
Wireless Networks 6 (2000) 263–277 263

Application-driven power management for mobile communication

Robin Kravets a and P. Krishnan b

a Department of Computer Science, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
b Bell Labs, Lucent Technologies, 101 Crawfords Corner Rd., Holmdel, NJ 07733-3030, USA

In mobile computing, power is a limited resource. Like other devices, communication devices need to be properly managed
to conserve energy. In this paper, we present the design and implementation of an innovative transport level protocol capable of
significantly reducing the power usage of the communication device. The protocol achieves power savings by selectively choosing
short periods of time to suspend communications and shut down the communication device. It manages the important task of queuing
data for future delivery during periods of communication suspension, and decides when to restart communication. We also address the
tradeoff between reducing power consumption and reducing delay for incoming data. We present results from experiments using our
implementation of the protocol. These experiments measure the energy consumption for three simulated communication patterns as well
as three trace-based communication patterns and compare the effects of different suspension strategies. Our results show up to 83%
savings in the energy consumed by the communication. For a high-end laptop, this can translate to 6–9% savings in the energy consumed
by the entire mobile computer. This can represent savings of up to 40% for current hand-held PCs. The resulting delay introduced is
small (0.4–3.1 s depending on the power management level).

1. Introduction

In today’s world of mobile communications, one of the
most precious commodities is power. The mobile host can
only operate as long as its battery maintains power. New
machines are being made to use less power allowing for
smaller batteries with smaller capacities. The trend in mo-
bile computing is towards more communication-dependent
activities, with mobile users switching from traditional
wired Ethernet communication to wireless communication
(using wireless Ethernet cards, for example). When in-
serted, many wireless communication devices consume en-
ergy continuously. Although dependent on the specific ma-
chine and wireless device, this energy consumption can
represent over 50% of total system power for current hand-
held computers and up to 10% for high-end laptops. These
trends make it imperative that we design power-efficient
communication subsystems.

Various techniques, both hardware and software, have
been proposed to reduce a mobile host’s power consumption
during operation. Most software-level techniques have con-
centrated on non-communication components of the mobile
host, such as displays, disks and CPUs. In particular, re-
searchers have looked at methods to turn off the display af-
ter some period of inactivity (as often implemented in BIOS
or screen savers), to spin down the hard disk of the mobile
host [12,16,22], and to slow down or stop the CPU depend-
ing on work load [15,23,30]. The principle underlying the
techniques for controlling these components is to estimate
(or guess) when the device will not be used and suspend
it for those intervals. Stemm et al. [29] have identified the
problem of excess energy consumption by network inter-
faces in hand held devices, and have provided trace-driven
simulation results for simple software-level time-out strate-
gies. The new IEEE 802.11 standard that is being adopted

by some vendors adopts lower level solutions (at the MAC
and PHY layer) to support idle-time power management.
Hardware-level solutions for managing the communication
device focus on modulating the power used by the mobile
transmitter during active communication [24,26,28].

Our research presented in this paper focuses on software-
level techniques for managing the mobile host’s communi-
cation device through suspension of the device during idle
periods in the communication. We present a novel transport
level protocol for managing the suspend/resume cycle of the
mobile host’s communication device in an effort to reduce
power consumption. The management of communication
devices creates a new and interesting challenge not present
when managing other devices’ power consumption. Sim-
ilar to hard disks and CPUs, the communication devices
continuously draw power unless they can be suspended.
A suspended hard disk or CPU can be restarted by any
user requiring that device. However, when a communica-
tion device is suspended, the mobile host is effectively cut
off from the rest of the network. A mobile host with a sus-
pended communication device can only guess about when
other hosts may have data destined for it. If the suspension
of the mobile host’s communication does not match prevail-
ing communication patterns, the isolation can cause buffers
to overflow both in the mobile host and in other hosts try-
ing to communicate with it. Additionally, other hosts may
waste precious resources trying to communicate with the
mobile host if they have no knowledge about whether or
not the mobile host’s communication is suspended.

Our goal is to provide mechanisms for managing and
reducing the power consumption of the communication de-
vice. We present a simple model for mobile communication
that provides adaptable functionality at the transport layer
for suspending and resuming communication. By exposing
this functionality to the application, we enable application-

 J.C. Baltzer AG, Science Publishers



264 R. Kravets, P. Krishnan / Application-driven power management for mobile communication

driven solutions to power management. Power savings are
attained by suspending communications and the commu-
nication device for short periods of time. During these
suspensions, data transmissions are queued up in both the
mobile host and any other host trying to communicate with
the mobile host. The key to balancing power savings and
data delay lies in identifying when to suspend and restart
communications. By abstracting power management to a
higher level, we can exploit application-specific informa-
tion about how to balance power savings and data delay.

Intuitively, power conservation is achieved by accumu-
lating the power savings from many small idle periods.
We, however, need to be careful to monitor any addi-
tional energy consumption caused while executing the sus-
pend/resume strategies. Additionally, we need to consider
the effect on other hosts who are trying to communicate
with the suspended mobile host. A base station using our
protocol has enough knowledge about the state of the mo-
bile host to know when it is suspended and can use this
information to help employ scheduling techniques. We im-
plemented our protocol and experimentally determined its
effect on power consumption and the quality of communi-
cation. Using three simulated users designed to capture typ-
ical mobile communication patterns and three trace-based
web users, we obtained 48–83% savings in the power con-
sumed by the communication subsystem, while introducing
a small additional response delay (0.4–3.1 s depending on
the power management level) that is acceptable for many
applications, like web browsing.

In section 2, we present our basic mobile communication
model, and the important issues in power management for
communication. In section 3 we present our power man-
agement protocol and discuss the effect of timing issues on
the effectiveness of our protocol. Section 4 describes our
experimental setup and the communication patterns used
in our experiments. We then present measurements from
the implementation of our power management protocol and
discuss the results in the context of several real systems.
In section 5, we discuss adaptive control strategies and we
present our conclusions in section 6.

2. Communication model and power management

The introduction of wireless links into communication
systems based on wired links has posed a number of prob-
lems. These problems include different loss characteristics
and different bandwidth capabilities on the wired and the
wireless line, synchronization of disconnected operations,
and issues involving packet forwarding. These problems
pose significant challenges for end-to-end communication
protocols. Two types of models have been studied [4]. The
first model exploits the natural hop existing in the commu-
nication route to a mobile host. Standard communication
protocols are used by wired hosts to a base station and spe-
cialized protocols are used for the final hop from the base
station to the mobile hosts [3]. The second model utilizes

and tunes existing end-to-end protocols, providing help and
hints along the way [5].

In this paper, we focus on the first model of communi-
cation described above, which allows us to isolate the com-
munication between the base station and the mobile host.
With some extensions, the technique is also applicable to
the second model. We target our approach at the transport
layer, where we provide a set of mechanisms that allow
communication to be suspended and resumed. We assume
a model where the mobile host is communicating with the
rest of the network through a base station. This base sta-
tion may be a proxy, or it may be the connection point for
end-to-end communication with other hosts. Often, deal-
ing with mobility does not fit into the standard seven layer
model. By exposing power management techniques to the
application, we provide a system-level solution aimed at
end-to-end communication. For our experiments in this
paper, we concentrate on the communication between the
mobile host and the base station, and for clarity assume
that all communication to and from the mobile host is di-
rected through one specific base station. This work can be
extended to include changing base stations through tech-
niques similar to those used in [3,5].

