
1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 1

Sorting

CS 202 – Fundamental Structures of
Computer Science II

Bilkent University
Computer Engineering Department

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 2

Sorting

Sorting is ordering a set of elements in increasing or
decreasing order.
We will assume that

Elements are comparable
They are kept in an array
Each cell of the array keep one element
For simplicity the elements are integers. But the same
methods are valid for any type of element that can be
ordered.
We will express the number of element to be sorted as N.

2

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 3

Sorting

There are various sorting algorithms
Easy algorithms: O(N2) running time

Insertion sort, etc.
Very easy to implement ones: o(N2)

Efficient in practice
More complicated ones

Running time of O(NlogN)
Such as Quick Sort, Merge Sort, etc.

A general purpose sorting algorithm requires
Ω(NlogN) comparisons.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 4

Sorting

The data to be sorted can fit in memory;
We will first see the algorithms for this case.

The data can also be residing in disk and
algorithm can be run over disk

This is called external sorting.

3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 5

Insertion Sort

A simple algorithm
Requires N-1 passes over the array to be
sorted (of size N).
For passes p=1 to N

Ensures that the elements in positions 0 through p
are in sorted order.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 6

Example

34 8 64 51 32 21

Array to be sorted.

N = 6

4

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 7

34 8 64 51 32 21

Compare

8

34 64 51 32 21

move

8 34 64 51 32 21

insert

Current Item

Pass 1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 8

8 34 64 51 32 21 64

Current Item

comparePass 2

5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 9

8 34 64 51 32 21 51

Current Item

8 34 64 32 21
move

8 34 51 64 32 21

insert

compare

compare

Pass 3

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 10

8 34 51 64 32 21 32

Current Item

compare

8 34 51 64 21
move

compare

8 34 51 64 21
move

compare

8 34 51 64 21
move

compare

8 32 34 51 64 21

insert

Pass 4

6

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 11

21

Current Item

compare

8 32 34 51 64 21

8 32 34 51 64

compare

move

8 32 34 51 64

compare

8 32 34 51 64

compare move

move

8 32 34 51 64

compare

move

8 21 32 34 51 64 RESULT!!

Pass 5

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 12

Pseudo-Code

void
insertionSort(vector<int> &a)
{

int j;

for (int p = 1; p < a.size(); ++p)
{

int tmp = a[p];
for (j=p; j > 0 && tmp < a[j-1]; j--) /* compare */

a[j] = a[j-1]; /*move */
a[j] = tmp; /* insert */

}
}

test

7

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 13

Analysis of Insertion Sort

The test the line shown in the previous slide is
done at most:

p+1 times for each value of p.

)(...432 2

2

NNi
N

i

Θ=++++=∑
=

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 14

Lower bound for simple sorting
algorithms

Simple sorting algorithms are the ones that
make swaps of adjacent items.

Insertion sort
Bubble sort
Selection sort

Inversion definition:
An inversion in an array of numbers is any
ordered pair (i,j) having the property that i < j but
a[i] > a[j]

8

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 15

Inversion

Example:
Array items: 34 8 64 51 32 21
Inversions:

(34,8), (34,32), (34,21), (64,51), (64,32), (64,21),
(51,32), (51,21), and (32,21).
We have total of 9 inversions.

Each inversion requires a swap in insertion sort to
order the list.
A sorted array has no inversions.
Running time = O(I + N), where I is number of
inversions.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 16

Inversion

Compute the average number of inversions in
an array.

Assume no duplicates in the array (or list).
Assume there are N elements in range [1,N].

Then input to the sorting algorithms is a
permutation of these N distinct elements.

9

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 17

Theorem

Theorem: The average number of inversions
in an array of N distinct elements is N(N-1)/4.
Proof:

For any list of items, L, consider the list in reverse
order Lr.

L = 34 8 64 51 32 21
Lr = 21 32 51 64 8 34

Consider any pair (x,y) in list L, with x < y.
The pair (x,y) is certainly an inversion in one of
the lists L and Lr

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 18

Theorem

Proof continued
The total number of these pairs (which are
inversions) in a list L and its reverse Lr is N(N-
1)/2.
Therefore, an average list L has half of this
amount, which is N(N-1)/4.

10

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 19

Shell Sort

Invented by Donald Shell.
Also referred to as diminishing increment
sort.
Shell sort uses a sequence h1, h2, …, ht,
called the increment sequence.

h1 must be 1.
Any sequence will do.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 20

Shell Sort

It is executed in phase.
One phase for each hk

After a phase where increment were hk
For every i, a[i] <= a[i+hk].
This means all elements spaced hk apart are
sorted.
The input is then said to be hk sorted.

An hk sorted input, which is then hk-1 sorted,
is still hk sorted.

11

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 21

Shell Sort

After 1-sort

After 3-sort

After 5-sort

Original
List

95

96

94

75

969481755841352817151211

958175941758411535111228

958158961575411228111737

154158289517351296119481

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 22

Shellsort Algorithm
void shellsort (vector<int> &a)
{

int j, i;
int gap;

for (gap = a.size() /2; gap > 0; gap /=2)
{

for (i=gap; i < a.size(); i++)
{

int tmp = a[i];
for (j=i; j>=gap && tmp < a[j-gap]; j -= gap)

a[j] = a[j-gap];
a[j] = tmp;

}
}

}

12

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 23

Choosing Increment Sequence

1

2

2

1

1

=









=









=

+

h

hh

Nh

k
k

t

Suggested by Donald Shell
N: the number of items to sort.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 24

Worst Case Analysis of Shell Sort

Theorem:
The worst case running time of Shell sort using
Shell’s increments is Θ(N2).

.
We will show a lower bound for the running time.
We will also show an upper bound for the running
time.

13

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 25

Lower bound

We will show that there exists an input that causes
the algorithm to run in Ω(N2) time.

Assume N is power of 2.
Assume these N elements is stored in an array indexed
from 1 to N.
Assume that

odd index values contain the N/2 largest elements and
even index values contain the N/2 smallest element.

1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16
is such as sequence.

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 26

Lower bound

Shell’s increments are:
1, 2, 3, …., N/2

All increments except the last one are even.
When we come to the last pass,

all largest items are in even positions and
all smallest items are in odd positions.

Snapshot before last pass
1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16

14

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 27

Lower bound

The ith smallest number is at position 2i-1 before the
last pass.
Restoring the ith element to its correct position
requires:

2i-1-i = i-1 moves towards the beginning of the array (each
move make the item go one cell left).

Therefore to place N/2 smallest elements to their
correct positions require amount of work in the
order:

)(1 2
2/

1

Ni
N

i

Ω=−∑
=

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 28

Upper Bound
A pass with increment hk consists of hk insertion
sorts of about N/hk elements

1 9 2 10 3 11 4 12 5 6 14 7 15 8 16

Insertion sort of 16/3 ~= 5 items, items are = 1, 10, 4, 6, 15

Insertion sort of 16/3 ~= 5 items, items are = 9, 3, 12, 14, 8
Insertion sort of 16/3 ~= 5 items

hk = 3, N = 16

hk * (N/hk)2

15

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 29

Upper Bound

Summing over all passed

2/1

)()/1(/

1

2

1

2

1

2

<

==

∑

∑∑

=

==

t

i
i

t

i
i

t

i
i

h

NOhNOhN

 since

