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Abstract— We present a comprehensive set of measurements of a 2.4
GHz DSSS wireless LAN and analyze its behavior. We examine issues such
as host and interface heterogeneity, bidirectional (TCP) traffic and error
modeling, that have not been previously analyzed. We uncover multiple
problems with TCP and UDP performance in this system. We investigate
the causes of these problems (radio hardware, device drivers, network
protocols) and discuss the effectiveness of proposed improvements.

I. INTRODUCTION

Wireless communications are experiencing explosive market
growth in areas such as cellular telephony, satellite communi-
cations and wireless LANs. Wireless LANs (WLANs) support
high speed networking over small areas that may be hard to wire
conventionally. Numerous vendors are offering WLAN systems
at dropping prices, while the new IEEE 802.11 standard [1] will
eventually enable product interoperability. Typically, WLANs
emulate a wired LAN (e.g. Ethernet), which makes them easy
to connect with the Internet. However, their lower bandwidth
and higher loss rate makes their presence felt. Even moderate
packet loss due to wireless errors has severe effects on Internet
protocols such as TCP [2]. In order to ameliorate these per-
formance problems we need a clearer understanding of WLAN
behavior, therefore measuring and analyzing the performance
of systems under realistic conditions is an important task.

To this end, we present here a comprehensive set of measure-
ments of a WLAN and analyze its behavior, extending previous
results in many ways. In Section II we outline our measure-
ment goals to provide a basis for test design. Section III details
our experimental setup, while Section IV explains the ratio-
nale behind individual tests and the test suite, as well as the
data gathered during and after testing. These data are used in
Section V to describe the performance of both unidirectional
(UDP) and bidirectional (TCP) communications. We review
these results and discuss their implications in Section VI. We
conclude with a summary of our findings in Section VII.

II. MEASUREMENT GOALS

Our aim was to compile a comprehensive set of data de-
scribing the performance of a WaveLAN [3] system in terms
of throughput and loss under various realistic conditions. In
order to find solutions for performance problems, we first need
to locate their root causes. This is quite difficult since per-
ceived network performance is influenced by network and host
processing hardware, interface device drivers and network pro-
tocol implementation in the OS. By varying these parameters
during experimentation it is easier to identify which aspect of
the system should be modified to improve performance, either
in existing or future designs. Our work thus aims to extend
published results [4], [5], [6] in many ways.

� System Heterogeneity: We used hosts with varying pro-
cessing power and different wireless interface implemen-
tations. Previous work kept one of these parameters fixed.

� New Implementations: Published results described the 900
MHz systems while we examined the improved 2.4 GHz
version. We also used hosts with faster processors that
could potentially achieve higher throughputs.

� Bidirectional Communications: We measured the perfor-
mance of TCP, in addition to (previously examined) UDP.
Bidirectional traffic in the form of TCP data and acknowl-
edgments reduces throughput and introduces collisions.

� Error Modeling: Previous measurements were used to
define wireless error models [6]. We present additional
measurements and also analyze bidirectional traffic effects.

� Operating System: We employed the Linux OS instead of
the BSD UNIX derivatives used in previous work. A com-
parison among these results provides insight on the effects
of device driver and network protocol implementations.

Regarding measurement limitations, we tested single hop
paths only, even though TCP has been shown to perform differ-
ently over longer paths [2], so as to maintain complete control
over the path. We did not study the effects of mobility, since
the form factor and range of our WLAN makes it unsuitable for
operation on the move. Delay was ignored, as it is too short
on high speed WLANs to significantly affect performance. We
did not measure effective range [4] or behavior under interfer-
ence [5], focusing instead on normal office conditions.

III. EXPERIMENTAL SETUP

A. Hardware

We employed three hosts for our experiments, with two of
them active in the WLAN during each test. A monitoring utility
verified that no other WLANs were operating nearby. The hosts
were also connected to each other and the Internet via an Ether-
net that was used to control the tests. The WLAN used was the
Digital RoamAbout 2.4 GHz DSSS system, an OEM version of
the Lucent WaveLAN [3], also available in 900 MHz DSSS and
2.4 GHz FHSS versions. These interfaces are available as ISA
(desktop) and PCMCIA (laptop) cards, which slightly differ in
their Ethernet controllers and radio module/antenna packages.
They both implement a Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA) MAC scheme and are fully compatible
over the air. Both interfaces support a nominal bandwidth of 2
Mbps, same as the other WaveLAN versions.

