
 1

Bilkent University
Computer Engineering Department

CS 202

Fundamental Structures of Computer Science
Section 1

Midterm Exam
Date: April 22, 2003, Tuesday

Duration: 120 minutes

Name of the Student

ID of the Student

• Show your work and reasoning clearly!
• Write legibly!
• Write only to the space provided for each question!
• You can use the additional empty sheets as extra sheets to provide your

answer or just as scratch sheets. If you use them as scratch sheets, just
cross them or tear and throw them away at the end of the exam.

• There should be total of 14 questions. Check your exam paper.

Good Luck!

1. Problem (4 points)
a) (1 points) Insert the following items into an initially empty binary search tree: 50, 20,

10, 60, 5, 70, 55. Draw the tree after all items are inserted (just show the final tree).
Answer:

b) (2 points) How many nodes are

there in a complete binary tree
of height k? (Give minimum and
maximum number of nodes)?
Answer:
Minimum = 2k,
Maxiumum = 2k+1-1

c) (1 points) How many nodes are
there in a full binary tree of
height k?

 Answer:
2k+1-1

GRADE

50

 10

20 60

55

5

70

 2

2. Problem (9 points)
The following AVL tree is given. Draw the new tree after every insertion (and
rebalancing of the tree if necessary) of the following items: 130, 125, 20

a) (3 points) After inserting 130
 Answer:

b) (3 points) After inserting 125

Answer:

c) (3 points) After inserting 20
 Answer:

3. Problem(5 points)
The following splay tree is given. Draw the tree after item 115 is accessed and splaying
operation is performed.

Answer:

115

100 400

50 111 200

110 112 150 300

100

50 130

150120

120

50 130

150 12510020

100

50 150

120

120

100 130

150125 50

400

200

300100

50 150

111

110 115

112

 3

4. Problem (6 points)
The following expression in postfix notation is given: a b + c d + e * f + *
(ab,c,d,e,f are operands, and +, * are operators).
a) (3 points) Draw the corresponding expression tree!

Answer:

b) (3 points) Write down the

same expression in prefix
notation!

 Answer:
* + a b + * + c d e f

5. Problem (10 points)
The following array of items are given: 100, 90, 80, 70, 60, 50, 40, 30, 20, 10. In this
array of items, item 100 is located at array index 1 and item 10 is located at array index
10. Answer the following questions.
a) (4 points) Assume you apply the efficient (O(N) running time) buildHeap operation on

this array to obtain a min-heap. Draw the resulting min-heap after this operation is
performed (you can give it as a tree or as an array)
Answer:

b) (2 points) Draw the heap again after you perform deleteMin operation.

Answer:

c) (2 points) Draw the heap after you insert item 25 into the heap.

Answer:

20

30 40

70 60 50

100 90

80

10

20 40

30 60 50

100 70 90

80

*

+ +

a b *

+ e

f

c d

 4

d) (2 points) Draw the heap after you insert item 5.

Answer:

6. Problem (6 points)
Draw the resulting leftist heap after you merge the following leftist heaps.

Answer:

20

30 40

40 35 50 43

53 50 45 42

62 64 55 60

60 52

70

5

20 40

70 25 50

100 90

80

60 30

20

25 40

70 30 50

100 90

80

60

Heap 1

20

40 50

50 43 55 70

60 52

30

35 40

45 42 53 60

62 64Heap 2

 5

7. Problem (5 points)

Draw the resulting binomial heap after deleteMin operation is performed on the binomial
heap shown above.
Answer:

8. Problem (14 points)
We have a hash table of size 13. Double hashing technique is used to resolve collisions.
The hash functions are:

hash1(x) = x mod 13
hash2(x) = 7 – (x mod 7)

Show the state of the hash table after the following items are inserted in the given order:
30, 23, 43, 45, 16, 25, 81. (Use the table given below for your answer).

0
1
2
3 43
4 30
5
6 45
7
8 16
9 81
10 23
11
12 25

9. Problem (8 points)

60

80

30

50 40

45

70

90 100

110

40

45

30 20

50 60

80

70

90 100

110

 6

Two functions avl_insert_multiple()
and bst_insert_multiple() are given
above. Function avl_insert_multiple
takes an array of N items and an
integer N as input, and inserts all the
N items in the array into an initially
empty AVL tree. Function
bst_insert_multiple takes an array of N
items and an integer N as input, and
inserts all the N items in the array into
an initially empty binary search tree.
Answer the following questions:

a) (4 points) What is worst case and

average case running times of
avl_insert_multiple function?
Express your answers in Big-Oh
notation depending on N. Your
answers should be as tight as
possible.

