
he advent of technology has
facilitated the development of small, low-power devices that
combine programmable general-purpose computing with mul-
tiple sensing and wireless communication capabilities. Com-
posing these sensor nodes into sophisticated ad hoc
computational and communication infrastructures to form
sensor networks will have significant impact on applications
ranging from military situation awareness to factory process
control and automation [1].

The sheer number of sensor nodes and the dynamics of
their operating environments (e.g., limited battery power and
hostile physical environment) pose unique challenges in the
design of sensor networks and their applications. Issues con-
cerning how information collected by and stored within a sen-
sor network could be queried and accessed and how concurrent
sensing tasks could be executed internally and programmed by
external users are of particular importance. In this article we
describe a sensor information networking architecture, called
SINA, that facilitates querying, monitoring, and tasking of sen-
sor networks. The following section describes the components
and information abstraction of the architecture. An implemen-
tation of the architecture, including the sensor programming
language called Sensor Query and Tasking Language (SQTL)
and its execution environment, is described as well. We then
introduce data gathering operations for sensor information, and
describe issues related to interworking between mobile users
and stationary sensor nodes. Sample applications to illustrate
the capability of the information gathering operations and
SQTL are also presented along with their simulation studies.

SINA — A Middleware Architecture
Conceptually, a sensor network is modeled as a collection of
massively distributed objects. SINA plays the role of middle-
ware, allowing sensor applications to issue queries and com-
mand tasks into, collect replies and results from, and monitor

changes within the networks (Fig. 1a). SINA modules, running
on each sensor node, provide adaptive organization of sensor
information, and facilitate query, event monitoring, and task-
ing capability (Fig. 1b).

In contrast to conventional distributed databases in which
information is distributed across several sites, the number of
sites in a sensor network equals the number of sensors, and the
information collected by each sensor becomes an inherent part
(or attributes) of that node [2]. To support energy-efficient and
scalable operations, sensor nodes are autonomously clustered.
Furthermore, the data-centric nature of sensor information
makes it more effectively accessible via an attribute-based nam-
ing approach instead of explicit addresses [1]. SINA architec-
ture consists of the following functional components.

Hierarchical Clustering — To facilitate scalable operations
within sensor networks, sensor nodes should be aggregated to
form clusters based on their power levels and proximity (Fig.
2a). The aggregation process could also be recursively applied
to form a hierarchy of clusters (Fig. 2b). Within a cluster, a
cluster head will be elected to perform information filtering,
fusion, and aggregation, such as periodic calculation of the
average temperature of the cluster’s coverage area. In addi-
tion, the clustering process should be reinitiated should the
cluster head fail or run low on battery power. In situations
where a hierarchy of clusters is not applicable, the system of
sensor nodes is perceived by applications as a one-level clus-
tering structure, where each node is a cluster head by itself.
The clustering algorithm introduced in [1] allows sensor nodes
to automatically form clusters, elect and re-elect cluster heads,
and reorganize the clustering structure if necessary.

Attribute-Based Naming — With the large population of
sensor nodes, it may be impractical to pay attention to each
individual node. Users would be more interested in querying
which area(s) has temperature higher than 100˚F, or what is
the average temperature in the southeast quadrant, rather
than the temperature at sensor ID#101. To facilitate the
data-centric characteristics of sensor queries, attribute-based
naming is the preferred scheme [1]. For instance, the name
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[type = temperature, location = N-E, tempera-
ture = 103] describes all the temperature sensors located
at the northeast quadrant with a temperature reading of
103˚F. These sensors will reply to the query “which area(s)
has temperature higher than 100˚F.”

Location Awareness — Due to the fact that sensor nodes oper-
ate in physical environments, knowledge about their own physical
locations is crucial. Location information can be obtained via sev-
eral methods. Global Positioning System (GPS) is one of the
mechanisms that provide absolute location information. For eco-
nomical reasons, however, only a subset of sensor nodes may be
equipped with GPS receivers and function as location references
by periodically transmitting a beacon signal telling their own loca-
tion information so that other sensor nodes without GPS receivers
can determine their approximate positions in the terrain. Other
techniques for obtaining location information are also available.
For example, optical trackers [3] give high precision and resolu-
tion location information but are only effective in a small region.