Due to the difficulty of detecting collisions during transmis-
sion on this system [3], instead of aborting garbled transmis-
sions as in CSMA/CD, the medium remains used, and wasted,
until all collided packets end. To avoid this, CSMA/CA is more
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TABLE I

DESCRIPTION OF HOSTS USED

Name Processor RAM Interface Type

IOS Pentium 200 MMX 64 MB ISA 2.4 GHz DSSS
MYKONOS Pentium 166 64 MB ISA 2.4 GHz DSSS

SYROS Pentium 150 MMX 48 MB PCMCIA 2.4 GHz DSSS

conservative. Each host that wants to transmit waits for a silent
medium, plus an interframe gap, and then chooses a random
time slot from a contention window. If the medium has not
been seized until that slot, the host seizes the channel. The
window is set to a small value after seizing the channel, and is
exponentially increased on each consecutive failure to do so. A
collision occurs if many hosts pick the same random slot.

The WLAN interfaces emulate Ethernet cards in terms of
programming and packet formats (MAC headers, CRCs, 1500
byte maximum packet size). After every packet reception the
interface reports to the driver a signal level, measured at the be-
ginning of the transmission, and a noise level, measured during
the interframe gap after reception ends. Since these metrics are
hardware dependent they are only significant with respect to
their highest/lowest values, but they are also comparable with
each other. A signal quality metric is also reported, showing
(roughly) how much the signal is affected by multipath propa-
gation. This is used to select one of the two built-in antennas.

Table I shows the names and characteristics of each host.
Two hosts (IOS and MYKONOS) are desktop PCs while the third
(SYROS) is a laptop. We used desktops with different processors
to determine the effect of processing power on performance.
The laptop has roughly the same processing power as the slower
desktop, since its processor operates at a lower clock frequency
but has more on-chip cache memory.

B. Software

All hosts ran the Linux OS, kernel version 2.0.32, using the
supplied WaveLAN drivers as loadable kernel modules. The
hosts were in multiuser mode during testing, but with no user
tasks executing. The tests were performed late in the evening,
to ensure that the Ethernet used for control would be unloaded.
We made only a minor modification to the wireless interface
drivers to record and report detailed statistics plus histograms
of signal and noise levels. The histograms can be reset to all
zeroes and both statistics and histograms can be dumped on
demand. Preliminary tests verified that system performance
remained virtually the same after our modifications.

For testing we used the ttcp benchmark which sends a
number of packets of a specified size to a receiver using either
TCP or UDP, reporting at the end various transfer and OS related
metrics. We added an option for UDP tests that uses packet
sequence numbers so that the receiver can detect and report
packet losses (as they occur and in total), and named this version
ettcp. Besides the statistics provided by the wireless interface
driver, we used nstat to gather IP, UDP and TCP statistics
aggregated across all interfaces, so as to check for unexpected
network activity during the tests. We also used tcpdump to
record detailed logs of all packets sent and received by the
wireless interfaces during each test. These logs can be used for
detailed off-line study of TCP and UDP activity.

Location 1

Location 2 Location 3

5414 5438

5313 5325

Main Corridor

Fig. 1. Location map for the experiments

TABLE II

DESCRIPTION OF TESTING SCENARIOS

Scenario Host A/Location Host B/Location

1 IOS/Location 1 MYKONOS/Location 1
2 IOS/Location 1 SYROS/Location 1
3 IOS/Location 1 MYKONOS/Location 2
4 IOS/Location 1 SYROS/Location 2
5 MYKONOS/Location 2 SYROS/Location 3
6 IOS/Location 1 SYROS/Location 3

C. Environment

Fig. 1 shows a floor plan (not in scale) of the area where
the experiments took place (5th floor of the AP&M building at
UCSD). Hosts were placed at one of Locations 1, 2 and 3. These
rooms are laboratories and machine rooms containing numer-
ous hardware devices but no direct sources of interference. The
distance between both Locations 1 and 2 and Locations 2 and
3 is about 45 feet, while between Locations 1 and 3 it is about
60 feet. We executed the same set of experiments for six dif-
ferent host and location combinations or scenarios, described
in Table II, in both directions. Scenarios 1 and 2 show base-
line performance under optimal circumstances (adjacent hosts),
with either ISA only or mixed ISA and PCMCIA cards. Sce-
narios 3 and 4 are similar to 1 and 2 with the hosts separated by
some obstacles. For Scenarios 5 and 6 we kept the ISA hosts
as in scenarios 3 and 4 and moved the PCMCIA host. Before
testing we used a monitoring utility to verify that ambient noise
and signal levels in each location were adequate for commu-
nication. We chose locations representing various reasonable
operating conditions rather than system limits. The locations
did not suffer from excessive multipath fading, as the signal
quality metrics were always high. Hosts were kept immobile
during each test to avoid mobility induced problems.