1) (2 points) Worst case:
O(NlogN)

2) (2 points) Average case:

O(NlogN)

b) (4 points) What is worst case and average case running times of bst_insert_multiple

function? Express your answers in Big-Oh notation depending on N. Your answers
should be as tight as possible.
1) (2 points) Worst case:

 O(N2)
2) (2 points) Average case:

 O(NlogN)

10. Problem (6 points)
Solve the following recurrence relation: T(N) = 2T(T-1) + 1. (Give a formula for T(N).
Don’t express it using Big-Oh notation). T(0) = 1
Answer:
 T(N) = 2T(N-1) + 1
 = 4T(N-2) + 2 + 1
 = 8T(N-3) + 4 + 2 + 1

 = kT(N-k) + 2k-1 + 2k-2 + 2k-3 + …..+ 20

 ket k=N.
 T(N) = 2N + 2N-1 = 2N+1-1

T(N) = 2N+1-1

void
avl_insert_multiple(int array[], int N)
{
 AvlTree avl;
 int i;

 for (i=0; i<N; ++i)
 avl.insert(array[i]);
 // insert ith element of array
}

void
bst_insert_multiple(int array[], int N)
{
 BinarySearchTree bst;
 int i;

 for (i=0; i<N; ++i)
 bst.insert(array[i]);
// insert ith element of array
}

 7

11. Problem (9 points)
For each of the following sorting algorithms, express their worst-case, average-case and
best-case running times using Big-Oh notation. Your answers should be as tight as
possible. (Just fill in the table).
Answer:

 Worst Case Average Case Best Case
QuickSort O(N2) O(NlogN) O(NlogN)
MergeSort O(NlogN) O(NlogN) O(NlogN)

Insertion Sort O(N2) O(N2) O(N)

12. Problem (4 points)

What is the running time of
the power_random function
whose pseudo-code is
provided above? Express
your answer in Big-Oh
notation depending on N.
Your answer should be as
tight as possible.

Answer:
 O(N2)

13. Problem (6 points)
For a given binary tree T, lets
E(T) be defined as the sum of
the depts of all leaves in T.
Lets assume T is a compelete
binary tree with N nodes (N >
0). Express E(T) as a function
of N (Show your work about
how you have derived your
formula)

Answer:
(on the right)

// computes 2x. x should be greater or equal to zero.
int power_two(int x)
{ int i;

 p = 1;
 for (i=1, i<=x; ++i)
 p = p * 2;
 return(p);
}

void power_random(int N)
{
 int x;

 for (i=0; i<=N; ++i)
 {
 x = random(0,N);
 // gives a random number
 // between 0 and N. (0,N incuded)
 power_two(x);

}
}

()
 Nk

NkNkNE

kyxkkNE

Ny

Nx

Nk

k
kk

k
k

k

log
2

122)1(12)(

))1(()(),(

2
122

12

log

1

1

=

 +−
−−++−=

−+=

 +−
−=

+−=

=

−

−

 where

:are level) last than higher level (one 1-k depth at (y) leaves of Number

:are level) (last k depth at (x) leaves of Number

 8

14. (8 points)

Write a recursive private function
findAvg(Node *t) using the class
definitions given above. You can expand
these definitions, but you should use the
given data members and methods as
they are.

The private function
findAvg(Node *t) finds out and returns
the average all of items stored in the
subtree root at t.

Show all modifications
(additions, etc) about the given class
definitions.

 Answer:

Class Node
{
 private:
 integer item;
 Node * left;
 Node * right;
 // some more data members
 // that you may find necessary
 friend class BinaryTree;
}

Class BinaryTree
{

public:
 int findAverage()
 { // find the average of all
 //items in the tree
 return(findAvg(root);

}
private:
 int findAvg(Node *t);
 Node *root;
}

Class Node
{
 private:
 integer item;
 Node * left;
 Node * right;
 // some more data members that

// you may find necessary
 int sum; // some of the items in
 //the subtree rooted at this node
 int nodes; // number of nodes in the
 // subtree root at this node
 friend class BinaryTree;
}

Class BinaryTree
{

public:
 int findAverage()
 { // find the average of all
 // items in the tree
 return(findAvg(root);

}
private:
 int findAvg(Node *t);
 Node *root;
}
int BinaryTree::findAvg(Node *t)
{
 if (t==NULL) {
 return(0);

}
 else

{
 findAvg(t->left);
 findAvg(t->right);

 t->sum = t->item;
 t->nodes = 1;
 if (t->left) {
 t->sum += t->left->sum;
 t->nodes += t->left->nodes;
 }
 if (t->right) {
 t->sum += t->right->sum;
 t->nodes += t->right->nodes;

}
 return(t->sum / t->nodes);

}
}

