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Abstract

In this paper we present our implementation of a modi�ed UDP protocol appropriate for the mobile

networking environment. Our protocol, like UDP, does not guarantee reliable delivery of datagrams.

However, unlike UDP, it does ensure that the number of lost datagrams is kept small. In this paper

we discuss our implementation of M-UDP (in NetBSD) and compare its performance against that of

UDP in an experimental mobile network that is currently under development at the University of South

Carolina.

1 Introduction

Mobile networks refer to an emerging new networking technology that will allow users to maintain network

connections even as they roam over large geographical areas. Users equipped with personal digital assistants

(palm-top computers with wireless communications technology) will thus have continuous access to a wide

variety of services that will be made available over national and international communication networks.

They will be able to access their data and other services such as electronic mail, electronic news including

special services such as stock market news, videotelephony, yellow pages, map services, electronic banking,

etc., while on the move.

How can we maintain connections for users who are mobile? Clearly, we need to ensure that packets get

routed to the current location of the user and we also need to ensure that the throughput of the connection

is not adversely a�ected due to mobility. Mobile-IP [2] is an adequate protocol for routing packets in a

mobile environment (section 2.1 discusses, brie
y, how Mobile-IP �ts into our system). However, Mobile-IP

by itself cannot guarantee that the e�ciency of transport connections is maintained. To see why this is

the case, consider the behavior of a TCP connection where the receiver is mobile. In TCP, the sender

begins retransmission of packets if they are not acknowledged within a short amount of time (hundreds of

milliseconds). In a mobile environment, a user is subject to periods of fading (when the user is blocked

�This work was supported by the NSF under grant number NCR-9410357.
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by some physical obstruction, for example), or high bit-error rate (resulting in lost datagrams). The fade

periods can be as long as a few seconds causing the transmission of acknowledgements to be delayed. The

TCP sender will timeout and retransmit the unacknowledged packets resulting in reduced e�ciency for

the TCP connection. A similar problem arises for UDP connections as well since datagrams transmitted

when the user is in a fade will be lost.

How can we improve the e�ciency of these transport connections? To improve TCP throughput,

we need to ensure that the sender does not timeout and begin retransmission when the mobile user is

in a fade. However, increasing the timeout interval is not an acceptable solution because, in certain

situations, it will result in poor throughput. Consider the case where the mobile user is stationary but

the wireless link is noisy (lots of lost packets). In this case, since the timeout interval is large, the sender

will not retransmit lost packets quickly enough resulting in poor throughput because the channel will be

underutilized. Bakre[1] has proposed a di�erent implementation of TCP called I-TCP (for Indirect-TCP)

that addresses this e�ciency issue. I-TCP splits the TCP connection in two { one TCP connection from

the sender to a �xed host `close' to the current location of the mobile user and a second TCP connection

from this �xed host to the mobile user. This �xed host e�ectively serves as the TCP connection end-point

from the point of view of the sender and is responsible for forwarding all data reliably to the mobile user.

If UDP is used unmodi�ed over a wireless channel a large percentage of packets will be lost because of

two reasons. First, wireless links tend to be susceptible to bit errors and, second, packets transmitted to

a mobile that is in a fade will be lost. The �rst problem may be alleviated to some degree by using some

form of FEC (Forward Error Correction) encoding. The second problem, however, cannot be handled as

easily at the data-link layer. In this paper we discuss the implementation and performance of our M-UDP

(Mobile-UDP) protocol which follows traditional UDP semantics but provides improved e�ciency (i.e.,

fewer lost packets). The protocol is based on an idea similar to the one used in I-TCP and M-TCP [3].

That is, the UDP connection is split in two at some host close to the mobile user. This host attempts to use

any free bandwidth to retransmit packets lost during a fade thus ensuring that the number of lost packets

is kept small. We study the performance of our protocol in terms of lost packets and bu�er overhead and

compare it against UDP. We show that unmodi�ed UDP has a loss rate of up to 50% while M-UDP has a

loss rate of less than 5% for a wide range of loads and fade intervals.

In the next section we describe our mobile network architecture brie
y and describe the advantages

of this architecture over others. We also summarize the overall design of our protocol stack for mobile

networks. Section 3 presents three versions of M-UDP and section 4 discusses the implementation. Results

of a performance study comparing UDP and M-UDP are presented in section 5. Section 6 concludes the

paper.