With integration of these three components, the following
two sample queries may be carried out effectively:
• Which area(s) has temperature higher than 100˚F? In theory,

the query is broadcast to and evaluated by every node in
the network. Despite probably the best returned result, the
query would suffer from long response time. In practice,
each cluster head may periodically update the temperature
readings of its members, and the query can now be multi-
cast to and evaluated by cluster heads only. This results in
better response time at the expense of less accurate answers.
Queries under stringent timing constraints can be evaluated
by cluster heads of a higher tier.

• What is the average temperature in the southeast quadrant?
Similarly, the average temperature of each cluster can be
periodically updated and cached by cluster heads. Further-
more, the query should be delivered to nodes located
(named) in the southeast quadrant only.

Information Abstraction
In SINA, a sensor network is conceptually viewed as a collection
of datasheets; each datasheet contains a collection of attributes
of each sensor node. Each attribute is referred to as a cell, and
the collection of datasheets of the network present the abstrac-
tion of an associative spreadsheet, where cells are
referred to via attribute-based names. Initially, the
datasheet of each sensor node contains a small number
of predefined attributes. Once these sensor nodes are
deployed and form a sensor network, they can be
requested by other nodes (e.g., from their cluster
heads) to create new cells by evaluating valid cell con-
struction expressions that may obtain information from
other cells, invoke a system-defined function, or aggre-
gate information from other datasheets.

Each newly created cell must be uniquely named
and becomes a node’s attribute, which can be either
a single value (e.g., remaining battery power) or mul-

tiple values (e.g., history of tempera-
ture changes in the past 30 minutes).
By incorporating a hierarchical clus-
tering mechanism and an attribute-
based naming scheme, the
architecture provides a powerful set
of operations to deal with data access
and aggregation among sensor nodes.
The mechanism of associative broad-
cast [4] has been employed to facili-
tate node interaction via
attribute-based naming.

Sensor Query and Tasking Language
As part of the architecture, SQTL [5] plays the role of a pro-
gramming interface between sensor applications and the
SINA middleware. It is a procedural scripting language,
designed to be flexible and compact, with a capability to inter-
pret simple declarative query statements. In addition to sensor
hardware access (e.g., getTemperature, turnOn), location-
aware (e.g., isNeighbor, getPosition), and communica-
tion (e.g., tell, execute) primitives, it also provides an
event handling construct, which is suitable for sensor network
applications where sensor nodes are programmed to process
asynchronous events such as receiving a message or an event
triggered by a timer. By using the upon construct, a program-
mer can create an event handling block accordingly. Current-
ly, three types of events are supported by SQTL:
• Events generated when a message is received by a sensor node
• Events triggered periodically by a timer
• Events caused by the expiration of a timer

These types of events are defined by the SQTL keywords
receive, every, and expire, respectively.

An SQTL message, containing a script, is meant to be
interpreted and executed by any node in the network. In
order to target a script to a specific receiver or group of
receivers, the message is to be encapsulated in an SQTL wrap-
per which acts as a message header to indicate the sender, the
receivers, the particular application running on the receivers,
as well as parameters for the application.

We adopt the syntax of the Extensible Markup Language
(XML) for the SQTL wrapper which defines an application
layer header that is capable of specifying a complicated
addressing scheme for attribute-based names. Table 1 summa-
rizes common SQTL wrapper fields.

The Sensor Execution Environment
A sensor execution environment (SEE), running on each sensor
node, is responsible for dispatching incoming messages, exam-
ining all arrival SQTL messages, and performing the appropri-
ate operation for each type of action specified in the messages.
SEE looks inside the receiver argument of a message and
decides, based on its value, whether to forward the message to
the next hop. Messages with ALL_NODES in their group sub-

■ Figure 1. A model of sensor networks and SINA middleware.
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arguments will be rebroadcast to every sensor node in the net-
work, and those with NEIGHBORS will only be forwarded to
the nodes’ one-hop-away neighbors. An attribute-based name
in the form of a list of attribute-value pairs indicated by the
criteria field will be compared with the receiver’s attributes
stored in its datasheet. SEE only accepts the message if the
node’s attributes satisfy the criteria. This process of matching a
message with its potential receiver(s) when arriving at the
receiver(s) is termed late binding and is described in [4].

