Priority Queues - 2

> CS 202 - Fundamental Structures of Computer Science II

Bilkent University
Computer Engineering Department

Binomial Queues

- Binamial Queue
- A collection of heap-ordered trees (a forest).
- A tree in the forest is a binomial tree.
- There is at most one binomial tree of every height in the forest.
- A binomial tree of height 0 has one node.
- A binomial tree of height k has 2^{k} nodes.
- A binomial tree of height k, B_{k}, is formed by attaching a binomial tree of height $k-1, B_{k-1}$, to another binomial tree of height $k-1, B_{k-1}$.

- A binomial tree B_{k} consists of root with children $\mathrm{B}_{0}, \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{k-1}$
- Binomial trees of height \mathbf{k} have exactly 2^{k} nodes.
- The number of nodes at depth d is binomial coefficient $\binom{k}{d}$

Heaps and binomial trees

- Assume all binary trees in a forest are in heap order.
- Assume we have at most one binomial tree of any height.
- Then we can represent a heap of any size uniquely by a binomial tree forest.
- Example: heap of size 13 could be represented by forest: $\mathrm{B}_{3} \mathrm{~B}_{2}, \mathrm{~B}_{0}$,
- We call this heap ordered binomial forest a binomial queue.

Example

(12)
(21) (24)

65
H_{1}
A binomial queue H_{1} of size 6 is shown above Can be represented as: 110

Binomial Queue Operations

- FindMin
- Merge
- Insert
- DeleteMin

FindMin

- The minimum element in the binomial queue can be found by scanning the roots of all trees in the forest.
- There are at most logN different trees
- The cost of findMin is therefore $\mathrm{O}(\operatorname{logN})$ in the worst case.

Merge

- Merging two binomial queues is conceptually simple.
- Merge H_{1} and H_{2}
- Just add them in binary.
- Assume H_{1} has 6 nodes. H_{2} has 7 nodes.
- $\mathrm{H}_{3}=$ node $\left(\mathrm{H}_{1}\right)+\operatorname{nodes}\left(\mathrm{H}_{3}\right)=13$.
- $\mathrm{H}_{1}: 0110$
- $\mathrm{H}_{2}: 0111$
- $\mathrm{H}_{3}: 1101$ (this is the resulting bin. heap).

Merge - example

1

Merge - example - steps

Final Binomial Queue H_{3}

	Fundamental Structures of Computer Science II Bilkent University	16

Insert

- Insertion is a special case of merge
- Insert an item to a binomial heap H_{1}
- Make a new heap, H_{2}, of one node (item to be inserted)
- Merge H_{1} and H_{2}.
- Example
- Insert items 1, 2, 3, 4, 5, 6, 7, in the given order into an empty binomial heap.

DeleteMin

- Sketch of the Algorithm
- Assume we want to delete minimum item from binomial queue H .
- Find the binomial tree in H that has the minimum root. Let say this is B_{k} in H.
- Take tree B_{k} from H. Let the remaining trees in H make a new binomial queue H_{1}
- Remove the root from B_{k} (root is the minimum that you should return as a result of algorithm).
- The children of root of B_{k} make a new heap H_{2} that can consists of tree B_{0} through B_{k-1}
- Merge H_{1} and H_{2}.

DeletMin - Example

$\begin{aligned} & 13 \\ & \mathrm{~B}_{0} \end{aligned}$	14		12						
	(26)			21	(24)	(23)			
		18			65	6)		(51)	(24)
	B_{2}						B_{3}		65
			H						

Delete the minimum item from the binomial queue above.

DeletMin - Example

The root that has the minimum item is 12 and belongs to tree B_{3}

