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We present the transport unaware link improvement protocol (TULIP), which
dramatically improves the performance of TCP over lossy wireless links, without
competing with or modifying the transport- or network-layer protocols. TULIP
is tailored for the half-duplex radio links available with today’s commercial radios
and provides a MAC acceleration feature applicable to collision-avoidance MAC
protocols (e.g., IEEE 802.11) to improve throughput. TULIP’s timers rely on a
maximum propagation delay over the link, rather than performing a round-trip
time estimate of the channel delay. The protocol does not require a base station
and keeps no TCP state. TULIP is exceptionally robust when bit error rates are
high; it maintains high goodput, i.e., only those packets which are in fact dropped on
the wireless link are retransmitted and then only when necessary. The performance
of TULIP is compared against the performance of the Snoop protocol (a TCP-
aware approach) and TCP without link-level retransmission support. The results
of simulation experiments using the actual code of the Snoop protocol show that
TULIP achieves higher throughput, lower packet delay, and smaller delay variance.
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1. Introduction

With the need to support end-to-end communication services to mobile
hosts, wireless networks are quickly becoming an integral part of the Internet
and reliable protocols such as TCP [24] must be supported over these networks.
Mobile users requiring remote access to corporate LANs, file access and Web
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transfers over wireless links must rely upon TCP to support their transactions.
Unfortunately, although TCP works very well for wired networks with minimal
losses other than those due to congestion, wired and wireless networks are sig-
nificantly different in terms of bandwidth, speed, propagation delay, and channel
reliability. In particular, wireless channels suffer from bursty error losses that
reduce TCP’s throughput, because TCP incorrectly interprets packet loss as a
sign of congestion that forces TCP to back off from further transmission, reduce
its congestion window and as a result the overall throughput of the connection is
drastically reduced. Methods to hide these losses from TCP is an active area, of
research [3][4][7][12][10][11].

Maximum throughput occurs in a TCP connection when the TCP congestion
window is as large as the bandwidth-delay product of the connection. Current
versions of TCP react to losses differently and adjust the TCP congestion window
in various ways. With the Reno [25] and Tahoe [18] versions the arrival of three
duplicate acknowledgments allows for the fast retransmission of a lost packet.
Once the missing packet is retransmitted, however, Tahoe does not maintain the
current congestion window, but rather reduces its window size to one segment
and begins slow start, during which the congestion window is exponentially
increased. Reno follows a different strategy as it interprets the arrival of fur-
ther duplicate acknowledgments as a sign that packets are in fact progressing
through the previously congested network and instead begins fast recovery,
during which the congestion window is incremented by one segment for each
subsequent duplicate acknowledgment. Once an acknowledgment (ACK) cover-
ing the missing packet is received, the congestion window is reduced by half the
value at the time the packet was dropped and congestion avoidance begins,
during which the congestion window increases linearly. Wireless channels present
an additional challenge in that losses do not generally occur in isolation, i.e., wire-
less channels are often characterized by periods of fading in which several losses
occur in succession. All versions of TCP are unable to gracefully recover from this
situation and must resort to a timeout whenever more than one loss occurs per
window of outstanding data. This becomes the predominant shortcoming of TCP
over wireless links: the connection suffers long idle periods in which the sender
is idle waiting for a timeout, and when the packet is finally retransmitted and
recovered, the congestion window is reduced to one segment, thereby reducing
throughput until the congestion window again grows to its optimal size.