Current wireless communication devices typically oper-
ate in two modes: transmit mode and receive mode. The
transmit mode is used during data transmission. The re-
ceive mode is the default mode for both receiving data and
listening for incoming data. Much of the time, the wireless
communication device sits idle in receive mode, and, while
the power required for reception is less than the power
required for transmission, this power consumption is not
negligible. A number of solutions aimed at power manage-
ment at the MAC or PHY layer have been proposed. With
the IEEE 802.11 standard, compliant cards can exchange
information about outstanding data to decide on when to
wake up suspended cards. There are ongoing efforts to
provide IEEE 802.11 compliant support for power manage-
ment by introducing new features into the next generation
wireless communication cards [17]. A comparison of ad-
ditional MAC layer protocol solutions can be found in [6].
Such approaches that rely solely on techniques provided
by the device cannot take application specific information
into consideration when determining power management
strategies. In comparison, our approach exposes power
management efforts to the application, allowing for better
informed decisions as how much and when to use power
management techniques. Researchers have also considered
hardware-level solutions to provide low power communi-
cation capabilities [24,26,28]. Such solutions reduce the
power cost of operating in either one of the modes, and are
orthogonal to our approach which addresses the amount of
time the device spends in each mode.

Logical areas to look for software-level power conserva-
tion in communication are two-fold. Since data transmis-
sion is expensive, we can reduce the time spent in trans-
mission. This can be achieved by data reduction techniques
and intelligent data transfer protocols. The obvious tech-



R. Kravets, P. Krishnan / Application-driven power management for mobile communication 265

nique of data compression reduces the amount of transmis-
sion time, but requires additional CPU cycles for perform-
ing compression. The connection between compression and
communication rates is studied in [10]. Through simple ex-
periments, we observed that, considering the current power
requirements of CPUs versus wireless communication de-
vices, the benefit in terms of power savings from reduced
communication time often outweighs the increased energy
consumption costs for compression. Intelligent data trans-
fer protocols can be used to reduce the effect of noisy con-
nections that cause power-expensive retransmission of lost
messages. Our continuing research addresses the assess-
ment of the effects of different techniques for data reduc-
tion, including reduced reliability requirements, and their
effect on both power reduction and communication quality.

The second area, and the emphasis of this paper, is the
cost of leaving the communication device sitting idle dur-
ing periods of no communication activity. During such idle
periods, the communication device draws power listening
for incoming data. Our goal in this work is to reduce the
amount of time the device sits idle drawing power by ju-
diciously suspending it. Suspending a wireless communi-
cation device is similar to slowing a CPU in that there are
some small power costs associated with suspension and re-
sumption. As mentioned in section 1, the difficult part here
is to deal with when to suspend and resume the commu-
nication device, how to deal with the mobile host being
unreachable at times, and how to address the issue of not
losing en-route data. Our protocol and its implementation
presented here address these problems. Since the protocol
itself generates additional communication during these idle
periods, there needs to be a balance between when it is
beneficial to use the power management techniques, and
when we should leave the device on continuously.

In contrast to the solutions proposed by the IEEE 802.11
standard, we believe that power management should be
controlled by the mobile host, potentially even the appli-
cation. By providing power control at the transport layer
(or above), we can provide power management interfaces
to the application, allowing the application to better control
the communication, enabling adaptive power management
driven by the needs of the application. Specifically, com-
munications using the IEEE 802.11 standard will always
pay the overhead of delays imposed by using power man-
agement, while our techniques allow the application to de-
termine when such delays are too high, and so adapt power
management levels. Stemm et al. [29] have also investi-
gated methods for reducing power consumption of network
interfaces, specifically targeting their research at hand-held
devices. Their research suggests application-specific solu-
tions to such problems. In contrast, our research provides a
general solution capable of hosting various strategies, both
static and adaptive. Our measurements are with a real im-
plementation of a power management protocol in an exper-
imental setup. We are, therefore, able to observe the effects
of the queuing of data and the real effect of extra energy
consumption by such a protocol. We measure the power

consumption in the context of the entire system, consider-
ing such costs as message processing and disk accesses, for
various simulated workloads that we expect mobile users
to perform.

3. Communication-based power management

Currently, a typical mobile host leaves its wireless
Ethernet card in receive mode during the time it is not be-
ing used, unless the user explicitly removes the card. The
technique described in this section provides mechanisms to
extend battery lifetime by suspending the wireless Ethernet
card during idle periods in communication. At the heart of
the technique lies a protocol where the mobile host acts as
a master and tells the base station when data transmission
can occur. When the mobile host wakes up, it sends a query
to the base station to see if the base station has any data
to send. This permits communication device suspension at
the mobile host, and enables the implementation of com-
munication scheduling techniques at the base station. The
suspend/resume cycle results in bursts of communication
that may be followed by periods of inactivity. Although
producing such bursty communication may incur additional
delay, bursty communication patterns lend themselves well
to efficient scheduling techniques.

With the suspension of a communication device, a mo-
bile host will experience an additional delay in data trans-
mission since data on both the sending and receiving sides
may be held up during suspension. The mobile host can
monitor its own outgoing communication patterns to insure
that, despite these suspension times, communication contin-
ues smoothly without buffer overflow. The base station, on
the other hand, has no means to restart communication if it
notices that it is running out of buffer space. It is up to the
mobile host to understand the base station’s expected com-
munication patterns so that the buffers at the base station
do not overflow. In order to efficiently use our power man-
agement techniques, our communication layer must monitor
the communication patterns of the mobile host and match
the suspend/resume cycle to these patterns.

The protocol we describe in this section allows a mobile
host to suspend a wireless communication device. Periodi-
cally, or by request from the application, the protocol wakes
up and reinitiates communication with the base station. In
the rest of this section, we will describe our power man-
agement protocol in detail and discuss the significance of
some of the timing parameters. Appendix A describes in
detail the commands used by the protocol and the possible
states and state transitions for both the master and slave.

3.1. Power management control protocol

In this protocol, the mobile host is the master and the
base station acts like a slave. The slave is only allowed to
send data to the master during specific phases of the proto-
col. During non-transmit phases, the slave queues up data



266 R. Kravets, P. Krishnan / Application-driven power management for mobile communication

Figure 1. Slave (base station) protocol state diagram.

Figure 2. Master (mobile host) protocol state diagram.

and waits for commands from the master. Idle periods for
both the master and the slave can be detected through the
use of idle timers or indicated to the protocol from the ap-
plication. In the protocol state diagrams for the master and
the slave (figures 1 and 2), IN: indicates an input event that
can be either an incoming message or a timeout, Q: indi-
cates the state of the queue, and OUT: indicates an outgoing
response message.