2 Overview of our system architecture

The system model we consider is one where users equipped with PDAs (or similar wireless capable comput-

ing devices) roam in a region covered by a cellular network. Each cell contains a base station that provides

wireless connectivity to the mobile. Note that we do not consider a model where a user unplugs a computer

from one subnet, travels elsewhere and plugs it into a foreign subnet. Mobile-IP with no modi�cations at
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the transport level will be su�cient to handle this latter type of mobility.

Our mobile network architecture is presented in detail in [3]. We summarize the main points in this

section. Our architecture may be viewed as a three-level hierarchy (see Figure 1) at the lowest level of

which are the MHs (Mobile Hosts) who communicate with MSS (Mobile Support Stations) nodes in each

cell. MSSs are responsible for providing a connection endpoint for MHs. Several MSSs are controlled by

a machine called the Supervisor Host (SH) which is connected to the wired network and is responsible for

handling most of the routing and other protocol details for the mobile users. We also assume that the MSSs

are connected to the SH via a wired network. The SH maintains connections for mobile users, handles


ow-control and is responsible for maintaining the negotiated quality of service. A single SH may thus

control all MSS nodes within a small building. Our architecture, thus, separates the mobile network from

the high-speed wired network and provides connectivity between the two via SHs who serve the function

of a gateway.

SH
SH

Supervisor Host
Mobile Support
Station (MSS)

Cells

High-speed Network

Mobile Host
(MH)

Figure 1: Our mobile network architecture.

What are some of the advantages of using our three-tier architecture?

1. The hando� process between MSS nodes is simpli�ed. This is because, in our architecture, MSS

nodes only operate at the network layer and as a result there is no transport layer state that needs

to be transferred when a MH moves between two MSSs. The result is that the MSS nodes are cheap

devices { an important consideration because every cell has one MSS node and any geographical area

will be covered by many such cells.

2. Signi�cant transfer of state information (i.e., transport state) between SHs takes place only when

a MH moves out of a cell belonging to one SH and into a cell belonging to another SH (see [6]

for a transport state hando� protocol that runs between SHs in this case). However, observe that

users tend to remain for signi�cant amounts of time within a building or within some other small

geographical area the number of such hando�s is therefore reduced. Even in areas (such as downtown

areas) with high user mobility the number of these hando�s is kept small because the number of users

crossing the perimeter of an area covered by a SH is smaller than the total number of users moving

between cells. In fact, if a SH controls n cells, the average number of hando�s per second that require
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transfer of state information is of the order of n as opposed to n
2 which is the case if we do not use

SHs (see Singh[10]).

3. From a security standpoint, centralizing complexity in the SH is a good idea because it is easier to

protect SHs as opposed to protecting MSSs. There are two reasons for this: (1) MSSs are typically

located in ceilings of buildings or in street light poles in downtown areas and are thus easily tampered

with and, (2) protecting MSSs from software tampering is expensive (since the complexity of MSSs

goes up). The SH, in contrast, can be physically protected because they can be located almost

anywhere in the network. Software tampering is also easy to deal with since it is cheaper to build

complex �rewalls at the SH.

2.1 Overview of our protocol stack

The network layer at the SH uses Mobile-IP to route datagrams to the MH. Speci�cally, the SH acts as the

Foreign Agent for new MHs who enter one of its cells. These MHs are assigned temporary IP addresses

and these address remain constant so long as the MH is in a cell controlled by the SH. This ensures that

the checksums in the TCP/UDP headers will not need to be modi�ed if the MH roams locally. How are

packets routed from the SH to the MH's current MSS? The SH maintains a cache containing a mapping

between the MH's temporary IP address and the IP address of its current MSS. Packets are then routed

to the MH via the MSS using loose source routing (see [8]). The MSS transmits all packets it receives from

the SH over its wireless channel.

We have de�ned a set of transport layer protocols for mobile networks that are similar to protocols

to be made available over high-speed networks. However, our protocols were designed while keeping in

mind the constraints of the mobile environment such as arbitrary bandwidth 
uctuations (as users move

in and out of a cell) resulting in indeterminate bandwidth availability, and the unpredictable mobility of

users. It is important to note that our protocols are only implemented in the mobile networks (i.e., SH,

MSS and MH) and are not intended for high-speed networks. Thus, any connection that is established,

where one end is mobile and another is �xed, will be split in two { one from the �xed host to the SH

(using an appropriate high-speed network protocol) and another from the SH to MH (using one of our

protocols) with all protocol translation being done at the SH. For a detailed explanation of our protocols

and the functionality of the SH, please refer to Singh[3]. The mobility management module takes care

of transferring transport connections when a mobile user moves into a cell controlled by another SH.