In this paper, we present the transport unaware link improvement proto-
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col (TULIP), and show by extensive simulation studies that TULIP allows TCP
to operate efficiently over wireless networks, with no changes to the hosts and
TCP’s semantics, and without requiring proxies between sender and receiver
TCP. TULIP is service-aware in that it provides reliability for only those packets
(frames) that require such service, but it is not protocol-aware, i.e., it does not
know any details of the particular protocol to which it provides its reliable service.
More specifically, TULIP provides reliable service for packets carrying TCP data
traffic, and unreliable service for other packet types, such as UDP traffic (e.g.,
routing table updates and DNS packets) and TCP acknowledgments. TULIP
doesn’t provide reliable service to TCP ACKs because subsequent cumulative ac-
knowledgments supersede the information in the lost ACK. The receiver buffers
packets and passes them up to the next layer in order, thereby preventing TCP
from generating duplicate acknowledgments in the event that a packet is missing
from the expected sequential packet stream. This approach eliminates the need
for a transport-level proxy [7], which must actively monitor the TCP packets
and suppress any duplicate ACKs it encounters. An important feature of TULIP
is its ability to maintain local recovery of all lost packets at the wireless link
in order to prevent the unnecessary and delayed retransmission of packets over
the entire path and a subsequent reduction in TCP’s congestion window. Flow
control across the link is maintained by a sliding window, and automatic retrans-
mission of lost packets is accomplished by the sending side’s link layer. This
aspect of TULIP is very much the same as prior selective repeat ARQ protocols
[8]. However, TULIP is designed for efficient operation over the half-duplex radio
channels available in commercial radios today by strobing packets onto the link
in a turn-taking manner. We introduce a new feature, MAC Acceleration, in
which TULIP interacts with the MAC protocol to accelerate the return of link-
layer acknowledgments (which are most often piggybacked with returning TCP
acknowledgments) without re-negotiating access to the channel. TULIP causes
no modification of the network or transport layer software, and the link layer is
not required to know any details regarding TCP or the algorithms it uses. TULIP
maintains no TCP state whatsoever, and makes no decisions on a TCP-session
basis, but rather solely on a per-destination basis. This approach greatly reduces
the overhead of maintaining state information when multiple TCP sessions are
active for a given destination (as is common with Web traffic). From the trans-
port layer’s point of view, the path to the destination through a lossy wireless
link simply appears to be a slow link without losses and TCP simply adjusts
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accordingly.

Arguments against link-layer retransmissions [22] claim that reliable links
incur unnecessary overhead due to the required transmission of acknowledgments
in the reverse path (and therefore incur unnecessary power consumption). Some
previous work has even maintained that reliable link-layer approaches fail for large
error rates on the wireless link because of competing retransmissions between the
transport layer and the link layer [13]. However, a TCP session consists of two
opposing streams: data flowing in the forward direction and ACKs flowing in the
reverse, and therefore an efficient link-layer protocol can surely take advantage
of these opposing flows by piggybacking link-layer ACKs with transport layer
ACKs.

The rest of this paper is organized as follows. Section 2 discusses in more
detail prior approaches to improving TCP over wireless networks. Section 3 de-
scribes TULIP and gives an example of its operation. Section 4 describes the
implementation of TULIP used in our experiments. Section 5 discusses the simu-
lation experiments used to analyze TCP’s performance over wireless links subject
to low and high bit-error rates, burst losses, and fading when TULIP or Snoop
[7] is used. The simulation experiments assume a simple configuration with a
base station and a single wireless host roaming around the base station in order
to compare TULIP’s performance against the performance of the Snoop proto-
col [7] using the same type of experiments for which very good performance-
improvement results have been reported. The results of our simulations show
that TULIP performs better for any bit-error rate than Snoop and TCP with
no underlying retransmissions. In addition, at very high error levels, TULIP’s
throughput is up to three times higher than both Snoop and TCP with no under-
lying retransmissions. The end-to-end packet delay with TULIP is significantly
lower than the other two approaches and, in contrast to Snoop, the standard
deviation of delay with TULIP grows only slightly with increasing error rates.
Section 6 gives our conclusion.

2. Related Work

The quest to solve the ills of TCP over lossy wireless links is an area, of active
research. Solutions at lower protocol levels attempt to recover losses by using
forward error correction(FEC) at the physical layer. FEC is generally considered
to be a limited approach (although it remains an area of active research) as it can
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reverse only a limited number of bit errors, and also is costly in terms of packet
delay due to computation time and power consumption in an environment in
which power use must be minimized. In addition, while it may alleviate the
poor performance of TCP by recovering a few errors, it cannot entirely solve the
problem when losses are large. Solutions based on higher-level protocols attempt
to fool TCP by hiding the lossiness of the wireless link. Previous solutions fall
into three major categories: Link Layer, Split Connection, and Proxy.

The AIRMAIL protocol [3] provides a reliable link layer in conjunction with
forward error correction(FEC). In this approach, the base station sends an entire
window of data before an acknowledgment is returned by the mobile receiver.
The rationale for this approach is to not waste bandwidth on ACKs and to
limit the amount of work done by the mobile unit in order to conserve power.
Unfortunately, a consequence of this approach is that there is no opportunity to
correct errors until the end of an entire window, which can cause TCP to time
out if the error rate is large or cause a large variation in delay depending upon the
position of the loss in the window. Another approach demonstrating the validity
of link-layer solutions shows analytically how to achieve improved throughput by
insuring the buffer at the interface to the wireless connection is sufficient [12]. A
simple stop-and-wait protocol is used over the wireless link to quickly retransmit
packets before TCP discovers the loss.

