
1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 1

Priority Queues (Heaps)

CS 202 – Fundamental Structures of
Computer Science II

Bilkent University
Computer Engineering Department

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 2

Need for priority based retrievel

Some applications require different
treatments for items

Printer queue
Items (files to be printed) can be prioritized depending on
their size.

OS scheduler
It may be better to schedule smaller sized programs before
larger sized programs.

Priority queue structure can be used to model
these kind of applications

So that some operations (like finding the highest priority
item) can be implemented very efficiently.

2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 3

Model

A priority queue is a data structure that allows at the least the
following two operations

Insert
Inserts an element to a priority queue and maintains the priority queue
properties after insertion.

deleteMin
Finds, returns, and removes the minimum element in the priority queue.

Priority QueuePriority Queue
insert deleteMin

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 4

Simple Implementations of priority
queues

Use a simple linked list
Insert to the head of the list (O(1))
Search for an item by traversing the list from start
to end or until item found (O(N)).

Use a binary search tree
Insert into the tree. (O(logN))
Remove from the tree (O(logN)).

3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 5

Binary Heap (or Heap)

It is a complete binary tree.
A tree that is completely filled except the bottom level,
which is strictly filled from left to right.

A complete binary tree of height h has between 2h
and 2h+1 – 1 nodes.
The height of a complete binary tree is: Nlog

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 6

Binary Heap

4 5 6 7

9

2

10 11 13 14 15

16 17

8

18 19

1

3

20 21 22 23 24 25 26

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 20

0 1 2 3

An element at position i will have children at positions 2i and 2i+1

An element at position i will have parent at position 2/i

4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 7

4 5 6 7

9

2

10 11 13 14 15

16 17

8

18 19

1

3

20 21 22 23 24 25 26

12

28 29 30 3127

height = 4

When height = 4:
Minimum number of nodes = 16 = 24

Maximum number of nodes = 31 = 25 - 1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 8

Heap Order property

In a heap, for every node X, the key in the parent of
X is smaller or equal to the key in X.
Root has the smallest key.

13

35 16

40 31 19

13

35 16

40 45 19

A complete tree, but not a heap! A heap

5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 9

Heap Class
class BinaryHeap

{
public:
explicit BinaryHeap(int capacity = 100);
bool isEmpty() const;
bool isFull() const;
const int & findMin() const;
void insert(const int & x);
void deleteMin();
void deleteMin(int & minItem);
void makeEmpty();

private:
int currentSize; // Number of elements in heap
vector <int> array; // The heap array
void buildHeap();
void percolateDown(int hole);

};

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 10

Heap Insert
void BinaryHeap::insert(const int & x)

{
if(isFull())

throw Overflow();

// Percolate up
int hole = ++currentSize;
for(; hole > 1 && x < array[hole / 2]; hole /= 2)

array[hole] = array[hole / 2];
array[hole] = x;

}

6

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 11

Heap Delete Minimum
void BinaryHeap::deleteMin()

{
if(isEmpty())

throw Underflow();

array[1] = array[currentSize--];
percolateDown(1);

}

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 12

Heap Delete Minimum
void BinaryHeap::percolateDown(int hole)

{
int child;
int tmp = array[hole];

for(; hole * 2 <= currentSize; hole = child)
{

child = hole * 2;
if(child != currentSize && array[child + 1] < array[child])
child++;
if(array[child] < tmp)

array[hole] = array[child];
else

break;
}
array[hole] = tmp;

}

7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 13

Other Heap Operations

Heap provides fast access to minimum
element

O(longN) worst case

But heap does not store any other ordering
information.
Searching for an arbitrary item is not easy

Requires O(N)) time.
An other data structure needs to be kept if we
want to do other operations also.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 14

Other Heap Operations

If we assume that the position of other elements
(other than minimum) is also known by some other
methods, several operations become cheap

decreaseKey (p. ∆)
Lowers the value of the item at position p by ∆ amount.

Requires percolate up
increseKey (p, ∆)

Increases the value of the item at position p by ∆ amount
Requires perculate down

remove (p)
Removes the item at position p

decreaseKey(p, ∞) and deleteMin();
BuildHeap

Take N items and place them into an empty heap.

8

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 15

buildHeap()

Takes N items and builds a heap.
Simple method is: Insert N items successively.

A more efficient method exists.
O(N) running time.