The bandwidth management module allocates bandwidth to di�erent connections in an e�ort to meet the

negotiated QoS needs of the various MHs.

Figure 2 gives an overall picture of our transport layer. M-TCP and M-UDP refer to our versions of the

TCP and UDP protocols respectively and are designed for providing e�cient data connections to mobile

users. The M-CM (Mobile-Continuous Media) protocol, on the other hand, is designed for applications

requiring real-time transmission of data, for example, applications that use audio or video data. This

type of data needs to be delivered to the mobile user within strict deadlines and, in addition, requires

some guarantees on bandwidth. Unfortunately, because users are mobile, it is likely that the bandwidth
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Figure 2: Transport layer stack for mobile networks.

available for a mobile user will vary over time1. M-CM attempts to provide a `best-possible' service for these

connections by starving data connections in favor of M-CM connections. LPTSL (Loss Pro�le Transport

Sub-Layer) is a sublayer that may be used in conjunction with M-CM or M-UDP connections to provide the

user with some control over dealing with situations where the bandwidth availability 
uctuates. LPTSL

discards data for real-time connections that are facing a bandwidth crunch. However, this data is discarded

taking into consideration the structure of the data stream (e.g., compressed MPEG video or audio) and

viewer perception. A discussion of LPTSL is beyond the scope of this paper and the interested reader is

referred to Singh[10].

3 Design of M-UDP

Consider Figure 3. Packets arrive at the SH from some �xed host for delivery to the MH. As the MH

moves about, it encounters periods of fade (as shown). If we use UDP to deliver packets to the MH, a

signi�cant fraction of these packets will be lost because they will be transmitted to the MH while the MH

is in a fade. In fact, if r denotes the fraction of time the MH is in a fade, then it is easy to see that the

fraction of data lost per second will be rD where D is the data rate of the UDP connection. How can

this loss be avoided? The simplest solution would be to stop transmitting packets to the MH when it in

a fade and resume transmission (including all packets that arrived during the fade interval) when the MH

comes out of the fade (i.e., in the receive period). Unfortunately, in many cases the MH may simply be

receiving data and it will not be possible for the SH to determine when the MH has gone into a fade (it is

easy, however, to tell when the MH comes out of a fade by requiring the MH to send a message informing

the SH of this fact). We have developed three versions of M-UDP that use information about the previous

fade interval to retransmit packets that may have been lost.

Our goal in modifying UDP was to ensure that packets lost during a fade were retransmitted to the mo-

bile once the mobile came out of the fade. The question is, of the packets already transmitted, which

packets need to be retransmitted? Our �rst implementation is called Statistical Fade Correction

1If a user with open connections enters a crowded cell, the total requested bandwidth may well exceed the available

bandwidth.
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Figure 3: Loss due to fade.

(StFC) and works as follows.

Algorithm 1

� The SH maintains a data-structure that contains the mean cell latency of each cell con-

trolled by the SH and the mean fade interval when moving from one cell to another.

Consider, for example, an SH controlling cells covering a highway. Here, it is easy to

determine the mean latency and fade intervals with some accuracy since, by and large,

the mobile users have fairly predictable behavior.

� For a given M-UDP connection, the SH maintains a FIFO bu�er that is large enough to

contain the expected number of packets arriving for the mobile during an average fade

interval.

� Whenever a mobile comes out of a fade, it informs the SH of this fact and the SH begins

transmitting the bu�ered packets. Any new packets arriving during this period are placed

at the back of this FIFO bu�er.

This scheme works well (i.e., has a low loss) in systems where the fade intervals are chosen from a Normal

distribution with a small standard deviation. Unfortunately, if the length of a fade is modelled as an

exponential distribution, this scheme does not perform as well. This is primarily due to the fact that a

bu�er size proportional to the mean fade interval is not large enough to cover longer fades which occur with

a high probability for the exponential case. Figure 4 illustrates the problem with this scheme. Here, the

mean length of the fade interval yields a bu�er size of 2 packets (assume all packets are of the same size).

At the end of the �rst fade interval, packets 1 and 2 are in the bu�er at the SH and they are retransmitted.

Packets 3 and 4 are transmitted and are received before the next fade interval begins. The second fade is

very long and packets 5 { 11 arrive during this interval. Since the bu�er size is only 2, packets 10 and 11

get retransmitted after the end of the fade but packets 5 { 9 are lost.

