
Supporting Service Discovery, Querying and Interaction
in Ubiquitous Computing Environments

Adrian Friday, Nigel Davies and Elaine Catterall

Distributed Multimedia Research Group,
Computing Department, Lancaster University,

Bailrigg, Lancaster,
LA1 4YR, UK

+44 1524 593807

{adrian,nigel,elaine}@comp.lancs.ac.uk

ABSTRACT
Future computing environments will consist of a wide range of
network based appliances, applications and services
interconnected using both wired and wireless networks. In order
to encourage the development of applications in such
environments and remove the need for complex administration
and configuration tasks, researchers have recently developed a
range of service discovery and interaction platforms. Examples of
such platforms include SLP, HAVi, UPnP and Jini. While these
platforms share a number of common attributes, they each have
distinguishing features and hence future networked environments
are likely to present developers with a heterogeneous environment
composed of multiple specialised support platforms. However,
careful analysis of these platforms reveals shortcomings that we
believe will inhibit the development of applications that exploit
service rich environments. In this paper we discuss these
shortcomings and propose a new unifying architecture that brings
together the advantages of current service discovery and
interaction technologies and provides a new API that we consider
to be better suited to the development of service based
applications. This work is specifically targeted towards mobile
environments, where applications will be required to interact with
a wide range of services and devices with minimal user
intervention.

Keywords
Mobile and ubiquitous computing, service discovery,
service interaction, middleware.

1. INTRODUCTION
Current networked environments are populated with a diverse set
of devices, services and computational entities. Enabling these
components to work together harmoniously and allowing users

and applications to interact with them without considerable
administrative and configuration overhead poses a number of
logistical and technical challenges. As a result, there has recently
been considerable research into service location and device
interaction technologies, including SLP [8], HAVi [9], UPnP [17]
and Jini [19].

The key function of such service location and device interaction
technologies is to allow users and applications to deploy, discover
and interact with the services provided by devices and software
components on the network. This interaction is required to occur
without the users, the applications, or the service providers
needing detailed knowledge of the local network configuration.
While these technologies were originally developed for zero-
configuration networks (e.g. those aimed at installation in the
home environment) researchers have recently begun to investigate
how they can be used to support aspects of mobile and ubiquitous
computing (e.g. enabling a user in an unfamiliar network to
discover nearby printers from their laptop) [1,10].

In the near future, as service technologies are deployed in
mainstream operating systems and networked ‘Internet’
appliances, the number and heterogeneity of services and devices
is set to expand rapidly. Furthermore, new personal mobile
devices (such as PDAs and 3G telephones) and the emergence of
near-ubiquitous communications infrastructures based on wired
and wireless networks will offer yet richer ways of interacting
with these environments, services and devices.

We believe that these future service environments will be
characterised by a heterogeneous mix of services and
technologies. In particular, devices, applications and users will
need to interact with multiple, potentially specialised, service
location and device interaction technologies. Based on an analysis
of existing approaches to service discovery and interaction, we
have identified a number of shortcomings that we believe will
seriously impact on the scalability, efficiency, utility and usability
of current techniques in emerging service environments.

In this paper we present an initial design for a new platform that
combines the strengths of existing service discovery and
interaction techniques, yet offers a unifying API for application
developers and supports a number of additional data-engineering
oriented services that provide a framework for addressing the
shortcomings of existing approaches. The platform has been
specifically designed to include support for the development of

 Permission to make digital or hard copies of part or all of this work or

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
MobiDE 2001 USA
Copyright 2001 ACM 1-58113-412-6/01/05…$5.00

7

ubiquitous computing applications operating on mobile devices.

In section 2 we provide a brief overview of the state-of-the-art in
service location and device interaction technologies. Section 3
contains our analysis of these technologies and identifies
requirements for an improved service location and interaction
architecture. Section 4 presents the initial design for our platform
and section 5 describes a number of scenarios that illustrate the
advantages of our platform in mobile environments. Finally,
section 6 contains our conclusions and plans for future work.