Sketch of Algorithm
1. Position = lowerbound(heapSiz/2); // initial
position
2. perculateDown item at that position.
3. Decrement position by one.
4. Repeat steps 2,3,4 until position is 0.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 16

buildHeap()
template <class Comparable>

void BinaryHeap<Comparable>::buildHeap()
{

for(int i = currentSize / 2; i > 0; i--)
percolateDown(i);

}

30 10 70 110

20

80

90 60 120 140 130100

150

40

50

Last element

parent

Start from here to
percolate down

9

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 17

30 10 70 110

20

80

90 60 120 140100

150

40

50 130

1

4

2 3

5 6 7

30 10 50 110

20

80

90 60 120 140100

150

40

70 130

1

4

2 3

5 6 7

After percolateDown(6)

After percolateDown(7)

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 18

30 10 70 110

20

80

90 60 120 140100

150

40

50 130

1

4

2 3

5 6 7

20 10 50 110

30

80

90 60 120 140100

150

40

70 130

1

4

2 3

5 6 7

After percolateDown(4)

After percolateDown(5)

10

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 19

20 10 50 110

30

80

90 60 120 140100

150

40

70 130

1

4

2 3

5 6 7

20 60 50 110

30

10

90 80 120 140100

150

40

70 130

1

4

2 3

5 6 7

After percolateDown(2)

After percolateDown(3)

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 20

30 60 50 110

150

20

90 80 120 140100

10

40

70 130

1

4

2 3

5 6 7

After percolateDown(1)

11

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 21

Analysis of BuildHeap

The cost of BuildHeap is bounded by the
number of dashed red lines, which is
bounded by the sum of heights of all nodes of
the heap.
We will show that this sum is O(N), where N
is the number of nodes in the heap.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 22

)i(h −==

+
+

∑
=

+

h

0i

i

h

3

 1).(h – 1

2S nodes all of heights of Sum

0. height at nodes 2
......

3.-h height at nodes 2
2-h height at nodes 4
1-h height at nodes 2

h height at node 1

:containsbinary perfectA

 –1h2 :is nodes the of heights the of sum the nodes,
 1 – 1h2 containing h height of treebinary perfect the For

:Proof

 :Theorem

height=2

height=1

height=0

1 node

2 nodes

4 nodes

12

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 23

)(
2),1(12

)1(12
121

22......1684211
22......168422

)1(2......)3(16)2(8)1(422
)1(2......)4(16)3(8)2(4)1(2

)(2

1

1
1

1
1

1
0

NOS
NhS

h
h
h
hSS

hhhhS
hhhhhS

ihS

hh

h
h

hh
hh

h
h

h

i

i

=⇒
=+−−=

+−−=
−+−−=

=++++++++−−=
+++++++−=−

++−+−+−+=
++−+−+−+−+=

−=

+

+

+

−

−

−
=
∑

 where

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 24

A complete tree is not a perfect binary tree,
but number of nodes in a complete tree of
height h is:

2h <= N < 2h+1

The sum we came up is an upperbound on
the sum of height of all nodes in a complete
tree.

13

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 25

Application of Priority Queues

We have talked about application in
Operating Systems – scheduling
Printer queue

Some more applications
Implementation of several graph algorithms

Selection Problem
…

Discrete event simulation

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 26

The Selection Problem

Given a list of N elements and an integer k (1
<= k <= N)

Find out the kth largest element in the list.
Example:

List of elements: 4, 9, 0, 3, 5, 7, 10, 12, 2, 8
1st largest element is: 12
10th largest element is: 0
6th largest element is: 6

12 10 9 8 7 5 4 3 2 0 (sorted order of items)

14

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 27

The Selection Problem

Some solutions
Alg-1)

Sort N elements: O(N2) (for a simple sort algorithm)
Retrieve the kth largest element: O(1)

Alg-2)
1. Read k elements into an array: O(k)
2. Sort the elements in the array: O(k2)
3. For each of the remaining elements: (N-k)

3.1 Compare it to the last element in array, if it is larger
than the last element in the array, replace it with the last
element and put it into correct spot in the array: O(k)

Total Running time: O(k + k2 + (N-k) * k) = O(Nk).

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 28

The Selection Problem

New algorithms
They will make use of heaps.

A1
Assume we want to find the kth smallest element.

