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Sorting

Sorting is ordering a set of elements in increasing or 
decreasing order. 
We will assume that

Elements are comparable
They are kept in an array
Each cell of the array keep one element
For simplicity the elements are integers. But the same 
methods are valid for any type of element that can be 
ordered. 
We will express the number of element to be sorted as N. 
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Sorting

There are various sorting algorithms
Easy algorithms: O(N2) running time

Insertion sort, etc. 
Very easy to implement ones: o(N2)

Efficient in practice
More complicated ones

Running time of O(NlogN)
Such as Quick Sort, Merge Sort, etc. 

A general purpose sorting algorithm requires 
Ω(NlogN) comparisons. 
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Sorting

The data to be sorted can fit in memory;
We will first see the algorithms for this case. 

The data can also be residing in disk and 
algorithm can be run over disk

This is called external sorting. 
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Insertion Sort

A simple algorithm
Requires N-1 passes over the array to be 
sorted (of size N). 
For passes p=1 to N

Ensures that the elements in positions 0 through p 
are in sorted order. 
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Example

34 8 64 51 32 21

Array to be sorted. 

N = 6
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34 8 64 51 32 21

Compare

8

34 64 51 32 21

move

8 34 64 51 32 21

insert

Current Item 

Pass 1

CS 202, Spring 2003
Fundamental Structures of Computer Science II

Bilkent University 8

8 34 64 51 32 21 64

Current Item 

comparePass 2
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8 34 64 51 32 21 51

Current Item 

8 34 64 32 21
move

8 34 51 64 32 21

insert

compare

compare

Pass 3
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8 34 51 64 32 21 32

Current Item 

compare

8 34 51 64 21
move

compare

8 34 51 64 21
move

compare

8 34 51 64 21
move

compare

8 32 34 51 64 21

insert

Pass 4
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21

Current Item 

compare

8 32 34 51 64 21

8 32 34 51 64

compare

move

8 32 34 51 64

compare

8 32 34 51 64

compare move

move

8 32 34 51 64

compare

move

8 21 32 34 51 64 RESULT!!

Pass 5
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Pseudo-Code

void 
insertionSort(vector<int> &a) 
{

int j; 

for ( int p = 1; p < a.size(); ++p ) 
{

int tmp = a[p]; 
for (j=p; j > 0 && tmp < a[j-1]; j--)  /* compare */

a[j] = a[j-1]; /*move */
a[j] = tmp; /* insert */

}
}

test
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Analysis of Insertion Sort

The test the line shown in the previous slide is 
done at most: 

p+1 times for each value of p. 
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Lower bound for simple sorting 
algorithms

Simple sorting algorithms are the ones that 
make swaps of adjacent items. 

Insertion sort
Bubble sort
Selection sort

Inversion definition: 
An inversion in an array of numbers is any 
ordered pair (i,j) having the property that i < j but 
a[i] > a[j]  
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Inversion 

Example: 
Array items: 34 8 64 51 32 21
Inversions: 

(34,8), (34,32), (34,21), (64,51), (64,32), (64,21), 
(51,32), (51,21), and (32,21). 
We have total of 9 inversions. 

Each inversion requires a swap in insertion sort to 
order the list. 
A sorted array has no inversions. 
Running time = O(I + N), where I is number of 
inversions. 
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Inversion

Compute the average number of inversions in 
an array. 

Assume no duplicates in the array (or list). 
Assume there are N elements in range [1,N]. 

Then input to the sorting algorithms is a 
permutation of these N distinct elements. 
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Theorem

Theorem: The average number of inversions 
in an array of N distinct elements is N(N-1)/4.
Proof: 

For any list of items, L, consider the list in reverse 
order Lr.

L   =  34   8   64   51   32   21
Lr =   21  32  51   64    8    34

Consider any pair (x,y)  in list L, with x < y. 
The pair (x,y) is certainly an inversion in one of 
the lists L and Lr
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Theorem

Proof continued
The total number of these pairs (which are 
inversions) in a list L and its reverse Lr is N(N-
1)/2. 
Therefore, an average list L has half of this 
amount, which is N(N-1)/4. 
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Shell Sort

Invented by Donald Shell. 
Also referred to as diminishing increment 
sort. 
Shell sort uses a sequence h1, h2, …, ht, 
called the increment sequence. 

h1 must be 1. 
Any sequence will do. 
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Shell Sort

It is executed in phase. 
One phase for each hk

After a phase where increment were hk
For every i, a[i] <= a[i+hk].
This means all elements spaced hk apart are 
sorted. 
The input  is then said to be hk sorted.

An hk sorted input, which is then hk-1 sorted, 
is still hk sorted.  
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Shell Sort

After 1-sort

After 3-sort

After 5-sort

Original 
List

95

96

94

75

969481755841352817151211

958175941758411535111228

958158961575411228111737

154158289517351296119481
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Shellsort Algorithm 
void shellsort (vector<int> &a)
{

int j, i; 
int gap; 

for (gap = a.size() /2; gap > 0; gap /=2) 
{

for (i=gap; i < a.size(); i++)
{

int tmp = a[i]; 
for (j=i; j>=gap && tmp < a[j-gap]; j -= gap)

a[j] = a[j-gap];  
a[j] = tmp;

}
}  

}
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Choosing Increment Sequence
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Suggested by Donald Shell
N: the number of items to sort.
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Worst Case Analysis of Shell Sort

Theorem: 
The worst case running time of Shell sort using 
Shell’s increments is Θ(N2).

. 
We will show a lower bound for the running time. 
We will also show an upper bound for the running 
time. 
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Lower bound

We will show that there exists an input that causes 
the algorithm to run in Ω(N2) time. 

Assume N is power of 2. 
Assume these N elements is stored in an array indexed 
from 1 to N. 
Assume that

odd index values contain the N/2 largest elements and
even index values contain the N/2 smallest element. 

1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16
is such as sequence. 
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Lower bound

Shell’s increments are: 
1, 2, 3, …., N/2

All increments except the last one are even. 
When we come to the last pass, 

all largest items are in even positions and
all smallest items are in odd positions. 

Snapshot  before last pass
1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16
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Lower bound

The ith smallest number is at position 2i-1 before the 
last pass. 
Restoring the ith element to its correct position 
requires: 

2i-1-i = i-1 moves towards the beginning of the array (each 
move make the item go one cell left). 

Therefore to place N/2 smallest elements to their 
correct positions require amount of work in the 
order:
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Upper Bound
A pass with increment hk consists of hk insertion 
sorts of about N/hk elements 

1 9 2 10 3 11 4 12 5 6 14 7 15 8 16

Insertion sort of 16/3 ~= 5 items, items are = 1, 10, 4, 6, 15  

Insertion sort of 16/3 ~= 5 items, items are = 9, 3, 12, 14, 8 
Insertion sort of 16/3 ~= 5 items  

hk = 3,    N = 16

hk * (N/hk)2
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Upper Bound

Summing over all passed
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