2. SURVEY OF EXISTING
TECHNOLOGIES

The desirability of zero-configuration networks, whereby devices
can join the network and “just work”, has driven the development
of significant numbers of device interaction technologies by both
companies and commercial consortia, e.g. Jini [19], HAVi [9],
SLP [8], UPnP [17], Salutation [18], Cooltown [14] and academic
research projects, e.g. [10]. We begin by briefly describing the
key architectural features of one of the most recently developed
commercial systems, i.e. UPnP.

“Universal Plug and Play (UPnP) is an initiative to bring easy-to-
use, flexible, standards-based connectivity to consumer networks,
whether in the home, in a small business, or attached to the global
Internet” [16]. From a technology perspective, UPnP is a suite of
protocols and system services for device discovery and control in
small to medium size IP networks. In home networking
installations, where complex network management is not possible,
the developers of UPnP anticipate that AutoIP [20] will be used to
help configure hosts until such time as IPv6 is deployed on a wide
scale.

In UPnP environments the Simple Service Discovery Protocol
(SSDP) [6] runs on top of this base IP layer to provide a means of
discovering devices on the network. SSDP allows devices to
advertise services using datagrams sent using IP multicast. These
advertisements contain a service type and a URL for the service
being advertised. Clients interested in accessing services can
either wait for announcements or can multicast a search request
that forces all devices on the network to send service
advertisements. Once a client has obtained a URL for a service it
can retrieve from the device an XML description of the service
being offered. This description will include, among a host of other
pieces of information, an additional URL that can be used to
access a web page representing the user interface for the device
and a list of state variables associated with the service. In more
detail, in UPnP devices are modelled as objects with an associated
state table (c.f. properties). This state table provides an external
representation of the object’s internal state. Clients can make
changes to this state table that causes the associated object to
invoke operations to achieve a corresponding change in its
internal state. For example, an object representing a camera might
have a state table that included a variable auto-focus with
possible values of on and off. Clients that wished to change the
camera’s auto-focus mode would simply need to change the value
of the auto-focus variable. The architecture requires that
objects generate events whenever their state changes and that
clients register for these events in order to ensure all views on the
device are consistent (for example, to ensure consistency between
the camera’s front panel and a remote application also controlling

the camera).

It is worth highlighting at this point that UPnP compatibility is
defined in terms of the on-wire format used for messages and the
architecture is OS and language independent.

Many of the service discovery and interaction technologies
operate in a similar way, and have a number of features in
common with UPnP. For example, Jini, SLP and [10] all use IP
multicast for device discovery. In addition, most use some form of
directory service to optimise device discovery in large networks
(including HAVi which, while not being based on IP, shares many
architectural similarities with IP based solutions). However,
despite the logical similarity of many of the technologies, the
implementations are diverse, and therefore incompatible. Each
technology has its own model for key features such as device and
service description, scoping of service advertisements, interaction
with devices and notification of events. One of the reasons for this
heterogeneity is that the technologies were constructed with
different domains in mind, and in the spirit of experimentation.
For example, SLP is a very scalable discovery protocol, intended
to serve enterprise networks; UPnP targets home and small office
computing environments; while HAVi was designed to enable
interoperability in home AV networks and supports multimedia
streaming and service reservation. An in-depth comparison of
these architectures can be found in [2] and [15].

3. ANALYSIS
Existing approaches to service location and device interaction
provide powerful infrastructures on which to build distributed
service based applications. However, with careful analysis it can
be seen that as the usage of such technologies increases a number
of issues arise. In particular, we assume that in future ubiquitous
environments there will be sufficient specialisation to allow for
the coexistence of multiple service location and interaction
technologies simultaneously. This coexistence and rich
heterogeneity of services and infrastructures poses problems in
terms of unification, interoperability and consistency. In the
classic case, where a client locates and interacts with a small
number of services, many of the existing service discovery and
interaction technologies work effectively. However, where a large
number of clients interact with many services, issues of scalability
and appropriate service selection become significant.
Furthermore, we believe a crucial issue in terms of scalability,
utility and performance will be the ability to reason about service
selection and interaction on behalf of lightweight (potentially
mobile) clients. In the following sections we consider these points
in more detail.