IV. TEST AND OUTPUT DESCRIPTION

A single test consisted of executing ettcp with appropri-
ate parameters and recording statistics before, during, and after
the run, on both sides of the transfer. The main test parame-
ters were transfer direction, peer names, packet size (including
TCP/UDP/IP headers) and protocol to be used. A test script
first reset and dumped interface statistics and nstat output,
then startedtcpdump to record all packets through the wireless
interface, and finally started ettcp to transfer 10,000 packets.
Although at peak speed a 1500 byte packet UDP test only takes
a minute to complete, the amount of data transferred (15 MB in
this case) is large enough to represent a realistic transfer session.
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After the transfer ended, tcpdump was stopped, and nstat
and interface statistics were again dumped for comparison with
their values before the test. All tests were performed in both
directions between the peers. Each test was repeated 5 times
with the same parameters to estimate variance between runs.

Tests that could not terminate, for example when UDP con-
trol packets were lost, were manually stopped and repeated.
Before each set of repetitions the link was reset and ping was
used to establish connectivity. All tests were performed for
both TCP and UDP, with four IP datagram sizes (including
protocol headers): 100, 500, 1000 and 1500 bytes (the max-
imum). The test suite was designed to exhibit any variations
caused by heterogeneous hosts and interfaces. Executing tests
in both directions reveals any performance asymmetries. The
multiple packet sizes show the effects of varying amounts of
overhead and packet error probability on throughput. Our TCP
tests show for the first time the effects of bidirectional traffic
(due to acknowledgments) on a shared medium WLAN, and
how it compares with unidirectional (UDP) traffic. Multiple
test repetitions show how statistically significant the results are.

A variety of metrics is produced by ettcp, including trans-
fer time, bytes transferred and total throughput. Since UDP
senders do not get any feedback, we present receiver metrics
for more accuracy. For UDP tests, the receiver reports each se-
quence of lost and received packets and their totals. Such traces
can be used to calculate probability distributions for lost and
received packet runs. These can be used to model the link with
a two state process: a good state where packets are received cor-
rectly, and a bad state where packets are lost or corrupted [6].
We can also calculate mean, minimum and maximum values
for the reported metrics across test repetitions. Throughput and
loss rate are comparable across all tests since their units are
independent of packet size. These can be used to determine the
optimal packet size where overhead (which favors long packets)
and loss (which favors short packets) are best balanced.

Interface statistics (such as number of packets received and
transmitted) and histograms (signal/noise levels) were dumped
before and after each run, to determine the net effect of each
test. We can calculate mean, minimum and maximum values for
the statistics and aggregate histograms across test repetitions.
In TCP tests packets move in both directions so these statistics
are important on both sides. The difference between sent and
received packets between the two sides shows the actual amount
of loss on the link. Any TCP losses above UDP levels can
only be attributed to MAC layer collisions. Signal and noise
level histograms can be compared among scenarios to see how
different locations, hosts and interfaces influence them. We do
not present signal quality metrics (always near their peak value)
and nstat output (aggregated across all host interfaces). The
tcpdump output files were examined off-line on a case by case
basis, to explain the performance of specific TCP or UDP tests.
These traces show all packet transmissions/receptions against
time. In trace graphs, we normalize time to start from zero.

V. ANALYSIS OF TEST RESULTS

A. General Remarks

During testing we noticed that in all UDP tests with 100 byte
packets, 90-95% of packets sent by ettcp were never trans-
mitted, and actually did not even reach the interface according
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Fig. 2. Scenario 1, UDP packet loss

to the driver. The reason was buffer shortages at the UDP level,
due to the very fast generation rate of short packets, which
caused datagrams to be dropped. When running the same tests
over the faster wired interfaces for comparison purposes, fewer
packets (50%) were dropped as expected. TCP tests with 100
byte packets did not suffer from such drops, because TCP uses
window based flow control, with a maximum window of 32 KB
in our tests. This prohibits the sending process from passing to
the network code huge bursts of data without pause.