A modi�cation to this basic scheme is the Smart Fade Correction scheme (SmFC) described below:

Algorithm 2

� The SH maintains a FIFO bu�er that is three times the size required to hold packets

arriving during an average fade. A bu�er of this size is large enough to bu�er packets for

95% of fades, even when their length is exponentially distributed.
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Figure 4: Retransmissions in StFC.

� When a mobile comes out of a fade it informs the SH of the length of the fade (note that

the mobile can estimate the length of a fade by keeping track of the time during which it

could not hear transmissions from the MSS). The SH then only retransmits those packets

from the bu�er that arrived during the actual fade. New packets that arrive during this

retransmisson period are bu�ered.

Observe that SmFC does not blindly retransmit all packets stored in its bu�er as StFC does. By using

the length of fade information provided by the mobile, SmFC only retransmits the packets which were sent

during the mobile's last fade period. As a result, the mobile sees very few duplicate packets, which saves

power and extends battery life.

In our experiments we observed that this scheme did typically have lower losses as compared with the

StFC scheme, however, it's performance for the exponential case was not as good as we had hoped. For

high loads, we still observed a loss of up to 25%. The reason for this behavior is that there is a small but

�nite probability (about 5% in the exponential case and smaller in the normal case) of having very long

fades and thus not all packets that arrive during this period can be bu�ered. Further, if a long fade is

followed by a short period where the mobile is not in a fade, not all bu�ered packets can be retransmitted

during the mobile's receive period. In this situation, some packets bu�ered during the previous fade may

never be retransmitted.

Figure 5 illustrates the behavior of this scheme. Figure 5(a) presents a scenario that is identical to

Figure 4. Here, however, because the bu�er size is 6, packets 6{11 that arrive during the second fade get

retransmitted. Packet 5 is still lost because the bu�er is not large enough to hold all packets. Figure 5(b)

illustrates a problem with the \memoryless" property of this scheme (i.e., retransmit packets that arrived

during the previous fade only). Packets 3 and 4 arrived before the start of the second fade period but

couldn't be transmitted because packets 1 and 2 were being retransmitted. After the end of the second

fade, packets 5 onwards are retransmitted because these packets arrived at the SH during the second fade

period. Thus packets 3 and 4 are lost even though the bu�er is large enough to store packets 3 and 4.

The third, and best, scheme we implemented is calledMemory Fade Correction (MFC) and is described

below:

Algorithm 3

� We maintain a bu�er that is ten times as large as that required to store packets arriving
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Figure 5: Retransmissions in SmFC.

during the mean fade interval. The reason for selecting such a large bu�er is to ensure

that losses are kept below 5%. A bu�er of this size covers 99+% of the fades, even with

exponential means.

� When a mobile comes out of a fade, it informs the SH of the length of the fade.

� The SH keeps track of the last time the mobile came out of the fade and, using these two

numbers, can determine the length of the previous receive period during which the mobile

was not in a fade. This information is used by the SH to determine from which packet to

begin retransmissions.

Consider Figure 6(a). Here packets 1 and 2 get retransmitted as soon as the MH comes out of the fade.

Packet 3 that arrives during this period is also transmitted. Packets 4{6 arrive during the second fade

period. When the MH comes out of fade, the SH knows the length of the second fade interval and it

knows that packets 1{3 were transmitted before the start of this fade period, so it only retransmits packets

4 onwards. In Figure 6(b), packets 1{6 arrived during the �rst fade period and only packets 1{4 could

be retransmitted after the �rst fade ended. When the second fade ends, the SH knows the length of the

�rst receive period and that of the second fade period. It uses this information to conclude that packets

5 and 6 were retransmitted during the second fade. Thus, after the end of the second fade, it begins

retransmission starting at packet 5. It is important to observe that the two problems noted earlier for the

SmFC scheme are thus eliminated. In addition, since MFC retransmits only the packets it knows were

originally transmitted during a fade, it keeps the number of duplicates low.
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Figure 6: Retransmissions in MFC.

4 Design Issues

Before discussing our implementation, it is important to note that M-UDP is only implemented at the SH {

no changes are needed at the MSS, MH or hosts in the �xed networks. In operation, the IP layer at the SH

identi�es incoming datagrams intended for mobile hosts which are currently in one of the cells controlled

by the SH, and passes these datagrams up to M-UDP (via UDP). M-UDP bu�ers these datagrams and

transmits them to the MH. At the MH, datagrams are received by UDP and processed in the normal way.