DeSimone et al. [13] conclude that introducing reliability at the link layer
introduces unnecessary and redundant retransmissions, because of competing re-
transmission strategies between the transport and link layers. However, this
conclusion was reached based on an analysis that did not take into account the
very generous timeout value calculated by TCP nor its granularity of 500ms (the
most popular value for TCP implementations), but rather an ideal case in which
a timeout occurs at the estimated round-trip time value. Balakrishnan et al. [6]
demonstrate that, as it can be expected, link-layer protocols that fail to provide
in-order delivery to the application essentially compete with the upper layers by
duplicating retransmissions.

In the split-connection approach, the TCP connection is split between the
source and base station and then between the base station and the wireless re-
ceiver [4]. The TCP running at the base station buffers and falsely acknowledges
packets to the source that have not yet been acknowledged by the receiver. The
drawback to this approach is that it violates the semantics of TCP, and cannot
therefore be easily deployed in the Internet. Another similar approach, M-TCP
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[10], splits the TCP connection, but preserves TCP semantics. M-TCP aims to
improve throughput for connections which exhibit long periods of disconnection.
M-TCP is not a complete solution and the authors state the algorithm requires a
good link-layer protocol to recover losses on the wireless link in conjunction with
their protocol to handle the periods of disconnection.

In the proxy approach, a proxy is inserted between sender and receiver TCP
hosts to help TCP’s performance. A well-known example of this approach is
the Snoop protocol [7], which is tailored to the case in which mobile hosts are
attached to the Internet through a wireless link to a base station. The Snoop
module runs above IP at the base station and is responsible for retransmitting lost
packets and suppressing duplicate TCP acknowledgments by sniffing all packets
entering an interface before they are passed on to IP. The Snoop protocol performs
retransmissions of TCP packets when it detects two duplicate acknowledgment
for any packet Snoop has seen previously and stored in its buffer. In addition,
Snoop maintains two retransmission timers. The first timer is similar to the TCP
timer in that one packet per windowful of data is timed to obtain a round-trip
time estimate over the link. The second timer is a persist timer that senses idle
periods. Snoop has been shown to improve TCP performance over wireless links
with bit-error rates up to 15 bits per millions [7]; however, because Snoop relies
only on the same cumulative acknowledgment as TCP and its own timeouts,
losses are not recovered in a systematic fashion as Snoop must make guesses
about the pattern of losses. As we show in Section 5, this leads to large variances
in delays at high loss rates. In addition, Snoop relies on the existence of a base
station which must maintain state for all TCP sessions going through it.

It has also been suggested that TCP-SACK [14] can be used to improve TCP
performance over wireless links [6]. TCP-SACK provides for end-to-end selective
acknowledgment (SACKs) of received TCP segments; such SACKs are indepen-
dent of the link-level acknowledgments used by TULIP. While TCP-SACK would
certainly expedite the discovery of lost packets on wireless segments if no under-
lying link-level recovery were used; however, the algorithm would still respond
adversely to lost segments on the wireless link and incorrectly interpret them as
a sign of congestion. In addition, for connections with long end-to-end delays, a
lengthy round-trip time must be incurred before the transport layer can respond
to the loss of packets. We would expect that lower end-to-end packet delay and
smaller delay variance could be achieved by providing underlying link-level re-
transmissions via TULIP. It is also important to point out that by recovering
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from these errors on the wireless link locally, we conserve bandwidth in the wired
segments of the transmission path.

3. Transport Unaware Link Improvement Protocol (TULIP)

Our design philosophy for TULIP was to provide a link-layer that is trans-
parent to TCP, has no knowledge of TCP’s state, takes advantage of TCP’s gen-
erous timeouts, and makes efficient use of the bandwidth over the wireless link.
The generous TCP timeouts can allow a properly designed link-layer to attempt
to recover from losses due to noise before TCP notices; therefore, our conjecture
was that TCP should perform well over a wireless lossy link if it is allowed to do
what it was designed to do: adapt to the speed of a link that delivers packets in
sequence, unless congestion occurs. TULIP is designed to improve the reliability
of wireless links in base-station oriented wireless networks. Its design assumes a
half-duplex channel between sender and receiver, in which transmission errors are
as likely to occur in acknowledgments (ACKs) as in data packets. TULIP uses a
simple selective repeat retransmission strategy, similar to that of many prior link
protocols [8], coupled with a packet interleaving! strategy to make efficient use
of half-duplex links?.