Once an SQTL script is injected from the front-end node (a
special node directly connected to the network) to one or more
sensor nodes, the script may push itself to other nodes in order
to complete the assigned task. A tell message is then generat-
ed after a result is produced at each individual sensor node and
is delivered back to the requesting node, which is normally the
upstream node from which the script came. Figure 3 depicts the
dispatching of incoming messages performed by SEE.

In addition to demultiplexing incoming SQTL messages,
SEE also takes care of outgoing SQTL messages from all run-
ning applications. Outgoing messages will be distributed to
target node(s) specified in the receiver argument through the
underlying communication mechanism. SEE may perform a
translation of an attribute-based name into a unique, numeric
link-layer address where applicable. Otherwise, broadcast will
be used at the link layer.

Built-In Declarative Query Language
For applications that collect sensor information, a user may
choose to invoke the built-in query interpreter instead
of explicitly writing a procedural SQTL script. The
query language has been adapted from the Structured
Query Language (SQL) to serve as the primary
mechanism for querying sensor networks. The follow-
ing sample query statement, as delivered to all cluster
heads in the network (encapsulated in the SQTL
wrapper), would ask every cluster head to create a
new cell called avgTemperature which maintains the
average temperature among all of its cluster mem-
bers:

SELECT avg(getTemperature())
AS avgTemperature
FROM CLUSTER-MEMBERS

As soon as an SQTL message containing such a
query statement is received by target nodes, the
corresponding SEE will pick the most appropri-
ate data dissemination method available to evalu-
ate the query.

Database techniques, such as view composi-
tion, materialization, and maintenance, are being
investigated and adapted to maintain consistency
among associated cells. Related research on
querying a sensor network modeled as a device
database may be found in [6].

Information Gathering
Methods

For applications to take full advantage of the SINA
architecture, an underlying communication mecha-
nism among sensor nodes plays an important role.
By providing efficient data dissemination and infor-
mation gathering supports suitable for specific
application requirements, SINA abstracts the low-
level communications away from high-level sensor
applications. When users submit queries, it is not

required to explicitly define how the information will be collect-
ed inside the network. The SINA architecture selects the most
appropriate data distribution and collection method based on
the nature of queries and current network status. Upon receiv-
ing users’ queries, the front-end node has the responsibility to
interpret and evaluate the query by requesting information from
other nodes. With the sheer number of sensor nodes, collisions
resulting from a large number of responses propagated back to
the front-end node during a short period of time create the
response implosion problem [2] depicted in Fig. 4a. The objective
of the information gathering mechanisms is to maximize the
quality of responses in terms of their number and responsive-
ness, while minimizing network resource consumption.

Three primitive methods are introduced to accomplish the
information gathering task: sampling operation, self-orchestrat-
ed operation, and diffused computation operation.

Sampling Operation — For certain types of applications, such
as finding the average temperature over the entire network area,
responses from every sensor node may cause response implosion.
To reduce the degree of the problem, some sensor nodes may not
need to respond if their neighbors do. Nodes make autonomous
decisions whether they should participate in this application based
on a given response probability, as shown in Fig. 4b.

An enhancement can be made to this approach if sensor
nodes are not evenly distributed over the area. To prevent
having more responses from denser areas, the response proba-
bility will be computed at each cluster-head node based on

■ Figure 3. Dispatching of messages received by a sensor node.
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■ Table 1. Arguments used by actions in an SQTL wrapper.

sender The sender of an SQTL message wrapper

receiver Potential receivers specify by two subarguments:
group Subargument of receiver to specify group of receiver; its

possible value can be one of ALL_NODES, or NEIGHBORS
criteria Subargument of receiver to specify selection criteria of

receivers

application-id A unique ID for each application in the same sensor network

num-hop Number of hops away from a gateway node

language Specify a language used in content

content A payload containing a program, a message, or return values

with (optional) Tuples of parameters used in the program passed from
sender to receiver

parameter Repeatable subargument of with
type Data type of the parameter
name Name of the parameter
value Value of the parameter

Argument Meaning
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the number of replies required from each cluster. We call this
operation adaptive probability response (APR).