If the MH is sending datagrams, it again uses UDP. We chose not to implement M-UDP at the MH (for

transmitting datagrams) because, we believe that, a large percentage of the wireless bandwidth will be

used on the downlink for transmitting data to the MH rather than on the uplink. In any event, if our

assumption is false, it is trivial to incorporate M-UDP at the MH for transmitting datagrams as well. In

the remainder of this section we focus on M-UDP implementation at the SH.

At the top level, the choice was whether to implement M-UDP as a part of UDP or as a protocol in

its own right, with the attendant entry in the proto sw data structure, a protocol number for ip, etc. The

choice was made to implement it as a separate protocol giving a cleaner separation of functionality and

allowing for possible future enhancement of features. IP uses the proto sw struct to demultiplex packets

to the appropriate transport layer protocol. Currently, the M-UDP protocol emulates UDP on the link to
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the mobile host (the IP protocol �eld is set to IPPROTO UDP).

When a datagram �rst arrives at the SH, IP needs to decide if the datagram is to be passed up to

M-UDP or routed on normally. To make this decision, IP examines a network-layer list of MHs that are

currently in a cell managed by the SH. In our current implementation M-UDP also maintains a similar

transport-layer version of this list as a linked-list of mpcbs (mobile process control blocks). Each mpcb

contains information such as the MH address, MSS address and a pointer to a list of M-UDP datagrams. It

is noteworthy that the mpcbs are shared between all transport layer protocols. The mobility management

module module at the SH will maintain this mpcb list in the future but, currently, a sysctl() call to M-UDP

is used to add or delete MH entries from these lists.

Newly arriving datagrams need to be bu�ered by M-UDP. We had a choice here in terms of dealing

with the IP header of the bu�ered datagram { we could either store the IP header along with the datagram

or recreate it each time the datagram is retransmitted. We chose the �rst option even though it is slightly

more expensive in terms of using mbufs2. This is because the number of mbuf operations would be greatly

increased if we were to recreate the IP header for each retransmission.

4.1 Implementation Details

In order to implement M-UDP we had to make changes to existing UDP/IP code (of NetBSD) and, in

addition, add several routines of our own. To see what changes were made, it is best to use, as a guide, the

sequence of steps followed to handle newly arriving datagrams or retransmission of bu�ered datagrams.

When a datagram �rst arrives at a SH, the

sequence of calls made to process it are:

� ip intr() (the IP input routine)

� ip dooptions() (if packet was loose

source routed from the sender to the MH

via the SH)

� udp input()

� mudp input()

� mudp output()

� ip output()

For retransmissions, the sequence of calls is:

� mudp timeout()

� mudp output()

� ip output()

The changes made to existing code are:

1. In the �le in.h we added a protocol number IPPROTO MUDP for M-UDP and an entry to the

2In most cases the number of mbufs used will be the same for both cases because the header is only 20 bytes and mbufs

can hold 128 bytes.
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CTL IPPROTO NAMES array which is used for sysctl calls to locate protocols by name.

2. In the �le ip var.h we added the mhaddr struct and a kernel declaration of the mhaddr list, which is

the network layer list of local MH addresses. Note that the MH addresses are stored in network byte

order for e�ciency. We also added a function prototype for ip localmobile(), the function ip calls to

see if an incoming packet is destined for a local MH.

3. In in proto.c we added an entry in the proto sw array for M-UDP and includes for the M-UDP header

�les.

4. The routines ip intr() and ip dooptions() were modi�ed to take care of a curious problem that arises

depending on whether the destination MH is present in a cell controlled by its home SH or is located

in a cell controlled by a foreign SH. In the latter case datagrams are routed through the SH to the MH

using the loose source routing option (LSRR). If the MH is in its home SH's domain, the packet may

be sent normally using the MH's address as the destination. If the MH is away from its home SH, the

packet must be loose source routed through the foreign SH �rst. We use a variable mh found, which

is global to this �le, to bring the two cases together. One of the �rst things IP does when it receives

a datagram is to call ip dooptions() to see if there are any ip options attached (like LSRR). Normally

a LSRR packet would just be forwarded along, however, ip dooptions() has been changed to call

ip localmobile() and pass the packet back to ip intr() if the packet is for a local mobile rather than

sending it on to ip forward(). It also sets mh found so that ip intr() need not check the destination

address again. In the non-LSRR case, IP �rst checks to see if the packet is for a local address (local

to the SH), and if it fails, calls ip localmobile(). In both cases, if ip localmobile() succeeds, the packet

is demultiplexed up to UDP (udp input()).