3.1. Service Provided

Although all link-level packets could be delivered reliably, such an approach
could unnecessarily increase delays across the wireless link; therefore, the service
provided by TULIP consists of the unreliable or reliable transmission of packets
according to the type of service requested by the network layer. The reliable
service provided by TULIP consists of the in-order delivery of reliable link-level
packets (RLP) to the receiver, without duplication, and within a finite time. The
unreliable service consists of a single transmission by the source of an unreliable
link-level packet (ULP). In TULIP, TCP data packets are encapsulated in RLPs,
while TCP acknowledgments (TACKs) with no data, UDP packets, and link-level
acknowledgments (LACKs) are encapsulated in ULPs. TCP acknowledgment
packets are transmitted with unreliable service, because there is generally more

! Packet interleaving is not to be confused with bit interleaving.
2 All COTS radios today are half duplex.
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than one packet in flight at a time and subsequent cumulative acknowledgments

supersede the information in a lost one.

3.2. Basic TULIP Operation

The half-duplex nature of the wireless links over which TULIP is meant
to operate dictates that the sender stop to listen for acknowledgments from the
receiver. In contrast to prior reliable link protocols, in TULIP, the sender does
not stop and wait to receive a correct LACK after either every packet (as in the
traditional Stop-and-wait ARQ strategy [8]) or after an entire window of packets
(e.g., AIRMAIL [3]). Instead, for the case of unidirectional traffic, the sender
simply allows enough time between the transmission of two data packets for the
receiver to send either a LACK or a LACK together with a data packet (which
could contain a TACK if one was available). This leads to the interleaving of
packets from the two ends of the logical link on a turn-taking basis, as depicted
in Figure 1. In this figure, a connection between nodes A and B is assumed to
exist; packets from A to B or from B to A are labeled A—B and B— A respectively,
and the signals between TCP/IP, TULIP and the underlying MAC protocol are
indicated. Unidirectional traffic is depicted on the left, and bidirectional transfer
of data (discussed in greater detail in Section 3.3.1) is shown on the right half
of the figure. The relative positions of LACKs and TCP packets was used to
illustrate that LACKSs are not controlled or triggered by TACKs. The interleaving
of data packets requires each end of the link to pace its transmissions assuming a
maximum propagation delay over the link (7), and characteristics of the physical
layer. For TULIP’s implementation, we assume the specifications of the physical
layer proposed in the IEEE 802.11 standard [1].

UNIDIRECTIONAL TRAFFIC BIDIRECTIONAL TRAFFIC

A>B A>B B->A
TCP [TcPpaa TCPDaa TCPData
1P fi 2 1
A>B B>A A->B B>A A>B
Daa baa
TULIP PRTL LACK1| PKT2 LACK2| PKTL |LACK1fPKT3
4 H x
MAC PKT  TRANS BT PKT I TRANS " wair KT T
: ; ‘
I
at

Figure 1. Packet interleaving over half-duplex link in TULIP from the perspective of source A.

Our design allows at most one packet in transit at the MAC layer, which
means that TULIP passes one packet at a time to the medium-access control
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(MAC) sub-layer. To accomplish packet interleaving, the service required by
TULIP from the MAC layer is very simple and is accomplished with two signals:
TRANS and WAIT. First, once TULIP passes TCP data packet #1 to the MAC
layer, TULIP requires that the MAC layer notify TULIP that the transmission
attempt for the packet has started. This is done by the signal TRANS. After
receiving TRANS, TULIP starts a timer to wait for a minimum of At¢; seconds
(or the arrival of a LACK) before sending the next packet. The timeout At is
given by the following equation:

Aty :tpKT+2T+tACK+2tTR+2tC+tp (1)

where tpgr is the time to transmit a data packet, tacx is the time to trans-
mit a LACK (which could contain data), 7 is the propagation delay over the
wireless link (one each for the data packet and LACK), ¢, is the time to get
capture (including framing and preamble bits), ¢7g is the radio ramp-up/ramp-
down time, and %, is the overhead and processing time at sender and receiver.
Second, because either side may have variable-length data packets to send, and
because such packets are much longer than simple LACKs, the MAC layer must
inform TULIP of the need to wait longer than At;. Because we are interested
in contention-oriented MAC protocols (e.g., CSMA, DFWMAC [1], FAMA [15]),
the MAC is assumed to pass a WAIT signal, specifying the additional amount of
time (Aty in Figure 1) that a node sending packets needs to hold down beyond
Aty, before it sends the next packet 3. This procedure of interleaving allows the
two sources to be self-clocking during the bidirectional transfer of data over the
link.