Even though ettcp used a TCP socket option to trans-
mit data segments immediately, we occasionally saw packets
larger than expected, except in the 1500 byte packet tests where
the maximum WLAN packet size was reached. The reason
is that TCP keeps track of its transmission queue in terms of
bytes rather than packets [7], thus any segments whose imme-
diate transmission is deferred may be later combined into larger
packets. Such delays can be caused by MAC layer contention
due to the bidirectional traffic of TCP. However, examination of
tcpdump output showed that usually larger packets were sent
after sending a long run of packets, stopping, and then getting
an acknowledgment. This means that the sender exhausted its
TCP transmission window and while waiting for an acknowl-
edgment (which could itself have been delayed by MAC layer
contention) more data segments were queued at the sender.

Another issue is determining the number of collisions at the
CSMA/CA MAC layer. The hardware (through the drivers) re-
ports a collision metric like CSMA/CD interfaces do, but since
collisions are not detected on our WLAN, it is unclear what
it represents. As it was zero with UDP tests but high with
some TCP tests, it is probably related to the collision avoid-
ance scheme, but in a non-obvious manner. We can estimate
the number of real (undetected) collisions using the difference
between the numbers of sent and received packets on each side
of the transfer, after subtracting unidirectional loss rates.

B. Scenario 1

The first scenario employed two hosts with ISA interfaces
placed next to each other to avoid signal degradation. The goal
was to determine the peak performance of ISA cards and re-
veal processing power induced asymmetries. This is evident in
Fig. 2 which shows mean, minimum and maximum packet loss
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Fig. 3. Scenario 1, UDP and TCP throughput

rate (as a percentage), across all UDP test repetitions (measured
at the receiver). When the slower host (MYKONOS) is sending,
packet loss is negligible. In contrast, the faster host (IOS) over-
whelms a slower receiver, leading to loss (0.3–0.6%) which
grows with packet size, i.e. increased receiver load. The packet
loss distribution recorded by ettcp shows that nearly all loss
periods last for one packet and occur every about 1000 packets.
This implies that a fast sender semi-periodically overruns the
receiver, which catches up after a single packet. The low loss
in the reverse direction must be due to wireless errors.

Fig. 3 shows TCP and UDP throughput (mean, minimum
and maximum across repetitions) with varying packet size. Net
UDP throughput increases with packet size since UDP/IP over-
head drops. The peak data rate is about 225 KBps (1.8 Mbps),
after subtracting UDP/IP and MAC overhead, higher than previ-
ously reported with slower hosts [4], [5], older WLAN versions
(900 MHz instead of 2.4 GHz) and OS (BSD instead of Linux).
Most of the gains are due to increased processing power, which
was shown to be a decisive factor in previous work. Since
our considerably asymmetric hosts achieved nearly identical
throughputs, it seems that we have reached the peak capacity
of the WLAN. Another observation from Fig. 3 is that TCP
throughput is not only below UDP, it actually drops with large
packet sizes. In 100/500 byte tests the slower sender achieves
higher throughputs as there are no losses (and retransmissions).
In 1000/1500 byte tests however, throughput drops symmetri-
cally to only about 30% of UDP, despite different loss rates.

This phenomenon is explained in Fig. 4, showing mean, mini-
mum and maximum number of data and acknowledgment pack-
ets sent/received for IOS to MYKONOS transfers (across repeti-
tions). The gaps between sent and received curves for both
packet types show considerable loss on the link, growing with
packet size. Since the gaps are roughly the same, we conclude
that their magnitude represents the number of undetected colli-
sions of CSMA/CA. Results for transfers in the reverse direction
are similar, hence the symmetric TCP throughput results. Re-
transmissions due to these losses are clear in the 1500 byte tests
where the total number of packets sent exceeds 10,000. Queued
segments are combined into larger packets in the 1000 byte tests,
as explained above, where the total number of packets received
is less than 10,000, despite retransmissions.
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Fig. 5. Scenario 1, TCP trace snapshot (1500 bytes, sender’s view)