As shown in figure 1, the slave is initialized to be in
the SLEEPING mode. It can only leave that mode upon a
WAKE UP message from the master. If the slave has data
to send, it will enter the SEND RECV mode. The slave will
stay in this mode until it has detected that it has no more
data to transmit, whereupon, it will send a DONE message
to the master, enter the RECEIVING mode, and continue

receiving until it receives a SLEEP message. If during this
time the slave detects that there is new data to transmit,
it will send a NEW DATA message to the master and enter
the RECEIVING WAIT mode. The slave can only start
to transmit when it receives a WAKE UP message from the
master. If a SLEEP message is received first, the waiting
data stays buffered and is not transmitted until the next
resume cycle.

Although the state diagram for the master (figure 2) is
much more complex, we can see that the states may be
partitioned into three sets. The first set (SLEEPING) con-
cerns the master when it is sleeping. When the master is in
the SLEEPING mode, it can be woken up by one of two
triggers: a wakeup timer or new data to transmit. If the
wakeup timer expires, the master sends a WAKE UP mes-



R. Kravets, P. Krishnan / Application-driven power management for mobile communication 267

sage along with any new data to the slave. If there is new
data to transmit to the slave before the wakeup timer ex-
pires, the master has the option to wake up and transmit
this new data, or continue sleeping and queue up the data
until the timeout expires.

The second set of states (SENDING WAIT, WAITING,
and WAIT FOR OK) concerns the master when it is waiting
for a response from the slave about whether or not the slave
has data to send. In the SENDING WAIT mode, the master
is transmitting data and in the WAITING mode it has no
data to transmit. When the master receives a response from
the slave in the form of a DATA or a NO DATA message,
the master enters the appropriate state in the third set. Ad-
ditionally, if while in the SENDING WAIT mode an idle
timer expires indicating that the master has no more data to
send, the master enters the WAITING mode and continues
waiting for a response from the slave. In the WAIT FOR OK
mode, the master has told the slave that it should sleep and
is waiting for a SLEEP OK message.

When the master is in one of the final set of states
(SENDING, SEND/RECV, and RECEIVING), it is actively
sending and/or receiving data. In the SENDING mode, the
master may receive a NEW DATA message from the slave.
The master responds with a WAKE UP message and enters
the SENDING WAIT mode. When neither the master nor
the slave have any more data to send, the master sends a
SLEEP message and enters the WAIT FOR OK mode.

Wireless connections are very susceptible to interference
from both external devices and other wireless devices using
the same settings or talking to the same base station. By
using this protocol, we provide the base station with useful
information about the communication patterns of the mo-
bile host. Although not required by the protocol, the master
can inform the slave of its sleep time, or the slave can sug-
gest appropriate sleep times to the master. If the protocol
is used such that only prespecified timeouts trigger restart-
ing communication, the slave can design a communication
scheduling algorithm based around the known sleep time of
the master. Additionally, if the sleep times for the master
are sufficiently long, the slave can save any data destined
for the master to disk. This will free the buffer space being
used by the data destined for the master so it can be used
for other active communications.

3.2. Timing considerations

Timing is a key issue for both the performance of the
mobile host as well as the amount of power that can be
saved. If the wireless Ethernet card is suspended too often,
the user will see lags in data transfer performance. On the
other hand, if it is not suspended long enough, the gain in
battery life time may be undetectable.

In order to determine when the card should be sus-
pended, the protocol needs to determine the communica-
tion patterns for both sender and receiver. There are two
ways by which idle periods in the communication can be
detected. The first, and simplest, is when the application

can actually inform the protocol that it does not have any
data to send. This requires a more complex application that
has information about its communication patterns. The sec-
ond method is to use a timer set with a timeout period. If
the timer expires and no communication has occurred since
the last expiration, the protocol concludes that there is an
idle period in the communication. The appropriate time-
out period depends on the requirements of the application.
Timeout periods that are too short may cause the proto-
col to go to sleep prematurely, resulting in poor response
time for applications dependent on communication. On the
other hand, timeout periods that are too long may cause the
protocol and the communication device to remain active
for unnecessarily long periods of time, wasting precious
energy.

The other timing parameter is the sleep duration which
defines how long the master should keep the communica-
tion suspended. The appropriate sleep duration also de-
pends on the requirements of the application. Longer sleep
periods will cause longer lags in any interactive applica-
tions. Shorter sleep periods will not extend battery life-
time appreciatively. The application needs to determine the
appropriate tradeoff for battery lifetime versus delay. In
many instances, the expected time and data size for the
response to a request initiated by the mobile host can be
estimated. This includes, for example, applications like
mail, web browsing, and file transfer. In this context, hints
provided by the application could be very helpful. In our
experiments reported in section 4, we examine the effects
of fixed timeouts that require no application support and
can be implemented within the transport layer. Adaptively
varying the timeouts or using learning techniques are dis-
cussed in section 5.

A mobile host that is running multiple applications can-
not base its power strategy on the expected communication
patterns of a single application. In this situation, the power
management protocol must take hints about sleep/wake up
durations for all executing applications. By exposing power
management to the application, and hence to the user, our
power management protocol can be guided in the appropri-
ate allocation of resources.

A final consideration is the time required to wake up
and shut down the specific wireless network card. Our
protocol is designed to be independent of the specific card
being used. Since our techniques address issues regarding
the end-to-end transmission of data, we assume that this
wakeup time is minimal in comparison to the total trans-
fer time. Although this may not be true for all devices
currently, the interface standards proposed in [1] suggest
that future devices will provide relatively inexpensive tran-
sitions between waking and sleeping states.

4. Experiments

The goal of our experiments is to show that, by using our
power management techniques, we can save a significant



268 R. Kravets, P. Krishnan / Application-driven power management for mobile communication

amount of the power consumed by the wireless Ethernet
card. The tradeoff is an increased transmission delay ob-
served by the receiver. First we will present our experimen-
tal setup and the user communication patterns used in our
experiments. We will then show the impact of the power
management techniques in the context of these user com-
munication patterns. Finally, we will discuss our results in
the context of several real systems.

4.1. Power measurement

In order to understand how to accomplish such commu-
nication-based power management, we first need to define
what we mean by the amount of power consumed by data
communication. Previous work in this area has defined this
to be the amount of power consumed by the communication
device itself. We believe this is too limited a view, since it
does not take the impact of the system power consumption
into consideration. Our model considers three aspects of
power consumption that cover the whole system.

Our measurement model is derived from the actual mea-
surement of power consumed by the whole machine. By
doing this, we limit ourselves from being able to single out
the power consumption of individual devices, but instead,
we are able to consider the power consumption of actions
performed on the machine. Figures 3 and 4 show two
sample power measurements for a mobile host. Figure 3
represents no power management and figure 4 represents
the effects of power management.

If we consider the actions taken by the mobile host in
figure 3, the first time period represents the power con-

Figure 3. Example power consumption without power management.

Figure 4. Example power consumption with power management.

sumption of the idle machine over time. This is the base
amount, indicated by the power level A, that will always be
consumed even when the machine is idle. In the next time
period, a wireless communication device is activated, and
this area represents the power consumed by the idle ma-
chine and the wireless communication device. The power
consumed by the communication device is the section be-
tween power levels A and B. Next, the mobile host is
actively communicating. This area represents the power
consumed by the wireless communication device for data
transmission as well as any power consumed by the CPU
during data and protocol processing for transmission and
reception.