Flow control and error recovery are managed by the sender through a sliding
window of size W. Data packets are assigned sequence numbers modulo 2W and
sender and receiver maintain a buffer of W packets to ensure correct operation
[8]. The sender maintains a transmission buffer with all unacknowledged packets
in its transmission window, and a retransmission list specifying the sequence
numbers of those packets that must be retransmitted. The sender advances the
low end of the window based on the highest sequence number that the receiver
reports having received in sequence in an ACK; it advances the high end of the
window with each new data packet it transmits, until the difference between the

3 In the case of TDMA this time could be passed with the TRANS signal. If CSMA and ALOHA
were to be used, they would have to be modified to use priority ACKS [28], for example, in
order to provide the WAIT signal needed by TULIP.
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smallest and largest sequence number in the window equals W, at which time
the sender retransmits from the beginning of the window in the next time slot.

Definition of Terms
ACK = received pkt is an ACK
WAIT = RTS received by MAC layer
TRANS = MAC has acquired channel and
pkt is to be transmitted
macState = 1 if MAC layer has a packet,
0 otherwise

S ={SNmin, - s SNmaa}
W = window size
Initialization

Initialize SNy, ip and SNmagz to 0

[This procedure is called when the sender receives
a signal or LACK packet from the MAC layer]
procedure receive_from_MAC ( incoming_pkt or signal )
begin
switch packet or signal type
LACK:
cancel Timer T;
process_received_ack()
if(data to send)
send_packet ()
WAIT:
cancel Timer Tq
set timer Ty = Ato(RT S.data_length)
TRANS:
set timer Ty = Atq(mypacket.length)
macState=0

end process_receive_from_MAC

[This procedure is executed upon timer expiration]
procedure process_timer_expire
begin
if (data to send) AND (macState==0)
send_packet()
macState=1
else
return
end process_timer_expire

procedure process_received_ack ( incoming_pkt )
begin

if pkt.CumAck € S
SNpin = (pkt.CumAck + 1)mod 2W

end if

if pkt.BitVector # 0
free_received_packets ( incoming_pkt.BitVector)
create new retransmission list

end if

end process_received_ack

procedure send_packet ( )
begin
if (untransmitted packets remain in Retransmission list)
send next pkt in list
else if (Window is not exhausted) AND (new pkt available)
if (new pkt is RDP) AND |S| < W
SNmaz = (SNmaz + 1)mod 2W
send packet with sn = SNmaz
else if (new pkt us URDP)
send new packet
else if (Retransmission List exists)
retransmit first pkt in list, i.e. start over
else (no retransmission list)
retransmit oldest unacknowledged packet

end send_packet

Figure 2. Complete Sender Algorithm

The Sender transmits data packets according to the algorithm shown in Fig-
ure 2. A packet transmission is triggered by a timer that expires every At; (see
Figure 5) or by the reception of a LACK. At this time, Procedure send_packet() is
used to choose the next packet to transmit. The highest priority is given to pack-
ets that are apparently lost, and therefore the current retransmission list is always
checked first. If, however, the retransmission list has been completely transmit-
ted, or there is in fact no current retransmission list, then the next packet chosen
for transmission is a new incoming packet (if there is one), provided that the trans-
mission window is not exhausted. This is an important feature in TULIP, because
the sender does not simply retransmit the most recent transmission whenever a
correct LACK covering the packet fails to arrive. Instead, if the transmission
window is not full, the sender transmits the next incoming packet. This allows
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new data to be processed at the receiver in the event LACKSs are lost. The worst
case is when there is no retransmission list available and there is no room in the
transmission window to send new packets. At this point, in order to preserve
liveness, the sender retransmits the oldest unacknowledged packet in its window
to force a LACK back from the receiver.

The algorithm followed at the receiver is shown in Figure 3. The receiver
buffers all out-of-order data packets it receives and upon reception of a correct
data packet, passes all in-order data packets to the network layer. The receiver
sends a LACK every time it receives a data packet. To improve throughput,
LACKs in TULIP counsist of both a sequence number and a bit vector of length
W — 1. The sequence number is a cumulative acknowledgment (CumACK) that
specifies the sequence number of the highest in-order data packet received. The
bit vector is a succinct way to specify negative acknowledgments (NACKs) and is
taken from prior well-known selective-repeat protocols (e.g., XTP [26]). Starting
with the sequence number specified in the CumACK, the bit vector notifies the
sender about the successful or unsuccessful reception of up to W — 1 additional
data packets. A 0 in the vector indicates that a packet with the corresponding
sequence number has not been received correctly; a 1 indicates otherwise.

TULIP uses a connection establishment strategy that is much the same as
those reported in the literature for selective repeat protocols [8].

