Sorting

CS 202 - Fundamental Structures of Computer Science II
 Bilkent University
 Computer Engineering Department

Sorting

- Sorting is ordering a set of elements in increasing or decreasing order.
- We will assume that
- Elements are comparable
- They are kept in an array
- Each cell of the array keep one element
- For simplicity the elements are integers. But the same methods are valid for any type of element that can be ordered.
- We will express the number of element to be sorted as N .

Sorting

- There are various sorting algorithms
- Easy algorithms: $\mathrm{O}\left(\mathrm{N}^{2}\right)$ running time
- Insertion sort, etc.
\square Very easy to implement ones: $\mathrm{o}\left(\mathrm{N}^{2}\right)$
- Efficient in practice
- More complicated ones
- Running time of $\mathrm{O}(\mathrm{NlogN})$
- Such as Quick Sort, Merge Sort, etc.
- A general purpose sorting algorithm requires $\Omega(\mathrm{NlogN})$ comparisons.

Sorting

- The data to be sorted can fit in memory; - We will first see the algorithms for this case.
- The data can also be residing in disk and algorithm can be run over disk
- This is called external sorting.

Insertion Sort

- A simple algorithm
- Requires N-1 passes over the array to be sorted (of size N).
- For passes $\mathrm{p}=1$ to N
- Ensures that the elements in positions 0 through p are in sorted order.

Example

Array to be sorted.

$$
N=6
$$

Pseudo-Code

```
void
insertionSort(vector<int> \&a)
\{
    int j;
    for (int \(p=1 ; p<\operatorname{a.size}() ;+p)\)
    \{
        int tmp \(=\mathrm{a}[\mathrm{p}] ;\)
test \(\longrightarrow\) for ( \(\mathrm{j}=\mathrm{p} ; \mathrm{j}>0 \& \& \mathrm{tmp}<\mathrm{a}[\mathrm{j}-1] ; \mathrm{j}--) / *\) compare */
        \(a[j]=a[j-1] ; / *\) move */
        a[j] = tmp; /* insert */
    \}
\}
```


Analysis of Insertion Sort

- The test the line shown in the previous slide is done at most:
- $p+1$ times for each value of p.

$$
\sum_{i=2}^{N} i=2+3+4+\ldots+N=\Theta\left(N^{2}\right)
$$

Lower bound for simple sorting algorithms

- Simple sorting algorithms are the ones that make swaps of adjacent items.
- Insertion sort
- Bubble sort
- Selection sort
- Inversion definition:
- An inversion in an array of numbers is any ordered pair (i, j) having the property that i < j but $a[i]>a[j]$

Inversion

- Example:
- Array items: 34864513221
- Inversions:
- $(34,8),(34,32),(34,21),(64,51),(64,32),(64,21)$, $(51,32),(51,21)$, and $(32,21)$.
- We have total of 9 inversions.
- Each inversion requires a swap in insertion sort to order the list.
- A sorted array has no inversions.
- Running time $=\mathrm{O}(\mathrm{I}+\mathrm{N})$, where I is number of inversions.

Inversion

- Compute the average number of inversions in an array.
- Assume no duplicates in the array (or list).
- Assume there are N elements in range $[1, \mathrm{~N}]$.
- Then input to the sorting algorithms is a permutation of these N distinct elements.

Theorem

- Theorem: The average number of inversions in an array of N distinct elements is $N(N-1) / 4$.
- Proof:
- For any list of items, L, consider the list in reverse order $L_{\text {r }}$.
- $L=34 \quad 8 \quad 64 \quad 51 \quad 32 \quad 21$
- $L_{r}=213251648334$
- Consider any pair (x, y) in list L, with $x<y$.
- The pair (x, y) is certainly an inversion in one of the lists L and L_{r}

Theorem

- Proof continued
- The total number of these pairs (which are inversions) in a list L and its reverse $L_{\underline{r}}$ is $N(N-$ $1) / 2$.
- Therefore, an average list L has half of this amount, which is $\mathrm{N}(\mathrm{N}-1) / 4$.