Self-Orchestrated Operation — In a network with a small
number of nodes, responses from all nodes are necessary for
the accuracy of the final result. Another approach to avoiding
the response implosion problem is to let each node defer its
sending of response(s) for a certain period of time. Despite
some extra delay, this method aims to improve the overall
performance by reducing the chances of collision. This opera-
tion is modified from the scheduled response approach
described in [7]. Assume that nodes are distributed uniformly
within the network terrain; therefore, the number of nodes
within h hops away from the front-end node is proportional to
h2. The delay period at every node can be defined as

Delay = KH (h2 – (2h – 1)r),

where h is the length in number of hops away from the front-
end, r is a random number such that 0 < r ≤ 1, and H is a
constant reflecting estimated delay per hop. To incorporate
potential effects from queuing and processing delays, K is
used as a compensation constant. Normally, K and H are com-
bined and used as adjustable parameters.

Diffused Computation Operation — For this operation,
each sensor node is assumed to have knowledge of its imme-
diate communicating neighbors only. Algorithms used for
gathering information are constrained by the capability that
each node can only communicate to other nodes in its sur-

rounding area. Information aggregation logic is programmed
in SQTL scripts and disseminated among sensor nodes so that
they know how to aggregate information en route to the
front-end. The conceptual data flow is depicted in Fig. 4c.
Since data got aggregated at intermediate nodes on the way
back to the front-end node, the consumption of valuable net-
work bandwidth is considerably reduced and the response
implosion problem is alleviated. However, for large sensor
networks, this diffusion approach might take longer to deliver
results back to the front-end.

The hierarchical structure enabled by SINA allows different
information gathering methods to be deployed in different levels
within one application in order to optimize overall performance.
The effect of the integration is described in the following sample
applications. In addition, SPIN [8], a negotiation-based data dis-
semination mechanism, can be applied in SINA. SPIN relies on
exchanging meta data before deciding to broadcast all the infor-
mation. This negotiation process reduces network bandwidth
usage. By integrating SPIN into SINA, the architecture will
achieve a higher level of resource conservation.

Interworking Between a
Mobile User and a
Stationary Network

Consider the scenario where a mobile user issues a query into
a stationary sensor network (at one particular sensor node
called a query resolver) while marching forward. When the
reply becomes available at the resolver, the user’s point of
contact with the stationary sensor network may have changed.
Two mechanisms to forward the reply are proposed:
• The first mechanism requires the mobile user to constantly

update his/her current point of contact with the resolver
(Fig. 5a). Since all updates have to traverse all the way
from the user to the resolver, this approach increases traffic
load in the sensor network.

• To reduce traffic load, the mobile user may place his/her
footprints along the way by sending periodic advertisements
informing nearby sensor nodes. A logical link is established
to the last contact point upon receiving an advertisement
(Fig. 5b). With this modification, all updates are made
locally related to the current position. This is known as pro-
gressive footprint chaining.

■ Figure 4. a) The response implosion problem; b) number of
responses reduced by assigning sensor nodes a probability p to
answer the request; and c) diffused computation operation
allowing data aggregation at intermediate nodes.
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Sample Applications
To illustrate the applicability of the architecture to querying
and tasking of sensor networks, we present two applications
and their simulation studies using GloMoSim. The simulated
sensor network environment has the following assumptions:
• All sensor nodes are stationary, and the sensor network is

not partitioned.
• All sensor nodes are homogeneous in their capabilities.
• All communications are symmetric.
• No sensor nodes fail during the time the algorithms are

being executed.
• The network is not expected to have routing support provid-

ed by the network layer. However, an application is able to
keep track of the sender’s address and to specify it as a
receiver to forward results back to the sender.