In this paper, we aim our efforts at reducing the amount
of power consumed when the communication is idle. From
the power management techniques reflected in figure 4, we
see that there is a fluctuation of the amount of power con-
sumed during idle periods in the communication. The lower
levels of power consumption represent the effort of our
power management techniques. The spikes in the power
consumption represents the overhead, both CPU power con-
sumption and communication device power consumption,
during our power management efforts. For all of the ex-
periments described in the next section, we consider the
power consumption above power level A to be attributed
to communication.

This view of power management allows the individ-
ual devices to perform their own power management tech-
niques. For example, our techniques do not tell the CPU
when to suspend or sleep or tell the wireless communica-
tion device how to manage power during active communi-
cation. Instead, we are concerned with reducing the power
attributed to ongoing communication. Therefore, we do not
try to separate the power consumed by the CPU during pro-
tocol and data processing and power management from the
power consumed by the wireless communication device.

4.2. Experimental setup

In order to determine the impact of our power man-
agement techniques, we measure the power consumption
of a wireless Ethernet card under varying conditions. In
our experiments, we use a 915 MHz Lucent WaveLAN
PCMCIA wireless Ethernet card that can transmit data up
to 150 KBps. It provides three power modes: transmit,
receive and suspend, and does not perform power man-
agement at the MAC layer. The system is configured as
shown in figure 5, with a wireless Ethernet in a NEC Versa
6320 laptop (the mobile host) communicating with a Gate-
way Solo 2200 (the base station) using a second WaveLAN
PCMCIA card, both machines running Linux. We plugged
the laptop into a universal power supply (UPS) to filter out
any fluctuations in the wall voltage. Our multimeter sam-
ples the current 11–12 times a second. From these samples
and the output voltage of the UPS, we can monitor the
power being used by the computer.



R. Kravets, P. Krishnan / Application-driven power management for mobile communication 269

Figure 5. Experimental setup.

Figure 6. Sample output from multimeter without power management.

Figure 7. Sample output from multimeter with power management.

To determine the power consumption of the entire com-
puter, we monitor the current being drawn from the trans-
former by the computer. Figure 6 shows the output of the
multimeter over time for a no power management exam-
ple and figure 7 shows the output for a power manage-
ment example, both running on the NEC Versa. This trace
of current readings (11–12 readings a second), when in-
tegrated over time, provides us with the total energy and
average power consumed during that time period. In fig-
ures 6 and 7, the solid line near 14 W represents the power
consumed by this specific computer when it is idle. From
this baseline information we collected about the necessary
energy to run an idle computer, we can compute the cost of
communication. This cost of communication includes the
energy consumed by the communication device and any
energy consumed by the CPU and hard disk due to the
communication. Each experiment was performed over a

Table 1
Power requirements of the Lucent WaveLAN PCMCIA wireless Ethernet

card.

State Documented Measured

WaveLAN – suspended 0 W 0 W
WaveLAN – receive 1.48 W 1.52 W
WaveLAN – transmit 3.00 W 3.10 W

period of 30 min to provide sufficiently long samples. To
ensure stability in our reported numbers, we repeated our
experiments several times for each scenario. The results
presented in this section were taken from specific sample
runs. Each individual run was chosen from a set of quali-
tatively similar runs of a particular experiment.

According to manufacturer specifications [31], the power
requirements of the WaveLAN card are those shown in ta-
ble 1, column 2. Column 3 in table 1 shows the power
requirements measured during our experiments without any
power management. The measurements for receive mode
were taken while the computer was idle, which implied no
extra disk or CPU activity. As mentioned earlier, the power
consumption for transmission includes any incidental CPU
and hard disk power consumed to effect communication.
It is interesting to note that the transmitter is rarely at full
power for long periods of time. We observe that our mea-
surements of the power required while the device is in either
mode are very close to the documented specification.

For an example of the different levels of power con-
sumption, again consider figures 6 and 7, which show sam-
ple traces for the power consumed over a period of time for
the NEC Versa. From our measurements, we determined
that the laptop consumes around 14 W when idle. With
the WaveLAN card inserted, the laptop consumes 15.5 W
when idle. From this information, we consider any power
consumed over the 14 W idle power consumption to be
contributed to the ongoing communication. Our goal is
to conserve as much of the 1.5 W consumed by the idle
communication device. Additionally, we can see that the
power consumption often peaks over 17 W, which is the
expected power consumption for a transmission. This ad-
ditional power consumption over 17 W can be attributed
to the use of the CPU during active data transmission. As
mentioned earlier, we also consider this power consumption
to be part of the overall communication power consump-
tion.

We chose Linux as a research platform because of the
available source code for both the PCMCIA driver and the
WaveLAN driver. In order to suspend the WaveLAN card
in Linux, a system call to the kernel is used to send a sus-
pend command to the WaveLAN driver. Suspension stops
the receive unit, turns off the card, and updates the status
of the PCMCIA device, removing its entry from any rout-
ing tables. This update generates an unwanted disk access.
We modified the WaveLAN driver to update the status, but
to leave the routing tables untouched, and called this the
“sleep mode”. Switching from active mode to sleep mode
is now a matter of only the system call to the kernel and



270 R. Kravets, P. Krishnan / Application-driven power management for mobile communication

does not access the disk. Similarly, to wake up the Wave-
LAN card, a system call to the kernel is used to restart
the receive unit on the WaveLAN card. The next gen-
eration of WaveLAN cards will have a DOZE mode [17]
that will provide a quicker transition from active to DOZE
than the transition from active to suspended in the current
model. Our power management protocol was implemented
in the context of an adaptive communication framework
that provides dynamic protocol configuration support to the
application [19,20]. Through the use of the framework in-
terface, the application can set and change specific protocol
parameters.

4.3. Communication patterns

The effectiveness of any power management strategy
is dependent on the usage patterns of the target of such
strategies. In the context of communication-based power
management, we want to explore users with varied com-
munication demands. For our experiments, we distinguish
between two different types of communication patterns.
The first, simulation-based, simulates a user from a general
profile of their communication usage. The second, trace-
based, emulates the communication usage of an actual web
user.

4.3.1. Simulation-based communication patterns
The communication patterns used in our initial experi-

ments were designed to simulate different types of users.
The amounts of data transmitted and received and the idle
patterns of the users are varied randomly over time. The
communication patterns are chosen to model three “typi-
cal” users. Table 2 presents the minimum, maximum and
average amount of data in a transmission for each of these
users. For the simulated web users, a transmission from the
mobile host triggers multiple responses from the base sta-
tion to simulate the multiple files needed for a web page.
The average number of responses is shown in the count

column of table 2. Table 3 shows the timing patterns for
the same users. Each user is described by a transmission
cycle. During this cycle, the mobile host transmits and re-
ceives the amounts of data as described in table 2. When
considered with the idle times shown in table 3, we can
see the total amount of time per cycle that the mobile host
spends transmitting, receiving and sitting idle. Our goal is
to suspend the communication device during as much of
these idle times as possible.