1. Read N elements into an array O(N)
2. Apply BuildHeap to the array O(N)
3. Perform k deleteMin operations. O(klogN)

Last operation will five us the kth smallest one.

The solution is symmetric for finding kth largest element
The total running time is O(N + klogN)

15

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 29

The Selection Problem

A2
Use the idea of Alg-2
At any time maintain a set S of k largest element.
We want to find the kth largest element.

1. Read k elements into a heap S (of size k). O(k)
2. For each remaining element (N-k) elements

2.1 Compare it with the smallest element (root) in heap S
2.2 If element is larger than root, then put it into S instead of
root.
2.3 Percolate down the root if necessary. O(logk)

Running time = O(k+(N-k)logk) = O(Nlogk).

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 30

d-Heaps

Exactly like a binary heap, except that all nodes
have d children

A binary heap is a 2-heap.

1

2 4

6 7 98 10

3

1211 13

14 15

5

A 3-Heap

16

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 31

Other Heap Operations

Merge
Combining two heaps into one.
Is not a very simple operation

O(logN) cost

We will discuss three data structure that will
support merge operation efficiently

Leftist Heaps
Skew Heaps
Binomial Queues

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 32

Leftist Heaps

If we use arrays to implement heaps:
We will have two input arrays (two heaps).
Combining them requires copying one array into
an other: O(N) time for equal-sized heaps

Therefore, we use a linked data structure
(like a binary) to perform merge operation
more efficiently.

17

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 33

Leftist Heaps

A leftist heap has
A structural property
An order property

Order property is the same with ordinary
binary heaps.
Structural property is little bit different.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 34

Leftist Heap Property

Definition:
Null path length, npl(X), of any node X is defined as the length of
the shortest path from X to a node without two children.
Null path length of a node with zero or one child is 0.
Null path length of a NULL node is defined to be -1.

Null path length of a node is 1 more than the minimum of the
null path lengths of its children.

A

B C

FD E

G0

00

1

0

0

1

npl(A) = 1 + min{npl(B), npl(C)}
= 1 + min{1,0}
= 1 + 0 = 1

18

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 35

Leftist Heap Property

Leftist heap property is: for every node X, in the
heap, the null path length of the left child is at least
as large as that of the right child.

A

B C

D

0

00

1

1

E

D

0

A

B C

D

0

10

1

1

D

0

E 0

E

A Leftist Heap Not a Leftist Heap

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 36

Theorem
Theorem:

A leftist tree with r nodes on the right path must
have at least 2r-1 nodes.

A

B

D

0

00

1

2

E

H

F 0 G 0

1C

Right path

Right path: A, C, G
Length of the right path = 2
Nodes on the right path = 3

Minimum number of nodes
of leftist tree: 23-1 = 7

npl(root) = legth_of_right_path

19

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 37

Theorem - Proof
Proof:

By induction
If r = 1 then, there has to be at least one node

2r-1 =21-1 = 1
Assume theorem is true for 1,2,3,…r.
A tree with r+1 right path nodes would look like the following:

R

r nodes>= r
nodes

r+1 nodes

>= 2r-1 nodes

>= 2r-1 nodes

Total nodes
= 2r-1 + 2r-1 + 1
= 2 x 2r – 1
= 2r+1 - 1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 38

)1log(+N

From the previous theorem it follows that the maximum number
of nodes in the right path of a leftist heap of size N nodes is:

General idea for leftist heap operations is to perform all the work
on the right path, which is the shortest.

Since, inserts and merges on the right path could destroy the
Leftist heap property, we need to restore the property.

20

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 39

Operations

We will see the following leftist heap
operations

Merge
Merges two leftist heaps into a single one.

Insert
DeleteMin

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 40

Merge

Merge two heaps H1 and H2.
A recursive algorithm

1. If either one is empty than it is trivial to merge: return the
non-empty heap as the result of merge.
2. Else:

2. 1 Merge the heap with the larger root with the right sub-
heap of the heap with the smaller root. (this is ca recursive
call)
2.2 Make the resulting heap as the right child of the heap with
the smaller root.
Swap the children of the root of the new heap, if npl(right-
child) is greater than npl(left-child).
Update npl(root): npl(root) = npl(right-child) + 1;