3.83. MAC-Level Acceleration

For the case of reservation-oriented MAC protocols, transmission delays can
be reduced by a closer interaction between the MAC protocol and TULIP. Our
implementation of TULIP runs on top of FAMA-NCS [15] and includes a MAC-
acceleration feature, depicted in Figure 4(a), aimed at reducing link delays. In
essence, after a data packet has been received by FAMA and passed up to TULIP,
TULIP informs FAMA of the size of the packet it now needs to send. If there
is a data packet waiting to be returned and the packet payload is 40 bytes or
less (which is large enough to carry a TCP ACK packet), then this packet is
piggybacked with the TULIP ACK, which in turn would be encapsulated in the
MAC-level ACK sent as part of a four-way handshake in DFWMAC. (FAMA-
NCS does not provide a MAC layer ACK). If there is no available data packet,
then the TULIP ACK is transmitted immediately. On the other hand, if the
packet is larger than 40 bytes, FAMA is instructed to immediately send an RTS
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Initialization
CumACK = -1
BitVector = {0,---,0}

[this procedure is called when a pkt is received]
procedure process_incoming_pkt ( incoming_pkt.sn )
begin
if incoming pkt.sn € {CumACK + 1,---,CumACK + W}
if incoming pkt.sn = (CumACK+1) mod 2W
release to network layer
release any other in sequence packets
for each packet released
shift left BitVector
CumACK <« LastReleased.sn
else if packet not in buffer
accept packet into buffer
set corresponding bit in Bit Vector
else
drop packet
return
if (noDataPkt in Queue)
prepare_ACK_pkt( CumACK, BitVector )
send_-ACK_pkt( sender_address )
else
prepare_PiggyBack_ACK_pkt( CumACK, BitVector, DataPkt )
send_PiggyBack_ACK_pkt( sender_address, Piggyback_dgParms )
end if
else
drop packet
end if
end process_incoming_pkt

Figure 3. Complete Receiver Algorithm

to reserve the channel for a long packet, as shown in Figure 4(b). This permits
FAMA to reassign the channel quickly, without having to assume worst-case long
packets, and also reduces the number of MAC-level control packets.

MAC acceleration requires a level of communication between the link-layer
and the MAC layer. Specifically, the MAC layer must provide the link-layer with
two signals:

e TRANS indicates that the MAC layer has captured the channel and the data
packet received from the link layer is about to be transmitted.
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Figure 4. (a)MAC Acceleration: FAMA transmits TULIP data packet and returns

ACK without another RTS/CTS exchange. Returning TULIP ACK may contain a TCP

ACK. (b)FAMA exchange with large ACK packet (encapsulated data packet) requires another
RTS/CTS exchange.

e WALIT indicates that the MAC layer has received an RTS, and passes the
sender address and the size of the packet which will occupy the channel.

With MAC acceleration, the interleaving of data packets and ACKs for unidi-
rectional traffic, depicted in Figure 5 with the label Unidirectional Traffic, is
straightforward: The link-layer passes a data packet to the MAC layer which
causes the MAC layer to initiate an RTS-CTS handshake. When the MAC layer
has successfully negotiated the channel, it sends the signal TRANS to the link-
layer which sets its transmission timer 77 equal to the value At; calculated by
Equation 1. Note that with MAC Acceleration, an additional RT'S/CTS exchange
is not needed for the receiver to transmit the corresponding ACK. When the ACK
for the data packet arrives, timer 77 is cancelled and the link-layer passes the next
packet to the MAC layer. However, if the ACK is lost, or if the data packet was
lost, timer 77 expires and the sender algorithm, described in Figure 2, selects the
next packet for transmission. It is shown in Figure 10(a) of our simulation results
(Section 5), that with no errors on the link TULIP provides higher throughput
than Snoop precisely because of this interaction between TULIP and the MAC
protocol, which leads to a much better scheduling of the channel.

3.5.1. Bidirectional traffic

In this section we discuss support for bidirectional traffic over half-duplex
radio links by interleaving traffic streams in both directions. This approach is
important because if we do not provide any type of scheduling, then the opposing
data streams will constantly compete for the channel, causing RTS packets to
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collide, and as a result unnecessarily waste bandwidth and increase delays.
Assuming a bidirectional data flow between two sources A and B, the portion
of Figure 5 labeled Bidirectional Traffic shows the timing that occurs at the
link layer in order to interleave packets, as well the resulting data flow at the
MAC layer, from the perspective of a Sender A. To interleave bidirectional traffic
streams the MAC layer sends an additional WAIT signal to the link-layer when
the MAC layer receives an RTS. An additional timer, T5, triggered by the signal
WAIT, is set for Aty, where Aty must last long enough to receive a CTS, an
incoming packet of length specified by the RTS, plus the necessary capture and

turnaround times discussed previously.
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Figure 5. Unidirectional and bidirectional Traffic from the perspective of Node A in a logical
link with Node B.