The first pattern (WEB) simulates a user browsing the
web. The amount of data transmitted is relatively insignif-
icant in comparison to the amount of data received. The
sleep time represents the amount of time the user would
spend reading a page before going on to the next one. Each
request transmitted by the mobile host triggers a number of
responses. The delay between these responses is varied
from 0 to 15 s to simulate responses from a busy web
server. The second pattern (JW) simulates a user work-
ing on a joint project over the wireless LAN. This user
occasionally transmits and receives large pieces of their
work. There is no connection between transmissions from
the mobile and transmissions from the base station. The
third pattern (EMAIL) simulates a user that mostly trans-
mits and receives e-mail messages. This user is idle most
of the time between transmissions, and the size of the trans-
missions are relatively small.

Typical mobile users tend to perform each of the above
activities to some degree. From that point of view, the
patterns presented above categorize users according to their
main activity. The goal of the adaptive techniques discussed
in section 5 are to dynamically find appropriate timeouts for
user performing such activities.

4.3.2. Trace-based communication patterns
Our second set of communication patterns was derived

from traces of active web users obtained from a Lucent/Bell
Labs web proxy server. We use these simulations to demon-
strate the effects of power management on users perform-

Table 2
Data communication patterns for three simulated users.

Data transmitted Data received

min max avg avg total min max avg avg total
Pattern (KB) (KB) (KB) Count (KB) (KB) (KB) (KB) Count (KB)

WEB 5 30 17.5 1 17.5 300 1200 750 10 7500
JW 5 500 227.5 1 227.5 5 500 227.5 1 227.5
EMAIL 5 300 152.5 1 152.5 5 300 152.5 1 152.5

Table 3
Timing patterns for three simulated users.

User sleep time Average time Average

min max avg transmitting receiving sleeping percent
Pattern (s) (s) (s) (s) (s) (s) sleeping

WEB 10 300 155 0.116 50 104.9 67.7%
JW 10 300 155 1.52 1.52 151.96 98%
EMAIL 10 600 305 1.02 1.02 302.96 99%



R. Kravets, P. Krishnan / Application-driven power management for mobile communication 271

Figure 8. Low-end user data usage.

Figure 9. High-end user data usage.

ing real actions. Additionally, we were able to use traces
depicting different levels of web activity. For example, fig-
ures 8 and 9 show two traces of the amount of data received
over time for our web user. The first is a low-end user trace
where about 2 MBytes of data is received in an hour. The
second is a high-end user trace where about 125 MBytes
of data is received in an hour. For clarity, the scale of the
high-end user trace graph in figure 9 was reduced to allow
for comparison between the two traces. The high-end user
trace includes a number of received transmissions ranging
up to 16 MBytes not shown in the graph. Additionally,
we consider a middle user trace where about 64 MBytes of
data is received in an hour.

4.4. Results

In this section, we consider the results from our exper-
iments in the context of the effects of our power manage-
ment protocol on the energy consumed by the communica-
tion. This energy consumption is affected by the use of the
CPU and the hard disk during communication. The savings
we see come predominantly from the reduced consumption
by the wireless Ethernet card. In section 4.5, we discuss
our results in the context of three real systems. The effects
of the power management on a real system will depend on
the power requirements of the system itself.

Figure 10. Power consumption during a sample idle period with 1 s sleep
duration.

Figure 11. Power consumption during a sample idle period with 2 s sleep
duration.

4.4.1. Protocol power consumption
When running the experiments with our management

techniques turned on, we incur some overhead in terms of
energy consumption. During idle periods in the commu-
nication, the overhead is due to the cost of waking up the
WaveLAN card, transmitting a query to the base station and
putting the card to sleep immediately since there is no data
to receive. Our results show that, even with relatively short
sleep times, this overhead is still significantly less than the
energy consumed by the WaveLAN card had it been left in
receive mode.

Our experiments produce a trace of the power measure-
ments from the multimeter. Plotting these traces gives us a
good, intuitive understanding of the effect of allowing the
wireless Ethernet card to sleep for short periods of time.
With the graphs in figures 10 and 11, we compare two
traces of the power consumed by the idle communication
subsystem (i.e., when there is no actual transmission or re-
ception). In figure 10, the sleep duration is 1 s, and in fig-
ure 11, the sleep duration is 2 s. The first trace, the flat line
at 1.5 W marked by the diamonds, shows the power con-
sumed by the communication when no power management
is performed. The second trace, the line at 0 W with oc-
casional spikes marked by the plus signs, shows the power
consumption with our power management protocol turned
on.



272 R. Kravets, P. Krishnan / Application-driven power management for mobile communication

Figure 12. Power savings during idle periods.

Figure 13. A sample transmission.

We can see from the two traces that the power consump-
tion is approximately 1.5 W less when the WaveLAN card
is suspended. For the first trace, the power consumption
stays at 1.5 W since the communication device is always
powered on. For the second trace, the power consumption
is near zero most of the time, but spikes up at regular in-
tervals. These spikes are caused by the protocol waking up
and sending a query to the base station to see if there is
any data waiting to be sent. By comparing the two graphs,
we can see that the overhead for transmitting the queries
is going to increase as the sleep duration gets shorter. Fig-
ure 12 shows the percent savings of using our protocol
during idle periods when compared to no power manage-
ment.

Figure 13 shows a trace during the transmission of a
message to the base station. As we can see, the power
consumption for both traces is the same during the trans-
mission. The difference lies in the fact that after the trans-
mission is complete, the trace using power management
shows the effect of suspending the wireless Ethernet on the
power consumption.

4.4.2. Power savings for communication patterns
In order to determine the longer-term effects of power

management, we measure power consumption during com-
munication generated in the patterns discussed in sec-
tion 4.3. In our experiments, we do not queue data at the

Figure 14. Percent savings for communication power consumption for
simulation-based communication patterns.

Figure 15. Percent savings for communication power consumption for
trace-based communication patterns.

master; i.e., we always wake up the communication device
at the master if there is data to send.

Simulation-based. Figure 14 shows the results from our
experiments in terms of the percent of the total energy con-
sumed by the communication that was saved by using our
power management protocol. For WEB, we see 48–57%
savings in the energy consumed by the communication. For
JW, we see 54–78% savings in the energy consumed by the
communication. In the case of EMAIL, we compare the
results of no power management with those of power man-
agement with sleep durations of 1 and 5 min. (Due to the
different time scale, these measurements are not included in
figure 14.) These sleep durations result in savings of 81%
and 83% of the power consumed by the communication.

Trace-based. Similar to the results for simulation-based
communication patterns, figure 15 shows the communica-
tion power savings for the trace-based web users and also
includes the power savings for our simulation based web
user. As would be expected, the amount of savings in-
creases as the user becomes less active. It is interesting
to note that the amount of savings for the different users
levels out in different places. For the high-end user, we do
not see much of a savings improvement after a 0.5 s sleep
duration, while for the low-end user, the savings increase



R. Kravets, P. Krishnan / Application-driven power management for mobile communication 273

significantly up to a 1 s sleep duration. This should be
expected, since the high-end user continually sends signif-
icantly more data, allowing for less opportunities to sleep
for long periods of time. It is interesting to observe that
the power management results for our simulated WEB trace
compares closely with a middle web user trace.