3.1 Interoperability
Given the existence of multiple heterogeneous service discovery
and interaction technologies one of the key issues for application
developers will be how to deal with the diversity of device
representations and interaction models. For example, UPnP
defines XML schemas to represent devices, SLP uses defined
URL syntax [7], HAVi uses device control module software
elements and Jini uses serialised Java objects (placing stringent
base requirements on client applications). In addition, UPnP’s
GENA, HAVi’s Event Manager and the Jini distributed event
model provide mechanisms for monitoring device state change
notifications. SLP, in contrast, provides no such mechanism.

8

Clearly, creating an application that is to interact with more than
one of these service location and interaction mechanisms
simultaneously poses considerable challenges to the application
developer. In subsequent sections we shall illustrate how these
problems also impact service developers who must deploy
services in heterogeneous environments. However, from an
application developer’s perspective it is, in our opinion, clear that
a unified mechanism for locating, interacting with and
representing services is required.

3.2 Scalability
As the number of clients and services in an environment
increases, so the burden due to dynamic service discovery and
interaction increases. The Windows Me UPnP client, for example,
attempts to locate all the local network services upon
initialisation. If the multicast search yields n service
advertisements then n interrogations follow to gather the service
description XML pages (the user would then initiate a further n
interactions to get the presentation pages for each device). In the
simple case of one root device with a single sub-device and
service type we have found that, according to the UPnP
specification, 18 packets are generated (6 packets each sent 3
times to avoid problems with packet loss) each refresh interval
(30 minutes). As a client joins or roams into the network, it issues
an ssdp:all m-search request (3 times for reliability). Every
service must respond to each m-search by unicasting its service
advertisements to the client (again 3 times per response). Hence,
in this simple case, a total of 54 response datagrams are
generated. It is evident that as the number of clients and services
grow, low-bandwidth networks may become saturated with
service announcement traffic.

Careful consideration of scalability issues is clearly important to
the design of service location protocols (for example the
aggregation facilities of SLP’s directory agent or the refresh
minimisation of Jini’s distributed leasing scheme). However, we
believe that great gains in bandwidth efficiency and
improvements in scalability could be achieved by extending the
power of the agencies in the network to reason on behalf of
clients. In current systems, seeking an appropriate service is
biased towards clients. More specifically, a client must enumerate
through candidate devices by discovering and interrogating each
service in turn if the state of the device is important in the
selection process. A second client seeking the same service or
entering the same domain will (using existing techniques) need to
search the domain and interact with each service in turn as before.
By using a network based intermediate agency the system could
cache the results from client interactions and monitor for changes
of state on behalf of clients, reducing consumption of network
bandwidth and the time taken to locate services. This technique is
already a well accepted approach to minimising traffic over low-
bandwidth networks and has been employed in systems such as
Rover [13].

3.3 Location-Based Services
Location-based applications (e.g. GUIDE [4]) represent a
significant class of mobile computing applications. However, in
current systems constructing location-based applications is
complicated by two factors. Firstly, current service location and
interaction techniques tend to offer simplistic scoping models,

such as network domain based scoping or administrative multicast
based scoping (SLP) and thus identifying a service that is
applicable to a real world location (a room, building, area of a city
etc.) that does not map onto such a topology is difficult. Secondly,
the location of a service is not necessarily the field of that
service’s scope. For instance, a service that offers weather reports
for the geographical location in which you are standing, may in
fact be running on a server located in a remote city (or even
another continent). Such a service clearly has two location
attributes, a physical location relating to where the service is and a
location that changes with the user’s context that relates to the
scope of the service. While research projects such as the Location
Based Services (LBS) framework [12] are attempting to address
these issues, current systems do not provide adequate solutions.

3.4 Time
Current service location and interaction frameworks concentrate
solely on the ‘present’; a client requires a service, finds the
appropriate one and interacts with it. However, the temporal
element to service interaction is often overlooked. For instance, a
client may wish to locate the printer that they used last time, or
the one they use most frequently. The trails and histories of device
access are useful from both an application context and an
administrative point of view (e.g. which clients have accessed a
particular service and at what times, or what services were
available during a particular time window). We believe that this
temporal element to service location is particularly valuable in
ubiquitous computing applications where the application context
needs to ‘live outside’ one particular device or end-system (e.g. to
facilitate enacting a task that has a lifetime longer than the use of
just a single device).