5. udp input() has been modi�ed to work as follows. If UDP �nds that a datagram is not for a local

port, it calls tp localmobile(), the transport layer function that searches the mpcb list to see if this

packet is for a local MH. If the address is found, the packet is passed to M-UDP, via a call to

mudp input(). A pointer to the mpcb is included so that M-UDP need not look it up again. The

routine tp localmobile() has been added to this �le as well.

In addition to the above changes made to existing TCP/IP code, we needed to add several routines for

M-UDP. We de�ned two new header �les { mobile.h and mudp var.h. mobile.h includes de�nitions that

are to be shared amongst all transport layer protocols which deal with the consequences of mobility. The

de�nitions of mpcbs as well as an M-UDP packet header are here as is the declaration of the mpcb list.

mudp var.h contains declarations speci�c to M-UDP. A number of M-UDP statistics are declared here,

as are the de�nitions needed for the many sysctl options that M-UDP supports. Function prototypes for

the M-UDP functions are also declared here. All M-UDP routines are contained in the �le mudp ussreq.c.

These routines are:

1. mudp init(): called from the proto sw entry on system bootup, it simply starts up the M-UDP

transmit timer that is used to emulate the wireless link.
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2. mudp input(): Called from udp input() when a new udp packet is received. A copy of the packet is

made and placed on the mudp packet queue in the mpcb for the destination MH. The original packet

is sent on to mudp output(). A per-mpcb memory limit is enforced here. If the memory limit is

exceeded, or there are no mbufs available, the original packet is simply passed on to mudp output().

No resends will be possible, but the packet is always sent at least once. In this way the behavior of

M-UDP is always at least as good as UDP in terms of packet delivery.

3. mudp output(): Fills in the UDP header �elds, and calculates the checksum3. An ip option structure

is allocated in an mbuf and the LSRR option is built. In the next version of our software, this will

be done by the network layer at the SH). In order to emulate the low speed of the wireless link, the

packet and option are queued, awaiting a timeout to be sent. In the StFC and SmFC algorithms

(but not MFC), the packet is then removed from the mudp packet queue for this MH.

4. mudp timeout(): Called by the timeout() routine at a frequency determined by the kernel variable

mudptimeout. mudp timeout() emulates the speed of the wireless link. On timeout, the packet at the

head of the queue is removed and passed, (with its ip options), to ip output(). mudp timeout() then

reschedules itself.

5. mudp drain(): Called by IP via the proto sw entry when an mbuf shortage occurs. The mudp packet

queues of each mpcb are searched and all mudp packets are removed and freed. Note that all packets

are sent once before being placed in these queues so all packets will still be sent at least once. This

behavior is analogous to the drain functions of other TCP/IP protocols, for example, UDP throws

away all fragments in its reassembly queue when udp drain() is called.

6. mudp sysctl(): Called by the user level sysctl function, this routine allows kernel-level variables and

structures relating to M-UDP to be changed while the kernel is running. Variables used to determine

M-UDP functionality are:

mudpcksum - enable or disable checksum on outgoing M-UDP packets

mudptimeout - how long to wait between sends on the wireless link

mudpmemlimit - the per-mpcb memory limit

7. mudp ctlinput(): Used for upcalls from the mobility management module, this routine handles MH

movement messages by 
ushing all queues associated with the mobile and resetting �elds in the

appropriate mpcb. mudp ctlinput() would also be called from the proto sw entry if a control message

was received by ICMP relating to IPPROTO MUDP. Since M-UDP marks the packets it sends as

UDP for now, this will not happen. If the MH is made aware of M-UDP in the future, mudp ctlinput()

would handle M-UDP errors reported by the MSS and MH.

In addition to all of the above changes, netstat and vmstat were modi�ed to allow M-UDP statistics to be

shown.

3We require checksum on M-UDP packets since, at this point, we know that they are going across an unreliable wireless

link. The original source may not have used a checksum assuming delivery on a reliable �xed network.
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5 Performance analysis

To test the performance of M-UDP we used the experimental set up shown in Figure 7. The sender is a

DecStation 5000 that transmits UDP packets to the SH which is a Pentium PC running NetBSD. The SH

sends these (M-UDP) packets to the MH (another PC) via the MSS (which is another DecStation 5000

that serves as a router) using loose source routing (see Johnson[8]).