To explain how a 10% collision loss rate causes so much
throughput degradation, we turn to tcpdump TCP traces.
When data and acknowledgments collide, some data packets
after the lost one are retransmitted needlessly. In addition,
when some of the duplicate acknowledgments that TCP returns
to initiate fast retransmission [7] are lost, if less than three du-
plicates arrive the sender stalls until a timeout occurs. Fig. 5
and Fig. 6 show a tcpdump trace for the beginning of a 1500
byte packet TCP test from MYKONOS to IOS. Fig. 5 shows the
packets seen by the data sender and Fig. 6 shows the viewpoint
of the data receiver. A collision occurs when one data and one
acknowledgment packet are shown on the sender but not on
the receiver. At time 0.05 three data packets with consecutive
sequence numbers are sent (Fig. 5) and the third is lost (Fig. 6):
it has collided with the acknowledgment for the first of these
data packets (it appears on Fig. 6 but not on Fig. 5). Right after
the (undetected) collision, four new data packets are sent. The
receiver replies with three duplicate acknowledgments to signal
the loss, but the second one collides with a new data packet.

Since only two duplicates were received, the sender stalls
having exhausted its transmission window, until a timeout oc-
curs at time 0.25 triggering retransmission of the first lost data
packet, 200 ms after the loss. Linux uses a 10 ms granular-
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Fig. 7. Scenario 1, signal and noise level histogram (TCP, 1500 bytes)

ity clock with a 200 ms lower limit for TCP timeouts, during
which the channel is mostly idle in the trace. The timeout re-
duces the congestion window to one segment and the host goes
in slow start mode [7], retransmitting some already received
data. Around time 0.4 another collision occurs, but this time
only two duplicates are returned, as another subsequent data
packet is lost (not to a collision). Frequent losses have caused
the ACK clock property of TCP to be lost, i.e. the sender ex-
hausted its window before transmitting enough data after the
loss to trigger three duplicate acknowledgments [8]. The idle
periods between timeouts are thus the main reason for low TCP
throughput. Note that the situation would be much worse with
the 500 ms granularity timers used in many BSD derived sys-
tems, since the idle periods would be correspondingly longer.

Fig. 7 shows the received signal and noise level distributions
(in both directions) aggregated across all 1500 byte TCP tests.
These distributions were practically identical across protocols
and packet sizes within any given scenario. Signal and noise
metrics are comparable as they are expressed in the same (hard-
ware defined) units. Both histograms are nearly symmetric
since the peer interfaces were exactly the same and host pro-
cessing power does not influence the radios. Since hosts were
next to each other, these are the best case distributions.
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C. Scenario 2

The second scenario employs one ISA and one PCMCIA
host, again placed next to each other, to establish a performance
baseline for mixed interface tests. The processing power of
SYROS and MYKONOS is roughly equivalent, thus comparisons
with the first scenario are direct. Indeed, the UDP loss rate
shown in Fig. 8 is similar (0.3–0.8%) when the faster host is
sending, implying that both ISA and PCMCIA receivers are
overwhelmed by faster senders. In the reverse direction, the
perceived losses (0.1–0.2%) are due to packets never leaving
the sending interface, according to tcpdump. This is caused
by the single transmit buffer of PCMCIA cards (ISA cards
have multiple buffers) which is easy to overrun, especially with
smaller, faster generated, packets. ettcp loss traces show,
as expected, single packet losses every about 1000 packets in
the ISA (faster) to PCMCIA (slower) direction. In the reverse
direction loss periods are less frequent but longer (1–5 packets).

Fig. 9 shows TCP and UDP throughput for all tests. In the
ISA to PCMCIA direction UDP is faster than TCP, due to less
header overhead and the absence of TCP retransmissions and
acknowledgments. TCP throughput in the reverse direction is
slightly lower, verifying previous claims that PCMCIA cards

0-7803-5420-6/99/$10.00 (c) 1999 IEEE



150000

200000

250000

300000

350000

400000

450000

1 1.2 1.4 1.6 1.8 2

S
eq

ue
nc

e 
nu

m
be

r

Time (sec)

TCP progress in both directions

Syros to Ios
Ios to Syros

Fig. 10. Scenario 2, TCP data (1500 byte packets)

PCMCIA

ISA

35 36 37 38 39 40

S
en

de
r

Time (sec)

UDP progress in both directions

Syros to Ios
Ios to Syros

Fig. 11. Scenario 2, UDP data (1500 byte packets)

are slower senders [6]. This is clear in Fig. 10, showing two
snapshots of TCP progress: sequence numbers increase faster
with an ISA sender despite occasional retransmissions. The
PCMCIA sender leaves short gaps between transmission bursts,
due to the transmit buffer shortages mentioned above. The
reduced slope is due to longer interframe gaps (96 bits) than
ISA senders (32 bits), as shown in Fig. 11 where two snapshots
of UDP progress are exhibited. In BSD systems the interframe
gap is the same for both cards, but the contention window is
larger for PCMCIA cards (it is the same for both cards in Linux),
again making PCMCIA senders slower [6].