3.5 State
The current state of a device or service in a service network is an
important component of service location. For instance, a user
seeking to print a document in a hurry is probably only interested
in printers that have both paper and a short queue of jobs pending.
Existing service location architectures provide facilities for the
expression of state related information and the notification of
change of state events (e.g. UPnP device descriptions and
GENA). However, reasoning about dynamic state is not typically
part of the service advertisement or discovery phases of the
protocols. A client must thus enumerate through candidate
services, utilising both time and network bandwidth, to identify
the most appropriate service. Richer state based query semantics
are therefore desirable, especially where partial network
connectivity or low bandwidth is involved (e.g. supporting mobile
access).

3.6 Security, Authentication and
Access Control

Service frameworks are providing mechanisms by which users
and applications can interact and control networked devices and
services with unparalleled ease and convenience. Crucial to the
successful adoption of such technologies however is security: can
applications and users trust the services they find, and can the
services trust the clients they serve? Authentication and
certification mechanisms are required to ensure a suitable level of
trust. Encryption and key distribution protocols are required to
protect the exchange of sensitive information (these issues are
being explored in the Ninja Service Discovery Service system

9

[5]).

Coupled with the notion of trust is control: the owner of a device
might expect to be able to discover and control it and,
furthermore, prevent others from maliciously tampering with the
device. However, the same owner might also require that the
system allows members of their family to control the device,
perhaps only while they are present in the room or in a way that
the owner approves of (e.g. not allowing a child to switch a
television to an adult channel for instance). Although this level of
social, role and contextual reasoning is almost certainly outside
the scope of a service interaction protocol, such protocols should
provide the core mechanisms to facilitate the construction of
access control policies (e.g. access control lists, conflict resolution
strategies and limitations on the adjustment of device and service
state variables for particular clients).

3.7 Metadata
The underlying model of most service location and interaction
strategies reinforces that of existing distributed network
infrastructures: service providers or administrators establish
conformant services within the network, which clients then
access. The implication of this ‘administrative’ role is that the
person or application that deploys the service controls the
service’s description and thus the attributes by which it can be
discovered and used.

If we consider the way in which many services are used in real
environments, we see that people ‘personalise’ their services, e.g.
“I find this printer the fastest”, “this projector belongs to my
research group” and so on. These annotations are often personal
or role based and may well change over time (e.g. a printer will
always print on a certain size of paper which is part of its service
description, but may well move between rooms or be replaced by
a faster model). We believe that personalised, group and public
metadata will be important to the utility of service location and
interaction protocols. We do not intend that everyone should be
able to modify the service description of a device, rather that
service location platforms provide hooks for linking into meta-
information databases. This would enable users and client
applications to search for, for example, services that have been
recommended by their colleagues.

3.8 Multiple Device and Service Reasoning
The focus of the service location and interaction technologies we
have considered thus far in our analysis has been on locating a
specific service or multiple services that offer a particular class of
service (in fact, query support is currently lacking in some
existing approaches [11]). We believe that by constructing
agencies within the network that collate device and service
advertisements and state information we can use higher level
reasoning (queries) to gain further benefits in utility, timeliness
and bandwidth reduction. For instance, a user in an active
building might in a single query determine “All printers with
paper to which I am allowed access that is nearby and not behind
a locked door” by querying the printer, door lock and location
tracker services.

3.9 Wireless Access
In general there is a poor match between current platforms’
networking and end-system requirements and those typically

found in mobile environments1. For example, many of the
platforms use IP multicast for service announcements and this is
likely to lead to significant levels of unwanted traffic between a
mobile device and the fixed network. Moreover, many of the
protocols used are extremely verbose (especially in the case of
UPnP) and the platforms make significant demands on their client
end-systems (e.g. support for Java in Jini).

Finally, none of the existing systems offer any support for
intermittent connectivity, especially in the case of services hosted
on a mobile device. For example, if a mobile device offers a
service to devices on the fixed network there is currently no
mechanism for maintaining state information for that device when
it is operating in disconnected mode.