Diagnosis of Sensor Networks — We define sensor
network diagnosis to be the process of querying the
status of a sensor network and figuring out the prob-
lematic (group of) sensor [9]. In order to monitor the
status of a sensor network, one approach is to query
as much information from as many sensor nodes as
possible, and deliver the raw information to the man-
ager for further processing. An example of employing
this technique is when a manager wants to know the
remaining power level within the network. In addition,
to examine the correctness of results obtained from
one sensing device, one possible method is to use the
average of results obtained from other neighboring
sensor nodes as a standard base to compare and diag-
nose the devices in doubt, given that the average has
its deviation within an acceptable range. An example
of using this method is to figure out which sensor
node contains a faulty temperature sensing device.

We evaluate three different information gather-
ing operations for diagnosis:
• Centralized with sampling and self-orchestration
• APR
• Diffused computation
Algorithm 1 describes the pseudocode for central-
ized operation with sampling and self-orchestrated

operations. APR without self-orchestrated operation is pre-
sented in Algorithm 2. The pseudocode for sensor network
diagnosis using diffused computation operation is given in
Algorithm 3.

Simulation Setup — Our simulated network consists of 1024
stationary sensor nodes distributed in a grid pattern with grid
units equal to 3 m, covering an area of size 100 × 100 m2. Each
node is equipped with a radio transceiver which is capable of
transmitting a signal up to 5 m over a 2 Mb/s wireless channel.
Each transmission then covers approximately eight immediate
neighbors. The data link layer uses the 802.11 protocol, while
the network layer employs only the IP fragmentation feature to
communication with immediate neighbors without any routing
protocol. All diagnostic applications are running on top of
UDP. Each node is supplied a battery with enough power to at

■ Algorithm 1. Centralized operation with sampling and self-orchestrated
operation.

CentralizedDiagnose(replyProb, kh)
rebroadcast this message to all neighbors;
prevNode ← message sender node;
if uniformrandom(0, 1) < replyProb then

numHops ← number of hops this message traversed;

delay ← kh × [numHops2 – (2 × numHops—1) × uniform random(0,1)];
wait for delay;
read power level and position, then send them back via prevNode;

end if
Upon receiving a return message, relay it back to prevNode;

■ Algorithm 2. Adaptive probabilistic response operation.

AprDiagnose(ENRC)
Rebroadcast this message to all neighbors;
prevNode ← message sender node;
if this is a cluster head then

prob ← ENBC/# of children;
construct a script requesting all cluster members to return value with
probability prob;

end if
Upon receiving a return message, relay it back to prevNode;

■ Table 2. Experimental results from running different diagnosis operations.

Centralized approach 
(Prob1 = 0.75) 229.0 29.8% 109.00 208.87

Self-orchestrated centralized
(Prob = 0.75, KH2 = 4 ms) 430.0 55.9% 107.50 138.17

Adaptive probabilistic response
(ENRC3 = 4) 183.8 40.4% 108.17 164.19

Diffused computation 
(Timeout4 = 70 ms) 1016.0 99.2% 5080.00 14.70

Diffused computation 
with sampling 767.0 99.8% 3068.00 12.78
(Timeout = 70 ms, Prob = 0.75)

Diffused Computation 
with Self-orchestration 975.0 96.5% 3956.00 14.24
(Timeout = 70 ms, KH = 4 ms)

1 Response probability. 2 Estimated hop delay and compensation. 3 Expected number of responses per cluster 4 Confirmation timeout

Total number of Fraction of expected Average response rate Number of MAC packets
responses received responses received responses/s) per response
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least make it able to carry out a complete query
operation. Furthermore, for those information
gathering methods that require clustering support
such as APR, we assume that a clustering algo-
rithm has completed in advance, so each node
should have clustering information about its par-
ent and children prior to the diagnosis. In the sim-
ulation we manually configure them into clusters
of nine sensor nodes with a cluster head located at
the center of each cluster. Once the simulated net-
work starts and becomes ready, one node in the
network, designated the front-end, will be request-
ed to gather sensor information. This node will
propagate the request throughout the network
according to different diagnosis methods used.