Fig. 9 also shows that, unexpectedly, UDP is slower than TCP
in the PCMCIA to ISA direction. Although segment aggrega-
tion helps TCP for the 1000 byte packet tests, retransmissions
reduce TCP performance. The real cause for the low UDP per-
formance is shown in Fig. 11: occasional long PCMCIA sender
pauses despite the lack of contention with UDP. The tcpdump
traces reveal that packet losses occur exactly at the beginning
of these pauses. The most likely explanation is that severe
transmit buffer overruns cause interface controller resets. Such
overruns are avoided with TCP due to its flow control mech-
anisms. This problem reduces peak UDP throughput to 160
KBps (1.28 Mbps) with a PCMCIA sender. In the reverse di-
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Fig. 13. Scenario 2, signal and noise level histogram (TCP, 1500 bytes)

rection (ISA sender) throughput reaches 223 KBps (1.78 Mbps),
i.e. it is similar with both ISA and PCMCIA receivers.

Fig. 12 shows only a small discrepancy between sent and
received data packets on the ISA to PCMCIA direction (close
to the loss rate), with practically overlapping acknowledgment
curves. This implies that collisions are practically zero and
justifies the improved TCP throughput compared to the first
scenario. The reverse direction is similar. We conclude that
the slight differences in interface implementations and timing
eliminate the synchronization phenomenon that causes exces-
sive collisions among ISA cards. Note the aggregation of data
segments in 1000 byte tests. The signal and noise level his-
tograms shown in Fig. 13 are asymmetric, with the ISA re-
ceiver detecting lower signal levels and the PCMCIA receiver
detecting higher noise levels. This may either be an artifact
of implementation differences or an indication that PCMCIA
radios and antennas are weaker and less tolerant to noise. These
are the best case distributions for mixed ISA/PCMCIA tests.

D. Scenarios 3–6

The remaining four scenarios did not contribute as many
new issues as the first two, but confirmed our hypotheses about
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the causes of already seen problems by exhibiting predictable
changes due to variations in the testing environment. Scenario
3 was the same as scenario 1 but with a 45 feet distance and two
intervening walls between the peers (Fig. 1). The loss rates and
distributions were similar, indicating again that a faster sender
overruns a slower receiver. Also, throughput curves were sim-
ilar due to excessive CSMA/CA collisions in TCP tests. The
main difference with scenario 1 was a signal level distribution
with uniformly lower receiver metrics (10–15 units), due to in-
creased distance and obstacles. Noise levels were nearly the
same though, maintaining an adequate margin between signal
and noise, leading to practically identical performance. Sce-
nario 4 differs from scenario 2 in the same way, i.e. it mixed
one ISA and one PCMCIA host separated by 45 feet. Loss rates
and distributions, as well as throughput curves are nearly the
same, due to the reasons discussed in scenario 2, namely less
aggressive PCMCIA sending behavior, with occasional stalls
and even resets in UDP. Signal levels are uniformly lower as
in scenario 3, with the same noise level. We conclude that
this distance and obstacles do not have measurable effects on
performance in both ISA/ISA and ISA/PCMCIA tests.

In scenario 5 the slower ISA host communicates with the
PCMCIA host over a distance of 45 feet, making this the
only scenario where hosts have comparable processing power.
The main difference with scenarios 2 and 4 (also mixed
ISA/PCMCIA) is a nearly zero loss rate in the ISA to PCMCIA
direction. This shows that hosts matched in processing power
avoid losses due to receiver overruns. It also causes TCP
throughput in this direction to reach 213 Kbps (1.7 Mbps),
the highest in our tests, achieved by the slower ISA host. Sig-
nal metrics are slightly lower than scenario 4 despite a similar
distance, due to differences in intervening obstacles. Scenario
6 is another variation on scenario 4, with a higher distance (60
feet) between two (asymmetric) ISA and PCMCIA hosts. Apart
from the expected lower signal level metrics (still far from noise
levels), the only difference with scenario 4 is a slightly higher
loss rate, both due to the increased distance and obstacles.