4. DESIGN AND IMPLEMENTATION
ENVIRONMENT

The analysis presented in the preceding sections has highlighted a
number of shortcomings that afflict many aspects of existing
service location and interaction paradigms. In an effort to begin to
address these shortcomings we propose a new middleware
platform that aims to integrate existing service paradigms and
offers an expressive API based on a modified form of the
structured query language (SQL). Unlike existing approaches
modelled on device databases (e.g. COUGAR [3]), our platform
does not aim to replace existing service location and interaction
platforms. Instead, we see these technologies as essential to
underpin our architecture.

4.1 Overall Design
The overall design of our architecture is shown in Figure 1.

Jini Sub-system

SLP Sub-system

UPnP Sub-system

Client Library
(IPC mechanisms,

component discovery
architecture)

State
Repository

 (services,
service state and

metadata)

API

Views

UPnP Service
Discovery

UPnP Mapper
Factory UI

text
textUPnP Service

Specific Mappers

Federation Services

Figure 1 – Overall design of the platform architecture

The platform is structured as a lightweight set of components that
may be distributed throughout the network as a set of services.
The services may be replicated or federated within the network to
improve availability and scalability or co-located to increase self-
reliance. The platform as a whole functions by composing the
platform services together as queries are executed. The state of
the services and devices in the environment is thus the

1 One notable exception is the work of Hodes et al. [10] on their
Service Interaction Architecture, which focuses on service access
for lightweight mobile clients. Note that mobile clients are not
peer entities in this architecture and do not provide their own
services to other clients.

10

composition of the information gathered by the platform
components.

Client library
The smallest set of components that a client may instantiate is the
client library, which consists of a lightweight component
discovery mechanism, IPC mechanism and component
instantiation mechanism. The client library presents the service
query and interaction API (analogous to a temporal database) to
applications (we anticipate that queries will be formulated in
simplified ANSI SQL with some temporal extensions but we are
considering a number of alternative APIs). In the minimal
configuration, API queries are propagated to a remote query
execution engine (API) component that interacts with the rest of
the platform to enable service discovery. The query engine allows
clients to provide rich service queries that can reason across
multiple services, service types and, crucially, across service
location mechanisms. Such a configuration would be ideally
suited for execution on a resource-poor mobile device such as
PDA or smart phone.

State management
The core unifying component of the platform architecture are the
common models of service, state and device data. These models
and their associated data are composed dynamically using service
specific discovery functions (the UPnP discovery function is
shown in Figure 1). It is worth noting that the state in our service
database is composed almost entirely of soft state that is refreshed
from the service discovery protocols. Such a unified information
model requires dedicated service specific mapping functions for
each location technology. While existing device systems typically
focus on providing read-only state, we expect to allow
applications to control devices by manipulating the values held in
these tables.

Plug-in Service Specific Components
The service tables gather their information from dedicated service
location discovery components. These components act as
traditional clients to the supported service location technologies
(e.g. control points in UPnP). Upon discovering a new service (or
the change of state in an existing service), the component triggers
the instantiation of a service specific mapping function from the
appropriate mapper factory. The mapping function is responsible
for transcoding the service advertisements and state change event
notifications into a format suitable for the appropriate table. Since
these platform components are themselves network based
services, a mapping function can be written and deployed for a
new service and the platform will dynamically discover the new
function and reconfigure to include it.

Federation Services
We propose to link instances of the platform together, allowing
bridging of service environments from one domain to another.
Currently we anticipate developing a federation service that we
can configure to link to other peer federation services. These
services will bridge the central ‘table’ components together,
allowing queries to be propagated to other service domains. One
issue that we have yet to explore is whether these components
federate the service name and state space between each other,
whether information is synchronised between components such
that federated table components become replicas or whether
simply queries are distributed between components.

Transaction Support
One area we are particularly keen to investigate is the concept of a
distributed service transaction. Existing service location and
interaction technologies do not provide any support for regulating
access (c.f. locking), checkpointing of service state or rollback
behaviour. In the future many services will correspond to physical
devices with tangible as well as networked ‘virtual’ user
interfaces; we suspect therefore that a strong transaction may be
impossible to achieve. However, the notion of being able to
control sets of devices in an atomic and predictable fashion is
certainly alluring and we aim to see what is possible using
existing service location and interaction paradigms.