The timing for the bidirectional case begins in the same way as the unidirec-
tional case; however, once the link-layer at B receives a packet from A (labeled
as A—B), instead of building and returning an ACK packet, it instead passes
a data packet encapsulated in a TULIP ACK to the MAC layer. Upon receipt
of this packet, the MAC layer at B must send an RTS to negotiate the channel.
Once this RTS propagates to A, the MAC layer at A sends the WAIT signal
to the link-layer. The receipt of the WAIT indicates to Sender A that there is
a bidirectional data stream and instead of passing the next packet to the MAC
layer, sender A instead cancels timer 77 and sets timer 75 to a timeout value
determined from the packet length specified in the WAIT signal. Once the data
packet from B has been received or the timer expires (in the event A was not
the recipient of the packet), sender A can pass its next packet to the MAC layer
and the process is repeated. As the diagram indicates, no special control signal is
needed to indicate a bidirectional stream; each link simply adapts as it receives
either WAIT or TRANS signals.
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3.4. Transmission Example for Unidirectional Traffic

A sample transmission session is given in Figure 6 to illustrate TULIP’s use
of the cumulative acknowledgment, bit vector and the retransmission list, using
unidirectional traffic for simplicity. On the left of the time line the data pack-
ets are transmitted by the base station, and on the right side acknowledgments
are returned by the mobile receiver. On the sender side the retransmission list
created by the Base Station is shown as R[sn;--- sn,], indicating the sequence
numbers that must be retransmitted. A number followed by a star indicates a
packet that has already been retransmitted. On the receiver side, the cumulative
acknowledgment is to the left of the bit vector that is contained in brackets. A
1 indicates a correctly received packet and 0 indicates a missing packet. To the
right of the bit vector, an up arrow is followed by the sequence number of packets

that are in order and can be passed up to the higher-layer protocol.

Time:
t
7
AC CumACK= 7 [0000...0]
t+1
8
AC CumACK= 8[0000...0] Moy
t+2
t+3
0
AC CumACK= 8[0100...0] Mgy
RI9] t+4
9
%
R[9*] t+5 1
—
t+6
RI9*] -
A CUmACK= 8 [010L...0]
R[9.11] t+7 ,
ACK CumACK= 10[0100..0] (lost) | (9,10)
RO*11]  t+8 *él/
y— CumACK=12[0000..0] (lost) }(11,12)
cK .
RO*114]  t+9 A
3
\ACIK\ CumACK= 13 [0000...0] M)
w0 ||

Figure 6. Example of Transmission. Window Size = 8.

At time %, packet #7 is transmitted successfully. The receiver returns a
cumulative acknowledgment of 7 and a one byte bit vector indicating no holes in
the sequential stream. Packet #9 is transmitted at time £+ 2 and it is lost on the
channel. At time ¢+ 3, the transmission timer expires when the acknowledgment
for packet #9 fails to arrive. At this point, a new packet is available in the input
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queue, and packet #10 is transmitted accordingly. When the sender receives an
ACK at time ¢+ 4, the bit vector indicates that packet #9 is missing. Therefore,
the sender creates a retransmission list and retransmits packet #9; however, this
packet is again dropped on the channel. When the transmission timer expires at
time ¢t + 5, the retransmission list indicates that the entire list has been retrans-
mitted and a new packet, #11, is selected, transmitted, and subsequently lost.
Packet #12 is transmitted at time ¢ + 6; however, this packet is successful and
an acknowledgment is received at time ¢ + 7 which indicates packet #9 is still
missing and also #11. A new retransmission list is created and the packets are
retransmitted at times £ + 7 and ¢ + 8 respectively. This time the data packets
are received correctly, however the corresponding acknowledgment packets are
lost. Once packet #9 is received, the receiver can now pass packet #9 and #10
up to the next layer and when packet #11 arrives, packets #11 and #12 can
be released. At time ¢ + 9 the current retransmission list has been completed so
a new packet (#13) is selected for transmission. When its acknowledgment is
received at time ¢+ 10 the bit vector indicates that all packets have been received
correctly.