VI. DISCUSSION OF TEST RESULTS

Our measurements uncovered numerous problems with TCP
and UDP performance over our WLAN due to parameters first
examined in our work, such as bidirectional traffic, host and
interface heterogeneity, and different OS and device drivers.
The 2.4 GHz DSSS WaveLAN system performed very well
overall in our office environment. Our faster hosts, compared
to previous tests, apparently achieved the peak UDP through-
puts for this system: 1.8 Mbps between ISA cards, 1.78 Mbps
from ISA to PCMCIA and 1.28 Mbps from PCMCIA to ISA.
Since our asymmetric ISA hosts exhibited similar performance,
we conclude that peak throughputs can be achieved by a 166
MHz Pentium system. We also confirmed that ISA cards are
faster senders than PCMCIA cards due to more aggressive tim-
ing, even under a different OS and device driver settings [6].
Although our throughput results follow a trend in reported re-
sults [4], [5], [6] of increasing data rates with faster hosts, they
could also be partly due to our newer WaveLAN version.

Fast processors can also overwhelm the Linux networking
code when sending short UDP packets at peak speed, a prob-
lem that affects to a lesser extent wired Ethernets. It does

not arise when the sender is throttled back by flow control,
as with TCP, which is normally used for large transfers. The
main problem with faster ISA senders is that they can over-
run slower receivers (both ISA and PCMCIA) causing sporadic
packet losses. PCMCIA senders are inherently slower, so they
avoid this problem. Losses cause frequent retransmissions and
invocation of congestion control procedures for TCP, thus re-
ducing throughput. Pacing the sender in software is infeasible
with Linux as even its 10 ms granularity timers are too coarse
to be used to introduce pauses before each transmission.

Another difference between ISA and PCMCIA cards appears
in their signal and noise level metrics, which probably diverged
due to dissimilar card and antenna implementations, but could
also imply that PCMCIA cards have a shorter range. An im-
portant distinction is that PCMCIA senders always dropped
a few packets before transmission. This phenomenon is due
to PCMCIA transmit buffer limitations that cause the sender
to stall periodically with TCP, increasing the performance gap
with ISA senders, and even reset itself completely under UDP,
dropping packets and pausing for a long period of time. TCP
flow control prohibits it from overwhelming the transmitter to
the extent of causing a reset. In contrast, UDP suffers so much
from resets that its throughput is below TCP. ISA senders do
not face these problems because ISA cards use multiple transmit
buffers instead of a single one in PCMCIA cards.

Since our WLAN does not detect collisions [3], an important
issue is how successful the CSMA/CA MAC layer is in avoiding
them, and TCP tests with their inherently bidirectional traffic
help us examine exactly that. We ignored the obscure colli-
sion metric reported by the driver since the hardware does not
support it. Instead, we estimated the actual (undetected) col-
lision rate by comparing the number of sent and received data
and acknowledgment packets seen at either side of a transfer.
Collisions proved to be a significant problem in the ISA to
ISA case, adding 10% packet loss and decreasing the through-
put of TCP to only 30% of UDP, despite otherwise low loss
rates. While data loss causes retransmissions of even already
received packets, loss of duplicate acknowledgments or of the
ACK clock property of TCP [8] can lead to timeouts, with the
sender stalled for most of the timeout interval. These collisions
only affect ISA to ISA transfers, not mixed ISA and PCMCIA
scenarios, implying that identical interface timing can lead to
undesirable synchronization. Although we have not tested it, it
is possible that PCMCIA to PCMCIA transfers could avoid such
problems due to their less aggressive timing that leaves more
room for sending acknowledgments. Relaxing the timing to
improve TCP performance would reduce UDP performance, as
evidenced by the lower UDP performance of PCMCIA senders.

At the TCP level the adverse collision effects could be re-
duced by smarter retransmission policies such as selective ac-
knowledgments (SACK) which handle frequent losses better [8]
by returning more accurate feedback to the sender. At the MAC
layer these problems could be avoided by MAC acknowledg-
ments and retransmissions, as proposed by the IEEE 802.11
standard [1]. Even though collisions still waste bandwidth in
the absence of immediate collision detection, MAC retransmis-
sions would still improve TCP performance by avoiding the
slower timeout based recovery of TCP. Long chains of retrans-
missions would cause TCP to timeout anyway and retransmit
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the same data as the MAC layer [9], a more likely event with
short paths and tight TCP timers. MAC retransmissions are
wasteful for protocols and applications that prefer sending new
packets to retransmitting old ones, such as real time audio over
UDP. This argues for offering limited and/or protocol dependent
retransmission policies at the MAC layer.