4.2 Implementation Environment
We are currently in the process of starting to prototype our
platform. As a first stage we are attempting to prove the feasibility
of mapping service types from heterogeneous service location
technologies into a common format. As part of this initiative we
are building a service testbed environment populated with both
traditional networked devices and services (e.g. printers,
information services and directories etc.) and prototype next
generation appliances (such as networked door locks and location
sensors).

The testbed currently includes a number of simple UPnP services
including an SMS gateway, an ‘intelligent’ door lock and an X10
bridge. The X10 bridge controls a number of spotlights that may
be controlled remotely in response to configurable stimuli
(currently hits on a particular web page). Access to the testbed is
via both wired and wireless networks and IPv6 is used as the
network protocol.

5. APPLICATION SCENARIOS
To provide evidence of the applicability of our approach we now
present a number of scenarios based on access to services from
mobile clients.

5.1 Device Monitoring
Consider a scenario in which a user such as a security guard or
operations manager wishes to discover devices in a particular
state within their geographic area and have information about
these devices displayed on their PDA. In the case of a security
guard this might be doors that are currently unlocked or lights that
are left on, while for the operations manager this might be devices
that are due for repair work. Such an application requires an API
that allows applications to query the availability of services based
on both geographic location and the value of some state variable.
In current systems this would be a very heavyweight operation,
requiring the client to obtain references to all of the services in the
network (possibly scoped by geography if the system supports
static values in service advertisements) and then to poll each of
these services for their state. Where the client is weakly connected
this is clearly a poor strategy. In our system the polling of devices
for state information can be managed in the fixed network,
reducing the network traffic to the mobile device.

5.2 Discovering a Preferred Device
In this scenario a mobile user in an unfamiliar office environment
wishes to discover and use a nearby printer. It would be ideal if
the user could view and search by comments about printer

11

capabilities that have been added by colleagues in the office, e.g.
“this printer jams frequently”. In current systems this would
require special support in every service – there is no mechanism
for automatically integrating additional meta-data for services in a
general way. In our architecture this can be achieved by the
mapping components that can interrogate additional sources of
information when creating representations of services. Hence no
modifications are required to the underlying services or clients –
metadata can be included in service advertisements as if it were
generated by the service itself.

5.3 Interacting With Heterogeneous Platforms
In the final scenario we consider the design of a straightforward
home theatre application that enables the user to start their
favourite movie and adjust the blinds in their room by a single
button press on their wireless IP-based PDA. In existing systems
this is likely to be extremely difficult to achieve. The most fully
featured system for controlling the AV devices is HAVi while the
most likely candidate for controlling the blinds is X.10. Neither of
these technologies are IP based and hence gateways will be
required in both cases. In the case of HAVi this gateway may well
expose the device’s underlying HAVi API allowing sophisticated
control of the device and the establishment of continuous media
streams within the HAVi network, while in the case of the blinds
these may be mapped onto a UPnP service. In this case the
application on the PDA will be required to have bindings for the
two distinct platforms, processing events and service
announcements and requests from both domains. In our
architecture these complexities are largely hidden from the
programmer. Indeed, if in the future the user obtained a UPnP
VCR rather than a HAVi VCR the application would require no
changes – the system would simply instantiate an alternative
mapping function for the device.

6. CONCLUDING REMARKS
In this paper we have argued that existing service discovery and
interaction platforms have a number of significant shortcomings
that, if not addressed, will seriously impact their utility, efficiency
and scalability in future and emerging mobile ubiquitous service
environments.

We have presented an initial design for a platform architecture
that builds on existing service approaches and implementations to
provide application developers with a simple yet powerful new
API for discovering and interacting with distributed networked
services. The platform is composed of multiple lightweight
components that can be distributed throughout a network
environment, making it particularly suitable for resource-poor
mobile clients. We have demonstrated the usefulness of our
approach by illustrating how it facilitates the development of a
range of mobile applications. We are currently developing a
prototype implementation of our platform that we will use to
further refine the APIs and services we offer to the developers of
future ubiquitous computing applications.