Results and Analysis — The experimental results
shown in Table 2 present four performance met-
rics for each of the selected diagnosis operations
listed in the leftmost column. The first metric,
total number of responses received, gives an idea of
how many nodes were effectively participating
during the course of diagnosis. The reason some
of these numbers are not rounded is because they
were obtained from running the experiment sever-
al times and calculating the averages. The next
metric is the fraction of expected received responses.
It represents a percentage amount of responses
with respect to the expected number from the
operation’s settings. For example, we expected to
see 768 responses (75 percent of 1024) received at
the frontend, but there were only 229 responses,
which is 29.8 percent of 768. The metric average
response rate indicates the responsiveness of each
operation in terms of the number of responses
received per second, measured from the time the
first response arrives until the last response is
received. The last measurement is the number of
medium access control (MAC) packets transmit-
ted per response received, which is meant to show
the efficiency of each technique by giving the
amount of network bandwidth utilized (the lower,
the better) to obtain one response.

Due to the large amount of collisions caused
by the lack of response scheduling, the centralized
approach without self-orchestration performs
badly by all means. The actual responses received

■ Algorithm 3. Diffused computation operation.

Diffused Diagnose(timeout)
confirmCount ← 0;
prevNode ← message sender node;
send a confirm to prevNode;
rebroadcast this message to all neighbors;
set timer for timeout period;
while not timeout do

if receive a message of type confirm then
confirmCount ← confirmCount + 1;

end if
end while
answerList ← getPowerLevel();
while confirmCount ≠ 0 do

if receive a message of type return then
insert the returned value into answerList;
confirmCount ← confirmCount – 1;

end if
end while
return answerList back to prevNode;

■ Figure 6. Complete SQTL code for the coordinated vehicle tracking algorithm.

<execute>
<sender>  FRONTEND </sender>
<receiver> <group>NODE[0] </group>

<criteria>TRUE </criteria>
</receiver>
<application-id>118 </application-id>
<rum-hop>0 </rum-hop>
<language>SQTL </language>
<with>

<parameter type=”clocktype” name=”trackingTime” value=”600” />
<parameter type=”clocktype” name=”reTrackingTime” value=”40” />
<parameter type=”clocktype” name=”trackingFrequency” value=” 8” / >
<parameter type=”object” name=”target” value=“Vehicle1”>

</with>
<content><![CDATA[

lastSensingResult = false;
timerApplication = createTimer(trackingTime); //  instantiate a timer
timerApplication.start(); //  turn it on
timerReTracking = createTimer(reTrackingTime);
execute (ALL_NODES, “TRUE”, MESSAGE[“content”]);     //   re-broadcast
if ((sensor1 = getMotionSensor()).turnOn())    { //   instantiate a sensor object

upon { //       and turn it on
receive (msg) where msg[“action”] == “tell” && msg[“content”] ==
“suppress”: {

sensor1.standby(); break;
}
every (trackingFrequency): {

if (sensor1.detect(target)) {
tell (ALL_NODES, “TRUE”, “suppress”);
tell (NEIGHBORS, “TRUE”, “retrack”);
tell (MESSAGE[“sender”], “TRUE”, “found”);
lastSensingResult = true;
timerReTracking.start();
break;

}
else lastSensingResult = false;

}
expire (timerApplication): sensor1.turnOff(); exit(O);

}
upon { // After one sensor node sees the vehicle

receive (msg) where msg[“action”] == “tell” && msg[“content”] ==
“retrack”: {

if (timerReTracking.expired()) {
sensor1.turnOn();
timerReTracking.start();

}
}
receive (msg) where msg[“action”] == “tell” && msg[“content”] ==
“found”:

tell (MESSAGE[“sender”],      “TRUE”,     “found”);
every (trackingFrequency): {

if (sensor1.detect(target)) {
tell (MESSAGE[“sender”],  “TRUE”,    “found”);
if (!lastSensingResult)

tell (NEIGHBORS,         “TRUE”,    “retrack”);
lastSensingResult = true;
timerReTracking.start();

}
else {

if (lastSensingResult)
timerReTracking.restart();

lastSensingResult = false;
}

}
expire (timerReTracking) : sensor1.standby();
expire (timerApplication): sensor1.turnOff(); exit(0);

}
}
else exit(1);