DEC 5000 DEC 5000PC

PC

129.252.11

1
2
9
.
2
5
2
.
1
3
9

Ethernet

Sender

MH

SH MSS

UDP M-UDP

Figure 7: Experimental set up.

In these experiments all the machines are connected via ethernets. Thus, to emulate the transmission

speed over the wireless link (from the DEC 5000 to the MH) and the fades we made the following mod-

i�cation at the SH. All calls to ip output() are intercepted and then, based on the outgoing link speed

(32 kbps) and the packet size (including UDP and IP headers, but not link layer headers), a timer is set

to go o� each time a packet can be sent on the wireless link. At each timeout, 1 packet is removed from

the queue and ip output() is called normally. In order to emulate a fading wireless channel, packets are

discarded at the MH as follows. A MH may be viewed either as being reachable or as being in a fade. Each

fade period is followed by a period where the MH is reachable and each period of reachability is followed

by a fade. Thus, we divide time into alternating periods of fade and reachability. Packets transmitted

to the MH during a fade are discarded. In addition to packet loss during fades, packets are also lost due

to noise on the channel. This is simulated by requiring the MH to discard a packet with a probability of

0.008. This is because the packet size used is 80 bytes of data plus 20 bytes of IP header. Thus, a BER of

10�5 yields a packet loss rate of 0.8%.

The cell latency and length of the fade interval are modeled as random variables chosen either from an

exponential distribution or from a normal distribution. The mean cell latency is �xed at 5 seconds while

the mean fade interval varies between 0.5 and 4.5 seconds. The standard deviation (normal case) is either

0.05, 0.15 or 0.25 of the mean for both, the cell latency and the length of the fade. The link speed used

is 32kbps. However, since the MH is frequently in a fade, the actual data rate seen by the MH is much

smaller. Speci�cally, if the MH is in a fade x% of the time, the maximum acheiveable data rate is no more

than 0:32x kbps. A load of 0.9 thus means that data is generated by the sender at a rate of 0:9 � 0:32x

kbps or 0:288x kbps. In these experiments we generate data at a constant rate. Each experiment is run

for 4.5 minutes and the �rst 30 seconds of data is discarded (to counter transient e�ects). For each data

point, we compute 95% con�dence intervals and the interval half-widths kept to less than 5% of the point
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values in all cases.

Figures 8 and 9 illustrate the performance of UDP and the three versions of M-UDP for a load of 0.9.

The X-axis plots the length of the fade interval and the Y-axis plots the percentage of packets received at

the MH. Three graphs display the performance of these schemes for the case when the fade interval and cell

latency are chosen from a normal distribution. Here, the loss rate for the three versions of M-UDP, is always

less than 5% while the loss rate for UDP is between 10% (for short fades where fade
fade+latency = 0:09) to

about 47% for long fades (where this ratio is 0.47) as expected. The performance of MFC is better than

StFC and SmFC for the case when the cell latency and fade periods are exponentially distributed because

the SH maintains information about the lengths of previous fade intervals and uses this information to

decide which packets to retransmit to the MH. StFC, on the other hand, relies on the mean fade length to

make this decision. Also, StFC and SmFC only retransmit packets from the most recent fade interval and,

as a result, frequently retransmit fewer packets than MFC, which may reach back to previous intervals.

Figure 9 shows that StFC has a lower loss rate than MFC and SmFC for the case when the standard

deviation is very small (0.05*Mean). This happens because StFC retransmits packets that MFC and

SmFC may not because StFC is a more pessimistic scheme. In the presence of bit errors (1% in our

system), some packets transmitted to the MH will be considered lost even though they are received. StFC

sometimes retransmits these packets resulting in a lower percentage of total loss.

What is the overhead associated with these three versions of M-UDP? As we stated in section 3, the

bu�er size used for MFC is large enough to hold all packets arriving during a period whose length is ten

times as long as an average fade period (this ensures that losses are kept less than 5%). The bu�er for

SmFC holds three times as many packets as are received during an average fade and the bu�er used for

StFC only holds packets that arrive during one average fade period.