REFERENCES
[1] Bahl P. and V.N. Padmanabhan, “RADAR: An In-Building

RF-Based User Location and Tracking System”, In
proceedings of IEEE INFOCOM 2000, Vol. 2, Tel-Aviv,
Israel (March 2000), pages 775-784.

[2] Bettstetter, C. and C. Renner, “A Comparison of Service

Discovery Protocols and Implementation of the Service
Location Protocol”, In proceedings EUNICE 2000,
September 2000.

[3] Bonnet, P., J.E. Gehrke and P. Seshardri, “Querying the

Physical World”, IEEE Personal Communications, Special
Issue on Smart Space and Environments, October 2000.

[4] Cheverst, K., N. Davies, A. Friday and K. Mitchell.

“Experiences of Developing and Deploying a Context-
Aware Tourist Guide: The Lancaster GUIDE Project”, In
proceedings ACM Mobicom’00, Boston, USA, August
2000.

[5] Czerwinski, S.E., B.Y. Zhao, T. Hodes, A.D. Joseph and

R.H. Katz, “An Architecture for a Secure Service Discovery
Service”, In proceedings ACM Mobicom ’99 Seattle,
Washington, USA., 1999.

[6] Goland, Y., T. Cai, P. Leach, Y. Gu and S. Albright,

“Simple Service Discovery Protocol/1/0”, Work in progress,
IETF Internet Draft draft-cai-ssdp-v1-02.txt, June 1999.

[7] Guttman, E., C. Perkins, J. Kempf, “Service Templates and

, RFC 2609, 1999.

[8] Guttman, E., C. Perkins, J. Veizades, M. Day, “Service

Location Protocol, Version 2”, RFC 2608, 1999.

[9] HAVi Consortium. “ HAVi Specification V1.0”. 2000.

[10] Hodes, T.D., R.H. Katz, E. Servan-Schreiber and L.A.

Rowe, “Composable ad-hoc Mobile Services for Universal
Interaction", In proceedings ACM Mobicom’97, Budapest,
Hungary. Pages 1 - 12. 1997.

[11] Hughes, E., D. McCormack, M. Barbeau and F. Bordeleau,

“An Application for Discovery, Configuration, and
Installation of SLP Services”, MICON 2000.

[12] José, R. and N. Davies, “Scalable and Flexible Location-

Based Services for Ubiquitous Information Access”, In
proceedings 1st International Symposium on Handheld and
Ubiquitous Computing, HUC’99, Karlsruhe, Germany,
1999.

[13] Joseph, A.D., A.F. de Lespinasse, J.A. Tauber, D.K. Gifford

and M.F. Kaashoek, “Rover: a toolkit for mobile
information access”, In proceedings 15th ACM Symposium
on Operating Systems Principles, 1995, Pages 156 – 171.

[14] Kindberg, T., J. Barton, J. Morgan, G. Becker, D. Caswell,

P. Debaty, G. Gopal, M. Frid, V. Krishnan, H. Morris, J.
Schettino, B. serra and M. Spasojevic, “People, Places,
Things: Web Presence for the Real World”, In proceedings
3rd IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA 2000), Monterey CA. 7-8
December 2000, pages 19-30.

12

[15] McGrath, R.E., “Discovery and Its Discontents: Discovery
Protocols for Ubiquitous Computing”, Technical Report
UIUCDCS-R-99-2132, April 2000.
http://choices.cs.uiuc.edu/2k/

[16] Microsoft Corporation, “Universal Plug and Play:

Background”, Microsoft Corporation, 1999.

[17] Microsoft Corporation, “Universal Plug and Play Device

Architecture Reference Specification, Version 1.0”,
Microsoft Corporation, 2000.

[18] The Salutation Consortium, “Salutation Architecture
Specification (Part 1)”, Version 2.0c, June 1999.

[19] Sun Microsystems Inc., “Jini Architectural Overview

January 1999”, Sun White Paper, January 1999.

[20] Troll, R., “Automatically Choosing an IP Address in an Ad-

Hoc Ipv4 Network”, Work in progress, IETF Internet Draft
draft-ietf-dhc-ipv4-autoconfig-04.txt, April 1999.

13