4.4.3. Delay
Power savings never come for free. In the context of

communication, this cost can be measured in delay. A sleep
duration of any length will impose, on average, a delay of
half the duration. This cost must be taken into consideration
when deciding how much power management to use. In the
context of a user that solely uses communication for e-mail,
a sleep duration of 1 min is acceptable. In reality, many
e-mail programs check mail on the order of every 5 min,
and hence, such a sleep duration is more representative of
the common e-mail user. In contrast, a user who is working
jointly across the network or who is accessing web pages
may not be willing to accept such delays. In these cases,
the sleep durations should reflect the tolerance of the users
to delays in receiving data.

In the context of these experiments, we measure the
communication delay in terms of additional transmission
time per user data block at the base station. (We never
queued data at the mobile machine.) We calculate this de-
lay by determining the amount of time that the first message
in the data block was delayed. Once the first message is
sent, the rest will follow, and the delay to those messages
will depend purely on how quickly the data can be trans-
mitted. It is easy to show that the maximum additional de-
lay imposed by our protocol on any data can never exceed
the delay for the first packet, and hence, the numbers we
present are a conservative estimate. We measure this delay
by determining the time the transmission request was sent to
the communication subsystem and the time when the data
is finally sent. Since multiple transmission requests may
queue up at the base station during large bursts of traffic,
delays may be incurred even when no power management
is used. Figure 16 shows the average added delay for a
given sleep duration for the trace-based web patterns. As
the user becomes more active, the average delay decreases

Figure 16. Average added delay based on sleep duration.

due to the fact that the communication is suspended less
often, allowing data transmissions to be sent back-to-back
without extra delay.

Figure 16 also includes the average added delay for the
simulation-based web user. Although we have already dis-
cussed the fact that the power saving for this communica-
tion pattern matches that of the middle web user, the delay
observed for this pattern is closer to that of the low-end web
user. This inconsistency is due to the differences in the im-
plementation of the two types of experiments. In the case
of the trace-based web users, data transfer was performed
in a request-response fashion, where each request resulted
in one response. Since the user was communicating via a
web proxy, requests often resulted in immediate responses,
and so were not delayed by the power management proto-
col. In the case of the simulation-based web user, a single
request resulted in potentially multiple responses. These
responses were timed to simulate communication delays to
a potentially busy server, and so were rarely able to send
data quickly enough to return data before the power man-
agement protocol went into a sleeping state.

4.5. Impact on system costs

Now we consider the power savings in the context of
three real machines (see table 4). The experiments that we
have described were performed on the NEC Versa 6320.
We also measured the idle power consumption for the
Toshiba Libretto 60 with and without the WaveLAN card
and the idle power consumption for the HP Palmtop PC
320LX. We then used the results from section 4.4, running
the experiments on the NEC, to estimate the effect of the
communication patterns on the other two machines. The
Toshiba Libretto 60 is a small laptop that can run either
Windows 95 or Linux. We would expect similar power
costs for the hard disk and CPU for this machine as we
did for the NEC. The HP Palmtop PC 320LX, on the other
hand, runs Windows CE and has no internal hard disk. This
will probably change the effect of power management on
this type of machine. It may be argued that a wireless card
with the power profile of WaveLAN is unlikely to be used
with an HP Palmtop-like machine. We simply use this as an
example of the trend towards lighter, more power efficient
machines that have small battery capacity.

The first machine, the NEC Versa 6320, is a high-end
machine that consumes 14 W while sitting idle. In this
context, the 1.5 W consumed by the WaveLAN card only

Table 4
Measured power requirements for three machines.

Power requirements

idle without idle with
WaveLAN WaveLAN

Machine card card

NEC Versa 6320 14 W 15.5 W
Toshiba Libretto 60 7 W 8.5 W
HP Palmtop PC 320LX 1.2 W 2.7 W



274 R. Kravets, P. Krishnan / Application-driven power management for mobile communication

Figure 17. Percent savings for three types of machines.

represents approximately 10% of the power consumed by
the computer when it is idle. In comparison, a machine like
the Toshiba Libretto consumes only 7 W when idle. The
1.5 W of the WaveLAN card now represents approximately
18% of the power consumed by the computer when it is
idle. If we take this one step further, we can see that for a
machine like the HP Palmtop PC, this percentage increases
to over 50%. To compensate for this problem, some manu-
facturers have introduced wireless Ethernet cards that have
an internal battery, although they still draw some amount of
power from the main battery. In this case, the power con-
sumed from the main battery by the idle device represents
approximately 10% of the entire system power of the HP.
Although this reduces the effect on the lifetime of the main
battery, we still need to consider the effects on the battery
for the card itself. Our techniques will work to extend the
lifetimes of both batteries.

Considered in the context of the NEC, the results dis-
cussed in section 4.4 show 6.2–8.9% savings for the JW
pattern and 8.0–9.5% savings for the WEB pattern. If we
now project these results onto the other two machines, we
see even better savings of the power consumed by the en-
tire system. Figure 17 compares the results for the percent
saved of the total system power for these three machines
over varied sleep durations. The crossing of the plots for the
WEB and JW patterns for the HP is due to the fact that the
power consumption of the communication device is more
than the power consumption of the HP. Therefore, the better
communication power savings for the JW pattern dominate
the results. This is simply an artifact of the fact that the
two patterns will eventually cross for all cases, as can be
seen by the plots for the Toshiba. Most importantly, we can
see that the trend toward machines like the Toshiba and the
HP make it imperative that we properly manage communi-
cation devices, since the power consumed by these devices
represents more and more of the total system power.

5. Adaptive mobile power management

We have shown that power management for communi-
cation devices can extend battery life. We also see that

Figure 18. Percent of total time spent sleeping.

there is not one scheme that will fit all users or all applica-
tions. This leads us to investigate mechanisms for adapting
power management levels during communication. The goal
of this paper is not to address the issue of prediction, but
provide the mechanism by which predictive algorithms can
be used to adjust power management parameters; in par-
ticular, the timeout and sleep duration parameters in our
implementation.

The ideal power management technique would sleep
whenever there is no data to receive from the base sta-
tion and wake up for any incoming receptions as well as
tell the base station exactly when to expect transmissions
from the mobile host. The goal of adaptive power man-
agement techniques is to be able to estimate when there is
data to transmit from either side. Poor prediction can cause
unsuccessful power management and waste resources such
as buffer space and bandwidth.