One goal was to gather additional data for modeling the wire-
less channel with a two state process [6]. Although our results
can be used to calculate good and bad state distributions for uni-
directional (UDP) traffic, note that the resulting process does
not model only wireless impairments. Losses were also caused
by many implementation details, such as receiver overruns and
transmit buffer limitations. However, since these factors are
critical in determining perceived network performance, it is
necessary to include them in a performance model. Another
complication is that the multitude of factors affecting perfor-
mance, such as packet size, interface types and host processors,
does not allow direct generalizations for modeling purposes.
This reinforces our original view that comprehensive WLAN
measurements, as described in this paper, cannot be replaced
by a simple mathematical model based on a few actual mea-
surements and interpolation.

Given the severe MAC layer collision problems experienced
in TCP transfers between ISA interfaces, it is questionable
whether unidirectional traffic models can be used to simulate
bidirectional transfers. For TCP in particular, accurate model-
ing requires simulating the loss distribution and the correlation
between losses in both directions, i.e. how data and acknowl-
edgment packets collide. Due to these synchronization prob-
lems with TCP traffic, the complete CSMA/CA protocol must
also be simulated in order to get accurate results. In particular,
it is not enough to simulate CSMA/CD with an extra penalty on
collisions to compensate for not aborting garbled transmissions.
The fact that CSMA/CD collisions are not losses inherently dif-
ferentiates them from CSMA/CA collisions.

Finally, it is interesting to note the effect of timers with fine
granularity on TCP. Linux uses 10 ms granularity timers, as
opposed to 500 ms for many BSD derivatives, which may be-
come unstable if measures, such as the 200 ms lower limit for
timeouts, are not taken. Eliminating such safeguards can lead
to very tight estimates of round trip time and variance, caus-
ing timeouts to occur after only minor delays. In our WLAN
tests however, the TCP traces showed that when the sender was
stalled due to multiple losses, the shorter 200 ms timeouts re-
duced the idle period between transmissions. With coarser (500
ms) timers these losses would cause TCP throughput to dimin-
ish. It is an open question whether fine timer granularity is
beneficial for longer paths [10] or when MAC retransmissions
(that may increase delay and its variance) are used, as in the
IEEE 802.11 standard.

VII. CONCLUSIONS

Our measurements extend previous work on TCP and UDP
performance over WLANs in many directions. In particular,
for the first time we present results for (bidirectional) TCP
traffic, asymmetric host processors and heterogeneous wireless
interface implementations. We uncovered many performance
problems and investigated their causes, which were variously
attributed to network and host hardware,device drivers, network

protocol implementation in the OS, and their interactions. We
also discussed the effectiveness of various proposed improve-
ments. While our performance measurements reflect a partic-
ular testing setup, a detailed investigation of the root causes
of these problems is of value to both hardware and software
designers in order to avoid such pitfalls in the future.

In summary, achievable UDP throughput reaches 1.8 Mbps
for ISA senders and 1.28 Mbps for PCMCIA senders. It is
influenced by host processing power but reaches a plateau with
a 166 MHz Pentium host. Fast senders can overwhelm slower
receivers (both ISA and PCMCIA), leading to semi-periodic
packet loss. PCMCIA senders pause every few packets un-
der TCP due to transmit buffer limitations, and are generally
slower than ISA senders due to less aggressive timing. PCM-
CIA transmit buffer shortages become so severe under UDP,
due to the absence of any flow control, that the interfaces suffer
from lengthy communication pauses during resets.

When two ISA hosts communicate, many collisions occur
under TCP, leading to very degraded performance because of
slow timeout initiated recovery. Fine granularity timers speed
up these timeouts, but may interfere with MAC retransmis-
sions. As long as these synchronization problems are avoided,
CSMA/CA performs well with bidirectional traffic, as evi-
denced by our mixed ISA and PCMCIA tests. Less aggressive
MAC timing and/or better TCP recovery mechanisms could help
CSMA/CA eliminate or reduce the effects of such synchroniza-
tion. MAC layer retransmissions could also be beneficial for
TCP but problematic for other protocols. UDP loss models can
be easily formulated for simulations, but they should include
more factors than wireless impairments. They should be based
on actual measurements rather than simple interpolations. TCP
simulation models should also include CSMA/CA collisions
between data and acknowledgment packets for accuracy.
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