]]> </content>
</execute>
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are far less than expected since a lot of packets were dropped
due to buffer overflow and the limited number of retransmis-
sions at the MAC layer. The number of MAC packets per
response is good evidence for this hypothesis. The overall per-
formance is significantly improved with the help of self-orches-
tration. As presented in the table, the number of responses is
almost doubled, while the number of MAC packets involved is
cut nearly in half. The next result is from the adaptive proba-
bilistic approach, the only method that utilized a clustering
mechanism. In the configuration, four responses were expected
to be obtained from each cluster of nine members. This means
456 responses should have been received if no packets were
lost. Of these, only 184 (40.4 percent) were actually received.
The diffused computation method gives very good results. It
effectively makes use of SINA’s active programmability (via
SQTL scripts) to distribute (diffuse) computation to every
node. In the simulation, the diffused computation performs
concatenation of responses at nodes along the way back to the
front-end. The number of MAC packets employed is reduced
considerably, resulting in less chance of collisions, nearly 100
percent responses, and a relatively high response rate.

The last two experiments attempt to integrate sampling
and self-orchestrated mechanisms into the diffused computa-
tion technique. In the combined diffused computation and
sampling method, nodes would receive requests as usual, but
would respond with probability 0.75. The result is slightly
improved by the fraction of expected responses received,
which becomes even closer to 100 percent. It also reduces the
chance of collisions in the channel, as indicated by the
decreased number of MAC packets per
response. With the integrated diffused
computation and self-orchestration
approach, nodes receiving a request will
schedule themselves to send back confirma-
tion messages to reduce the chance of colli-
sions. Besides the reduced response rate
caused by delayed confirmation, other
results do not differ much from those of
the pure diffused computation technique.

Coordinated Vehicle Tracking — The
vehicle tracking application is to locate a
specific vehicle or moving object and moni-
tor its movement. To detect and identify an
object, integrated results from more than
one type of sensor (images from a camera,
vibration from a seismic sensor, noise from
an audio sensor, etc.) may be required.
These results are to be processed and com-
pared to the signature of the object of
interest. However, our main interest is to
program a coordination algorithm in the
form of an SQTL script, which can be dis-
seminated to and executed by sensor nodes.
The script controls the sensor nodes to col-
laboratively detect the appearance of the
interested object in an effective and effi-
cient manner. We assumed that sensor
nodes can obtain final processed results of

detecting and identifying the tracked vehicle from the
processing of combined sensing information.

A novice approach to tracking a moving object is to
ask every sensor node to sense and detect the object’s
signature at the same time. We call this operation the
ordinary vehicle tracking method. However, this
approach may waste sensor nodes’ processing cycles,
and hence inefficiently utilize a network’s limited

power and shorten the overall network lifetime.
Our coordinated vehicle tracking algorithm, presented in

Fig. 6, is based on a suppression and reinitiation mechanism
to achieve good results of tracking, but consumes less network
resources than the ordinary one. The main principle of the
coordinated algorithm is to let the first sensor node detecting
the vehicle suppress sensing activities of all other sensor
nodes so the others may stand by, which results in energy con-
servation. Furthermore, the node will have to reinitiate sens-
ing activities of its neighbors in order to keep track of the
moving vehicle. As long as the vehicle does not move faster
than the propagation of this reinitiation message, the network
can still monitor the trail of the moving vehicle. The tracking
process is depicted in Fig. 7 as well.

Simulation Setup — We performed a simulation study to
compare the efficiency of the ordinary and coordinated vehi-
cle tracking mechanisms. The simulated network environment
is similar to the diagnosis simulation setup described previous-
ly. The changes are that grid unit is 200 m, transmission range
is 380 m, and the coverage area is 6800 × 6800 m2. We mod-
eled each sensor node to have an ability to detect and identify
a moving object within 200 m. When the simulated network
starts, there is one vehicle moving straight from coordinate (5,
5) toward (6800, 6800) at a speed of 15 m/s. Both tracking
applications start at 15 s and last for 10 min. The tracking fre-
quency is 7.5 times/min, or a sensor node probes the moving
object every 8 s. For the coordinated algorithm, after a sensor
node is suppressed and later received a reinitiation via a

■ Figure 7. a) A detects the incoming vehicle; b) the sensing activities of C, D, and E
are suppressed but B starts tracking again; c) the vehicle comes into B's area and C
restarts its sensor; d) C and D detect the vehicle and E's sensor is restarted; e) the
vehicle goes out of A and B's ranges; f) sensing activity at A stops.
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■ Table 3. Comparison of simulation results between ordinary and coor-
dinated vehicle tracking.