While bu�er usage at the SH is an important measure of overhead, we believe that more important

measures are the number of times a packet is retransmitted over the wireless link and the number of times

the packet is received at the mobile. Both, the bandwidth on the wireless link and power at the mobile

station, are scarce resources and must not be wasted by extraneous sends or receives. Figure 10 shows

the average number of times a packet is transmitted over the wireless link and the average number of

times it is received at the MH (i.e., average number of duplicates). The X-axis plots the length of the

fade interval used and the Y-axis plots the copies per packet. The fade interval and the cell latency are

normally distributed random variables. The top two graphs represent the case when the standard deviation

is 0.25*Mean while the bottom two represent the case when the standard deviation is 0.05*Mean. The

number of duplicate sends is between 1.1 (for short fades) and 1.6 (for long fades) for all three versions of

M-UDP. The number of duplicate receives is, however, very close to 1 (i.e., very few duplicates are received

by the MH) for SmFc and MFC. Figure 11 illustrates the behavior of these schemes for the most di�cult

case, exponential means on the latency and fade intervals. The number of duplicate sends here is almost

1.9 (i.e., on the average each packet is transmitted twice) while the number of duplicate receives is still

close to 1. If we consider battery power consumption at the MH, the number of receives is clearly an

important criteria and we would like to keep the number of duplicate receives small. As we see, all three

schemes ensure that the percentage of duplicate receives is very small.

For exponentially distributed means, MFC is clearly the best version of M-UDP because it has a low
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Figure 8: Mean Latency = 5s. Load = 90%.

loss (see Figure 8) and low percentage of duplicates at the receiver. Figure 12 illustrates MFC's overhead

for a wide range of loads. Here, the X-axis plots the load and the Y-axis plots the copies per packet

transmitted to the MH. The mean fade period chosen is 2.5 seconds. We see that for the exponential case,

each packet is transmitted, on an average, between 1.4 and 1.6 times. For the normal case (the standard

deviation is 0.25*Mean), this number is constant at about 1.35.

5.1 Summary

Of the three schemes, which scheme is most appropriate? If we know that the mean latency and fade

intervals are normally distributed, it appears the SmFC or StFC are appropriate. This is because the

percentage of loss is small and, in addition, the bu�er space used at the SH is small. If, on the other

15



M-UDP Receive Rate
(Exponential Means)

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.5 1.5 2.5 3.5 4.5

Fade Interval (s)

%
 R

ec
ei

ve
d 

at
 M

H M-UDP with MFC
M-UDP with SmFC
M-UDP with StFC

M-UDP Receive Rate
(Normal Means. Std. Dev. = 0.25 * Mean.)

91.00

92.00

93.00

94.00

95.00

96.00

97.00

98.00

99.00

100.00

0.5 1.5 2.5 3.5 4.5

Fade Interval (s)

%
 R

ec
ei

ve
d 

at
  M

H

M-UDP with MFC
M-UDP with SmFC
M-UDP with StFC

M-UDP Receive Rate
(Normal Means. Std. Dev. = 0.15 * Mean.)

95.00

95.50

96.00

96.50

97.00

97.50

98.00

98.50

99.00

99.50

100.00

0.5 1.5 2.5 3.5 4.5

Fade Interval (s)

%
 R

ec
ei

ve
d 

at
 M

H

M-UDP with MFC
M-UDP with SmFC
M-UDP with StFC

M-UDP Receive Rate
(Normal Means. Std. Dev. = 0.05 * Mean.)

96.00

96.50

97.00

97.50

98.00

98.50

99.00

99.50

100.00

0.5 1.5 2.5 3.5 4.5

Fade Interval (s)

%
 R

ec
ei

ve
d 

at
 M

H

M-UDP with MFC
M-UDP with SmFC
M-UDP with StFC

Figure 9: Mean Latency = 5s. Load = 90%.

hand, we know that the means are exponentially distributed, then it is clear the MFC ensures the smallest

percentage of loss even though its bu�er requirements at the SH are high.

6 Conclusions and future work

In this paper we have presented an implementation of a mobile version of the UDP protocol called M-

UDP that attempts to keep the number of lost datagrams small in the event that the receiver is a mobile

user. It does so by retransmitting datagrams lost during a fade.more than once. We have implemented

M-UDP and tested its performance. The previous section shows that M-UDP performs very well in a

mobile environment for a wide range of system parameters. M-UDP forms a part of our larger transport

layer design that is discussed in Singh[3].
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Figure 10: Normal Means. 90% Load. Mean Latency = 5s.
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Figure 12: MFC with Mean Latency = 5s, Mean Fade = 2.5s.
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