With our protocol, the sleep duration can be adapted
to fit the communication patterns of the application. As
the sleep durations increase, we can see that the curve for
the amount of energy saved will level off. This happens
as the savings reach the theoretical maximum savings for
the particular communication pattern. The theoretical limit
is reached when the communication device is only active
when there is actual data transfers occurring. For smaller
sleep durations that are much smaller than the expected
time between transmissions, the communication device is
still active during some of the idle period. As the sleep
duration increases, the probability that there is data wait-
ing at the base station increases. As an example, consider
figure 18 which shows the percent of the total time spent
sleeping for both the JW and the WEB patterns. As the
sleep duration increases, the percent of the total time spent
sleeping approaches the theoretical limit (98% for JW and
67% for WEB; see table 3). From the fact that the sleep
time for the WEB pattern comes closer than the JW pattern
to the optimal sleep time, we can see that the power man-
agement techniques that we used were more successful for
the WEB pattern.

By providing an application-level interface to our power
management protocol, applications can control the poli-
cies used for determining sleep durations. In this way,



R. Kravets, P. Krishnan / Application-driven power management for mobile communication 275

application-specific information can be used to determine
optimal adaptation strategies.

In the context of our experiments, we implemented a
simple adaptive algorithm similar to [11] for the web user.
The algorithm responds to communication activity by re-
ducing the sleep duration to 250 ms and reacts to idle peri-
ods by doubling the sleep duration up to 5 min. We can use
this simple algorithm because the communication patterns
of the web user are somewhat predictable. A request from
the mobile host expects multiple responses from the base
station. As the mobile host notices that no more responses
are available, it can deduce that either there are no more re-
sponses or that the server is busy and the responses may be
delayed. For this communication pattern, such an adaptive
algorithm provides 58% savings in the power consumed by
the communication device. This saving is an improvement
over the 5 s static sleep duration. While for the 5 s sleep
duration, we saw a 3.12 s additional delay, for the adap-
tive algorithm, we only saw a 2.77 s delay. This suggests
that adaptive and predictive techniques have merit in mo-
bile communication power management for communication
applications. It also demonstrates that applying power man-
agement at the transport or application layer has benefits.
These techniques can be used in conjunction with adaptive
techniques used at the MAC layer [9,24].

An important aspect to keep in mind is that efficient
prediction or estimation is not always simple or useful.
Taking the communication patterns of multiple applications
would also make adaptation more challenging. Learning-
theory based estimation techniques [18,21] can provide bet-
ter adaptive algorithms for deciding when to power off and
when to turn back on the communication device. Many
such techniques inherently try to estimate the distribution
generating the communication packets, and hence applica-
tion provided hints help such estimation techniques.

6. Conclusions

In this paper, we have studied the important issue of
power management in mobile wireless communication. We
have presented a novel transport-level protocol by which a
mobile host can judiciously suspend and restart its com-
munication device, and by informing the base station ap-
propriately, not lose en-route data. We have presented ex-
perimental results from an implementation of this protocol,
and shown power savings of up to 83% for communication.
This translates to savings of 6–9% in terms of total system
power for high-end laptops, and can represent up to 40%
savings for current hand-held PCs. When we consider the
subset of our results for e-mail and web browsing applica-
tions in the context of hand-held PDAs, our implementation
results agree in large measure with the simulation results
in [29]. It is important to note that if other components
of the mobile machine are managed better, the relative im-
provement numbers due to efficient power management of
the communication device will be more prominent. For

most applications the resulting small additional delay (e.g.,
0.4–3.1 s for some web browsing responses) should be ac-
ceptable.

Open problems include the development of intelligent
techniques (e.g., learning-based methods) to estimate when
there is queued data at the base station, so that reception
delays can be reduced. Such techniques might also adapt
the timeout choice for users with varied communication
patterns. It will be interesting to explore the correct APIs
to provide to applications so that they can give hints to the
protocol about their communication patterns (in the spirit
of transparent informed prefetching [25]).

Acknowledgements

Research by Robin Kravets was sponsored in part by an
AT&T/Lucent Technologies Ph.D. Fellowship. The authors
would like to thank Rob Kooper and Don Allison for their
assistance in the setup, configuration and building of our
power measurement equipment.

Appendix A. Power control protocol

A.1. Protocol commands

During the course of communication both the master
and the slave use commands to inform the receiving side
of state changes. Protocol commands are as follows:

PMC CMD WAKE UP: used by the master to inform the
slave that it can wake up and transmit data if it has
any messages queued up.

PMC CMD NO DATA: used by the slave to inform the mas-
ter that upon wake up, the slave had no data to send.

PMC CMD DATA: used for any messages that simply con-
tains data.

PMC CMD NEW DATA: used by the slave to indicate to the
master that it now has data to transmit.

PMC CMD DONE: used by the slave to indicate the end of
data transmission.

PMC CMD SLEEP: used by the master to inform the slave
that it should go to sleep.

PMC CMD SLEEP OK: used by the slave to indicate that
it completed the sleep command.

A.2. Master protocol

The mobile host has the responsibility of determining
when communication takes place. At any point in time, the
master can be in one of the following states:

PMC STATE SLEEPING. The protocol is sleeping and no
data can be transmitted or new data requests will be
allowed and a PMC CMD WAKE UP is sent. Additionally,
no data should be received when the protocol is sleeping.

PMC STATE SENDING. Only the master is sending data.
Subsequent data requests are queued for transmission.



276 R. Kravets, P. Krishnan / Application-driven power management for mobile communication

PMC STATE SENDING WAIT. Only the master is send-
ing data. The slave has been queried for new data to
send. Subsequent data requests are queued for transmis-
sion.

PMC STATE RECEIVING. Only the slave is sending
data. New data requests will be queued for transmission
and the master will enter the PMC STATE SEND RECV
state.

PMC STATE SEND RECV. Both the master and the slave
are sending data. Subsequent data requests are queued
for transmission.

PMC STATE WAITING. The master woke up and has
nothing to send. It has sent a query to the slave to
see if it has any new data to send.

PMC STATE WAIT FOR OK. The master has determined
that communication should be suspended and is waiting
for a response from the slave.

A.3. Slave protocol

The base station follows the commands of the master. At
any point in time, the slave can be in one of the following
states:

PMC STATE SLEEPING. The protocol is sleeping and
no data can be transmitted. Upon receipt of a PMC
CMD WAKE UP message, the slave wakes up and en-
ters either the PMC STATE RECEIVING state or the
PMC STATE SEND RECV state, determined by whether
or not the slave has data to send.

PMC STATE RECEIVING. Only the master is sending
data. New transmissions will not be allowed. If new
transmissions are requested, the slave sends a PMC
CMD NEW DATA message to the master and enters the
PMC STATE RECEIVING WAIT state.

PMC STATE RECEIVING WAIT. Only the master is sen-
ding data. New transmissions will not be allowed. Slave
has already indicated to master that it has new data to
send. Upon receipt of a PMC CMD WAKE UP message,
the slave starts transmitting and enters the PMC STATE
SEND RECV state.

PMC STATE SEND RECV. Both the master and the slave
are sending data. Subsequent data requests are queued
for transmission.

References

[1] Advanced Configuration and Power Interface Specification, Intel
Corporation, Microsoft Corporation and Toshiba Corporation, Re-
vision 1.0a (July 1998).

[2] P. Agrawal, B. Narendran, J. Sienicki and S. Yajnik, An adaptive
power control and coding scheme for mobile radio systems, in:
IEEE International Conference on Personal Wireless Communica-
tions (ICPWC ’96) (1996).