Ordinary 249:76,800 (1:308) 16,868 1.000

Coordinated 249:8,828 (1:35) 22,691 0.179

Vehicle tracking Ratio of useful/total Number of Normalized
method number of sensing packets sent cost
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retracking message, it restarts its sensing capability. In the
retracking state, if a sensor node cannot detect the moving
object for 40 s (the retracking interval), it stops sensing the
object in order to conserve energy.

Results and Analysis —  Table 3 presents the results
obtained from both algorithms. Three metrics are of interest.
First, we look at the efficiency of tracking and monitoring the
moving object by measuring the ratio of useful sensing to the
total amount of sensing. We defined useful sensing as sensing
which successfully detects the vehicle. We found that the
number of useful sensings from both algorithms are exactly
the same (209) while the ordinary algorithm performed far
more sensing activities (76,800 times compared to 8,828 times
when using the coordinated algorithm). This is because of the
lack of coordination among sensor nodes in the ordinary
algorithm. Next, we counted the total number of packets sent
out from all nodes for the entire simulation period. It is clear
from the third column in Table 3 that the coordinated algo-
rithm utilized more network bandwidth than the ordinary
one. These extra packets accounted for all coordination-relat-
ed packets (i.e., suppression and retracking messages). How-
ever, when we consider the total cost of operation, the
coordinated algorithm is preferable, as shown in the last col-
umn. Here, we compare costs based on total cost of sensing
(Cs) and transmitting (Ct) with ratio Cs:Ct = 4:1 [10], and
then normalize the cost of the ordinary method to 1. The
result shows that the coordinated method costs 17.9 percent
of the ordinary method.

Figure 8 shows the result from another scenario, where the
vehicle moves faster at 25 m/s. We varied the sensing intervals
while keeping other parameters unchanged. From the figure,
the number of useful sensings obtained from the coordinated
algorithm is slightly lower than that obtained from the ordi-
nary method when sensing intervals are lower than 15 s. The
reason is that in the coordinated algorithm, we try to preserve
network resources by suppressing sensing activity further away
from the vehicle location and alerting only nodes nearby.
Therefore, the number of sensor nodes monitoring the vehicle
is far less than that of the ordinary method. However, at sens-
ing intervals of 20 s and more, the coordinated algorithm
hardly succeeded in detecting the moving vehicle. These
results indicate that the reinitiation process of the coordinated
algorithm could not keep up with the high mobility of the
vehicle and the long sensing interval.

Summary
The advent of technology has facilitated the development of net-
worked systems of small, low-power devices that combine pro-
grammable computing with multiple sensing and wireless
communication capability. Soon our physical environment will be
embedded with sensor nodes that enable new information gath-
ering and processing capability. The sheer number of sensor
nodes and the dynamics of their operating environments pose
unique challenges in how information collected by and stored
within the sensor network can be queried and accessed, and how
concurrent sensing tasks can be executed internally and pro-
grammed by external clients. This article describes the SINA sen-
sor information networking architecture that serves the role of
middleware to facilitate querying, monitoring, and tasking of sen-
sor networks. By integrating hierarchical clustering of sensor
nodes and an attribute-based naming mechanism based on asso-
ciative broadcast, SINA presents the associative spreadsheet
abstraction that allows information to be organized and accessed
according to specific application needs. The SINA kernel, repre-
sented by the collection of SEEs, implements three communica-

tion paradigms — sampling, self-orchestrated, and diffused com-
putation operations — to facilitate information gathering and
dissemination. On top the SINA kernel is a programmable sub-
strate facilitated by the SQTL language to program sensing tasks.
Sensor network querying and tasking applications are also pre-
sented together with their simulation studies.
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■ Figure 8. Number of useful sensing from both methods when
speed of the vehicle increases to 25 m/s.
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