21

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 41

LH1 RH1

R1

LH2 RH2

R2

LH1

R1

RH1

LH2 RH2

R2

H1 H2

If R2 >= R1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 42

LH1 RH1

R1

LH2 RH2

R2

H1 H2

If R2 < R1

LH1 RH1

R1

LH2

R2

RH2

22

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 43

Example – Merge the following heaps

3

10

21

0

00

1

1

14

23

0

8

26

17

6

12

18

0

00

1

2

24

33

037 18

7

0

1

0

0

H1 H2

Both are leftist heaps

merge (H1, H2)

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 44

Since 6 is greater than 3, we should recursively merge H2 with
Right subheap of H1

merge (H1->right, H2)

Level 1

3

10

21 14

23

8

26

17

6

12

18 24

33

37 18

7

23

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 45

Level 2

8

26

17

6

12

18 24

33

37 18

7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 46

Level 3

8

26

17 37 18

7

24

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 47

Level 4

26

17

18

NULL

8

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 48

Level 5

18NULL

merge

18

Now, start backtracking

25

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 49

Back to Level 4

26

17 18

8

0

0 0

1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 50

Back to level 3

37

7

26

17 18

8

0

0 0

10 Swap 37 and 8
rooted subtrees.

7

26

17 18

8

0

0 0

1 37

0

0

1

26

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 51

Back to level 2

6

12

18 24

33

7

26

17 18

8

0 0

1 37

0

0

1

0

00

1

2

No need for swapping, since
npl(12) = npl(7)

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 52

Back to level 1
3

10

21 14

230

00

1

2

Swap 10 and 6

6

12

18 24

33

7

26

17 18

8

0 0

1 37

0

0

1

0

00

1

2

27

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 53

Back to level 1

This is the new heap after merge!

32

10

21 14

23

0
1

1

0

6

18 24

33

7

26

17 18

8

0 0

1 37

0

0

0

00

1 012

2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 54

Implementation
template <class Comparable>

class LeftistNode
{

Comparable element;
LeftistNode *left;
LeftistNode *right;
int npl;

LeftistNode(const Comparable & theElement, LeftistNode *lt = NULL,
LeftistNode *rt = NULL, int np = 0)

: element(theElement), left(lt), right(rt), npl(np) { }
friend class LeftistHeap<Comparable>;

};

28

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 55

template <class Comparable>
class LeftistHeap
{
public:
LeftistHeap();
LeftistHeap(const LeftistHeap & rhs);
~LeftistHeap();

bool isEmpty() const;
bool isFull() const;
void insert(const Comparable & x);
void deleteMin();
void deleteMin(Comparable & minItem);
void merge(LeftistHeap & rhs);

private:
LeftistNode<Comparable> *root; /* data member */
LeftistNode<Comparable> * merge(LeftistNode<Comparable> *h1,

LeftistNode<Comparable> *h2) const;
LeftistNode<Comparable> * merge1(LeftistNode<Comparable> *h1,

LeftistNode<Comparable> *h2) const;
void swapChildren(LeftistNode<Comparable> * t) const;

};

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 56

// Merge right handside heap into this heap. rhs becomes empty.

template <class Comparable>
void LeftistHeap<Comparable>::merge(LeftistHeap & rhs)
{

if(this == &rhs) // Avoid aliasing problems
return;

root = merge(root, rhs.root);
rhs.root = NULL;

}

29

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 57

// calls merge1 to to actual merge. Makes sure that when merge1 is called,
// h1 is the node that has smaller root than h2.

template <class Comparable>
LeftistNode<Comparable> *
LeftistHeap<Comparable>::merge(LeftistNode<Comparable> * h1,

LeftistNode<Comparable> * h2) const
{

if(h1 == NULL)
return h2;

if(h2 == NULL)
return h1;

if(h1->element < h2->element)
return merge1(h1, h2);

else
return merge1(h2, h1);

}

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 58

// assumes heaps are not empty
// assumes that h1 has smaller root.

template <class Comparable>
LeftistNode<Comparable> *
LeftistHeap<Comparable>::merge1(LeftistNode<Comparable> * h1,

LeftistNode<Comparable> * h2) const
{

if(h1->left == NULL) // Single node
h1->left = h2; // Other fields in h1 already accurate

else
{

h1->right = merge(h1->right, h2);
if(h1->left->npl < h1->right->npl)

swapChildren(h1);
h1->npl = h1->right->npl + 1;

}
return h1;

}

