nodes>= r 
nodes

r+1 nodes

>= 2r-1 nodes

>= 2r-1 nodes

Total nodes 
= 2r-1 + 2r-1 + 1
= 2 x 2r – 1
= 2r+1 - 1
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 )1log( +N

From the previous theorem it follows that the maximum number 
of nodes in the right path of a leftist heap of size N nodes is: 

General idea for leftist heap operations is to perform all the work 
on the right path, which is the shortest.  

Since, inserts and merges on the right path could destroy the
Leftist heap property, we need to restore the property.  
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Operations

We will see the following leftist heap 
operations

Merge
Merges two leftist heaps into a single one. 

Insert
DeleteMin
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Merge

Merge two heaps H1 and H2. 
A recursive algorithm

1. If either one is empty than it is trivial to merge: return the 
non-empty heap as the result of merge. 
2. Else: 

2. 1 Merge the heap with the larger root with the right sub-
heap of the heap with the smaller root. (this is ca recursive 
call)
2.2 Make the resulting heap  as the right child of the heap with
the smaller root. 
Swap the children of the root of the new heap, if npl(right-
child) is greater than npl(left-child). 
Update npl(root): npl(root) = npl(right-child) + 1; 
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LH1 RH1

R1

LH2 RH2

R2

LH1

R1

RH1

LH2 RH2

R2

H1 H2

If R2 >= R1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 42

LH1 RH1

R1

LH2 RH2

R2

H1 H2

If R2 < R1

LH1 RH1

R1

LH2

R2

RH2
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Example – Merge the following heaps

3

10

21

0

00

1

1

14

23

0

8

26

17

6

12

18

0

00

1

2

24

33

037 18

7

0

1

0

0

H1 H2

Both are leftist heaps

merge (H1, H2)

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 44

Since 6 is greater than 3, we should recursively merge H2 with 
Right subheap of H1

merge (H1->right, H2)

Level 1

3

10

21 14

23

8

26

17

6

12

18 24

33

37 18

7
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Level 2

8
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Level 3

8

26

17 37 18

7
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Level 4

26

17

18

NULL

8
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Level 5

18NULL

merge

18

Now, start backtracking
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Back to Level 4

26

17 18

8

0

0 0

1
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Back to level 3

37

7

26

17 18

8

0

0 0

10 Swap 37 and 8 
rooted subtrees. 
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1 37

0

0
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Back to level 2

6

12

18 24

33

7

26

17 18

8

0 0

1 37

0

0

1

0

00

1

2

No need for swapping, since
npl(12) = npl(7)
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Back to level 1
3

10

21 14

230

00

1

2

Swap 10 and 6
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17 18
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Back to level 1

This is the new heap after merge!
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Implementation
template <class Comparable>

class LeftistNode
{

Comparable   element;
LeftistNode *left;
LeftistNode *right;
int npl;

LeftistNode( const Comparable & theElement, LeftistNode *lt = NULL,
LeftistNode *rt = NULL, int np = 0 )

: element( theElement ), left( lt ), right( rt ), npl( np ) { }
friend class LeftistHeap<Comparable>;

};
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template <class Comparable>
class LeftistHeap
{
public:
LeftistHeap( );
LeftistHeap( const LeftistHeap & rhs );
~LeftistHeap( );

bool isEmpty( ) const;
bool isFull( ) const;
void insert( const Comparable & x );
void deleteMin( );
void deleteMin( Comparable & minItem );
void merge( LeftistHeap & rhs );

private:
LeftistNode<Comparable> *root;   /* data member */
LeftistNode<Comparable> * merge( LeftistNode<Comparable> *h1,

LeftistNode<Comparable> *h2 ) const;
LeftistNode<Comparable> * merge1( LeftistNode<Comparable> *h1,

LeftistNode<Comparable> *h2 ) const;
void swapChildren( LeftistNode<Comparable> * t ) const;

};
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// Merge right handside heap into this heap. rhs becomes empty. 

template <class Comparable>
void LeftistHeap<Comparable>::merge( LeftistHeap & rhs )
{

if( this == &rhs )    // Avoid aliasing problems
return;

root = merge( root, rhs.root );
rhs.root = NULL;

}
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// calls merge1 to to actual merge. Makes sure that when merge1 is called, 
// h1 is the node that has smaller root than h2. 

template <class Comparable>
LeftistNode<Comparable> *
LeftistHeap<Comparable>::merge( LeftistNode<Comparable> * h1,

LeftistNode<Comparable> * h2 ) const
{

if( h1 == NULL )
return h2;

if( h2 == NULL )
return h1;

if( h1->element < h2->element )
return merge1( h1, h2 );

else
return merge1( h2, h1 );

}
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// assumes heaps are not empty
// assumes that h1 has smaller root. 

template <class Comparable>
LeftistNode<Comparable> *
LeftistHeap<Comparable>::merge1( LeftistNode<Comparable> * h1,

LeftistNode<Comparable> * h2 ) const
{

if( h1->left == NULL )   // Single node
h1->left = h2;       // Other fields in h1 already accurate

else
{

h1->right = merge( h1->right, h2 );
if( h1->left->npl < h1->right->npl )

swapChildren( h1 );
h1->npl = h1->right->npl + 1;

}
return h1;

}