Shell Sort

- Invented by Donald Shell.
- Also referred to as diminishing increment sort.
- Shell sort uses a sequence $h_{1}, h_{2}, \ldots, h_{t}$, called the increment sequence.
- h_{1} must be 1 .
- Any sequence will do.

Shell Sort

- It is executed in phase.
- One phase for each h_{k}
- After a phase where increment were h_{k}
- For every $i, a[i]<=a\left[i+h_{k}\right]$.
- This means all elements spaced h_{k} apart are sorted.
- The input is then said to be h_{k} sorted.
- An h_{k} sorted input, which is then h_{k-1} sorted, is still h_{k} sorted.

Shell Sort

Original List	81	94	11	96	12	35	17	95	28	58	41	75	15
After 5-sort	37	17	11	28	12	41	75	15	96	58	81	94	95
After 3-sort	28	12	11	35	15	41	58	17	94	75	81	96	95
After 1-sort	11	12	15	17	28	35	41	58	75	81	94	95	96

Shellsort Algorithm

```
void shellsort (vector<int> &a)
{
    int j, i;
    int gap;
    for (gap = a.size() /2; gap > 0; gap /=2)
    {
        for (i=gap; i < a.size(); i++)
        {
            int tmp = a[i];
            for (j=i; j>= gap && tmp < a[j-gap]; j -= gap)
                a[j] = a[j-gap];
            a[j] = tmp;
    }
    }
}
```


Choosing Increment Sequence

$$
\begin{aligned}
& h_{t}=\left\lfloor\frac{N}{2}\right\rfloor \\
& h_{k}=\left\lfloor\frac{h_{k+1}}{2}\right\rfloor \\
& h_{1}=1
\end{aligned}
$$

Suggested by Donald Shell N : the number of items to sort.

Worst Case Analysis of Shell Sort

- Theorem:
- The worst case running time of Shell sort using Shell's increments is $\Theta\left(N^{2}\right)$.

■.

- We will show a lower bound for the running time.
- We will also show an upper bound for the running time.

Lower bound

- We will show that there exists an input that causes the algorithm to run in $\Omega\left(\mathrm{N}^{2}\right)$ time.
- Assume N is power of 2 .
- Assume these N elements is stored in an array indexed from 1 to N .
- Assume that
- odd index values contain the $\mathrm{N} / 2$ largest elements and
- even index values contain the $\mathrm{N} / 2$ smallest element.
- 1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16 is such as sequence.

Lower bound

- Shell's increments are:
- $1,2,3, \ldots$, $\mathrm{N} / 2$
- All increments except the last one are even.
- When we come to the last pass,
- all largest items are in even positions and
- all smallest items are in odd positions.
- Snapshot before last pass
- 1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16

Lower bound

- The $\mathrm{i}^{\mathrm{ith}}$ smallest number is at position $2 \mathrm{i}-1$ before the last pass.
- Restoring the ith element to its correct position requires:
- 2i-1-i $=\mathrm{i}-1$ moves towards the beginning of the array (each move make the item go one cell left).
- Therefore to place N/2 smallest elements to their correct positions require amount of work in the order:

$$
\sum_{i=1}^{N / 2} i-1=\Omega\left(N^{2}\right)
$$

Upper Bound

- A pass with increment h_{k} consists of h_{k} insertion sorts of about N / h_{k} elements

$$
h_{k}=3, \quad N=16
$$

> - Insertion sort of $16 / 3 \sim=5$ items, items are $=1,10,4,6,15$
> Insertion sort of $16 / 3 \sim=5$ items, items are $=9,3,12,14,8$

- Insertion sort of 16/3 ~= 5 items

$$
\mathrm{h}_{\mathrm{k}}{ }^{*}\left(\mathrm{~N} / \mathrm{h}_{\mathrm{k}}\right)^{2}
$$

Upper Bound

- Summing over all passed

$$
\begin{aligned}
& \sum_{i=1}^{t} N^{2} / h_{i}=O\left(N^{2} \sum_{i=1}^{t} 1 / h_{i}\right)=O\left(N^{2}\right) \\
& \text { since } \sum_{i=1}^{t} 1 / h_{i}<2
\end{aligned}
$$