[3] A. Bakre and B.R. Badrinath, I-TCP: Indirect TCP for mobile hosts,
in: IEEE International Conference on Distributed Computing Sys-
tems (ICDCS) ’95 (1995).

[4] H. Balakrishnan, V. Padmanabhan, S. Seshan and R. Katz, A compar-
ison of mechanisms for improving TCP performance over wireless
links, in: Proceedings of the SIGCOMM ’96 Symposium (1996).

[5] H. Balakrishnan, S. Seshan, E. Amir and R. Katz, Improving TCP/IP
performance over wireless networks, in: Proceedings of the 1st
ACM International Conference on Mobile Computing and Network-
ing (MOBICOM) (November 1995).

[6] J-C. Chen, K. Sivalingam, P. Agrawal and S. Kishore, A comparison
of MAC protocols for wireless local networks based on battery power
consumption, in: Proceedings of IEEE INFOCOM ’98 (1999).

[7] I. Chlamtac, C. Petrioli and J. Redi, Analysis of energy-conserving
access protocols for wireless identification networks, in: Proceedings
of the International Conference on Telecommunication Systems (ITC-
97) (March 1997).

[8] I. Chlamtac, C. Petrioli and J. Redi, An energy-conserving access
protocol for wireless communciation, in: Proceedings of the Inter-
national Conference on Communications (ICC-97) (June 1997).

[9] I. Chlamtac, C. Petrioli and J. Redi, Energy conservation in access
protocols for mobile computing and communication, Microproces-
sors and Microsystems Journal (1998).

[10] F. Douglis, On the role of compression in distributed systems, ACM
Operating Systems Review 27(2) (April 1993).

[11] F. Douglis, P. Krishnan and B. Bershad, Adaptive disk spindown
policies for mobile computers, in: Proceedings of the 2nd USENIX
Symposium on Mobile and Location Independent Computing (April
1995).

[12] F. Douglis, P. Krishnan and B. Marsh, Thwarting the power hun-
gry disk, in: Proceedings of the 1994 Winter USENIX Conference
(January 1994).

[13] F. Douglis et al., Method for managing the power distributed to
a disk drive in a laptop computer, United States Patent 5,481,733
(January 1996).

[14] F. Douglis et al., Adaptive disk spin-down method for managing the
power distributed to a disk drive in a laptop computer, United States
Patent 5,493,670 (February 1996).

[15] K. Govil, E. Chan and H. Wasserman, Comparing algorithms for
dynamic speed-setting of a low-power CPU, in: Proceedings of the
1st ACM International Conference on Mobile Computing and Net-
working (MOBICOM) (1995).

[16] D. Helmbold, D.D.E. Long and B. Sherrod, A dynamic disk spin-
down technique for mobile computing, in: Proceedings of the 2nd
ACM International Conference on Mobile Computing and Network-
ing (MOBICOM) (1996).

[17] A. Kamerman and L. Monteban, WaveLAN-II: A high performance
wireless LAN for the unlicensed band, Bell Labs Technical Journal
(Summer 1997).

[18] S. Keshav, C. Lund, S. J. Phillips, N. Reingold and H. Saran, An em-
pirical evaluation of virtual circuit holding time policies in IP-over-
ATM networks, in: Proceedings of IEEE INFOCOM ’95 (1995).

[19] R. Kravets, K. Calvert and K. Schwan, Payoff adaptation of com-
munication for distributed interactive applications, Journal on High
Speed Networking: Special Issue on Multimedia Communications
(1998).

[20] R. Kravets, K. Calvert, P. Krishnan and K. Schwan, Adaptive vari-
ation of reliability, in: Proceedings of the 7th IFIP Conference on
High Performance Networking (HPN ’97) (April 1997).

[21] P. Krishnan, P. Long and J.S. Vitter, Adaptive disk spindown via
optimal rent-to-buy in probabilistic environments, in: Proceedings
of the 12th International Machine Learning Conference (July 1995).

[22] K. Li, R. Kumpf, P. Horton and T. Anderson, A quantitative analysis
of disk drive power management in portable computers, in: Proceed-
ings of the 1994 Winter USENIX (1994).

[23] J.R. Lorch and A.J. Smith, Reducing processor power consumption
by improving processor time management in a single-user operating
system, in: Proceedings of the 2nd ACM International Conference
on Mobile Computing and Networking (MOBICOM) (1996).

[24] B. Narendran, J. Sienicki, S. Yajnik and P. Agrawal, Evaluation of
an adaptive power and error control algorithm for wireless systems,



R. Kravets, P. Krishnan / Application-driven power management for mobile communication 277

in: IEEE International Conference on Communications (ICC ’97)
(1997).

[25] R.H. Patterson, G.A. Gibson and M. Satyanarayanan, A status report
on research in transparent informed prefetching, ACM Operating
Systems Review 27 (April 1993).

[26] J.M. Rulnick and N. Bambos, Mobile power management for maxi-
mum battery life in wireless communication networks, in: Proceed-
ings of IEEE INFOCOM ’96 (1996).

[27] J.M. Rulnick and N. Bambos, Power control and time division: The
CDMA versus TDMA question, in: Proceedings of IEEE INFOCOM
’97 (1997).

[28] A. Sampath, P.S. Kumar and J. Holtzman, Power control and re-
source management for a multimedia CDMA wireless system, in:
Proceedings of the 6th International Symposium on Personal, In-
door and Mobile Radio Communications (PIMRC ’95) (1995).

[29] M. Stemm and R. Katz, Reducing power consumption of network
interfaces in hand-held devices, in: Proceedings of the 3rd Interna-
tional Workshop on Mobile Multimedia Communications (MoMuc-3)
(December 1996).

[30] M. Weiser, B. Welch, A. Demers and S. Shenker, Scheduling for
reduced CPU energy, in: Proceedings of the 1st Symposium on Op-
erating System Design and Implementation (OSDI ’94) (November
1994).

[31] WaveLAN/PCMCIA Card User’s Guide, Lucent Technologies (Octo-
ber 1996).

Robin Kravets is currently an Assistant Professor at the Computer Science
Department at the University of Illinois, Urbana-Champaign. Dr. Kravets’
research addresses communication issues in mobile ad hoc networking,
including power management, location management, routing and security.
She received her Ph.D. from the College of Computing, Georgia Institute
of Technology, with funding from an AT&T/Lucent Technologies Ph.D.
Fellowship, her MS in computer science from the University of California,
Los Angeles, and her BS in computer and information science from the
University of Massachusetts, Amherst.
E-mail: rhk@cs.uiuc.edu

P. Krishnan (who is called “Krishnan” or “PK”) is a Member of Techni-
cal Staff at Bell Labs, Lucent Technologies. His research interests include
IP network management, the development and analysis of algorithms,
prefetching and caching, the world wide web, and mobile computing.
He received his Ph.D. in computer science from Brown University, and
his B. Tech. in computer science and engineering from the Indian Institute
of Technology, Delhi.
E-mail: pk@research.bell-labs.com