4. Implementation

We have implemented TULIP and Snoop [7] in the C++ Protocol Toolkit
(CPT) [9]*. Wireless nodes in our simulation run the protocol stack shown in
Figure 7. A key feature of our simulation is that it is based on the exact same
source code that runs in the WING prototypes (which are wireless IP routers)
[17], and in hosts attached to the WINGs. The IEEE 802.11 specifications are
used at the physical layer to emulate the broadcast medium. CPT simulates
the wireless and wired transmission media with specific parameters and channel
characteristics specified through script files read at runtime. Various parameters
such as propagation delay, bit error rate, and offered load can also be altered
through scripts. Either TULIP or a dummy link-layer without retransmissions
is used at Layer 2. Our implementation of TULIP runs on top of FAMA-NCS
[15] with the MAC acceleration feature described in Section 3. TULIP in turn
interacts with IP [23] and the wireless Internet routing protocol (WIRP) [21] for
packet forwarding. The only higher-level protocol requesting reliable link service

4We thank Rooftop Communications Corporation for donating the toolkit.
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from TULIP is TCP, which in our implementation, has been ported from the
TCP Reno code contained in the REAL simulator [19].

FAMA-NCS

| L]
] T
Broadcast Radio
(80211 5pec)

Figure 7. Protocol stack of wireless node.

The code of the Snoop protocol [7] was modified from the on-line FreeBSD
implementation® to run in CPT. Logically, Snoop is at the network layer as it
monitors packets at the incoming interface and then passes them to IP. The overall
code was strictly maintained (when possible only data structures specific to the
FreeBSD implementation were adapted to CPT); however, hard coded values
for the minimum timeout values for the retransmission timer and the persist
timer were changed to 40ms and 200ms, respectively, and the retransmission
timer’s calculated value was set to 2 * rit to match that of published work [7].
For optimization purposes retransmissions are performed after the receipt of 2
duplicate acknowledgments [5]. In addition, as specified [7], only one rtt estimate
is made per transmission window. For Experiment 2, the on-line version of Snoop

was changed to fix a minor coding error and is discussed in Section 5.2.

5. Performance

In this section we present the results of a series of simulation experiments
used to compare the performance of TULIP, the Snoop protocol [7] and TCP
Reno implemented with no underlying link-layer retransmissions (referred to as
No LL). For both steady-state and in the early stages of a TCP data transfer,

5 We thank H.Balakrishnan for providing on-line source code at
ftp://daedalus.cs.berkeley.edu/pub/snoop/
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the performance metrics of primary interest are throughput, delay and goodput.
Goodput is the ratio of successfully transmitted packets (i.e. those accepted by
the link layer to pass up to the transport layer) to the total number transmitted
and is important because it reveals if a protocol makes unnecessary retransmis-
sions.

Given that the transport protocol is transparent to TULIP, TULIP can im-
prove the performance of any transport protocol that can confuse packet losses
in the wireless segment with congestion. We chose to use TCP Reno as the ba-
sis for comparison because it is widely used. We did not consider TCP-SACK,
because it still confuses packet loss over the wireless link as a sign of congestion,
requires modification of the receiver TCP at the mobile host and is not currently
widely deployed. The MAC acceleration could not be used with Snoop because
Snoop has no access to the MAC layer (the Snoop agent resides above IP); there-
fore, Snoop cannot instruct the MAC layer to transmit an ACK differently than
data. It is precisely because TULIP resides at the link layer that it is able to
interact with and control the MAC sub-layer, thereby taking advantage of MAC
acceleration.

The test case used in our study is the same used by the authors of Snoop to
describe its performance [7]. Although TULIP can operate in ad-hoc networks,
our intent in this paper is to compare TULIP’s performance against Snoop’s,
which is one of the best performing TCP improvements for wireless networks re-
ported to date. In this configuration, shown in Figure 8, an Internet source sends
data to a wireless host via a base station. Of primary interest is traffic flowing
toward the wireless receiver, as is the case of a mobile user downloading files.
This type of configuration is also typical of Web traffic; however, this and other
interesting simulation scenarios, such as multiple receivers, cannot be shown in
this paper, but are planned for our future work. The topology is such that a TCP
source transfers 10Mbyte of data from a host located on a wired segment via a
base station to a wireless receiver. In Experiments 1 and 2, the TCP receiver
window is varied and losses are applied to the wireless channel with an expo-
nential distribution to examine the performance of the retransmission policies of
TULIP and the Snoop protocol, and to determine their improvement on TCP.
Experiment 1 examines low to moderate error levels and Experiment 2 examines
performance as the error rate is increased to very high levels. Experiment 3 ex-
amines performance when Raleigh fading [29] and burst losses are present on the
channel.
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Figure 8. Topology for Experiments 1 - 3

The following parameters are fixed for all experiments: the 802.11 specifi-
cations [1] are used for the physical layer, the channel capacity from the wired
source to the base station is 10Mbps, the wireless transmission rate is 1Mbps, file
transfers are 10Mbytes with 1400 byte data packets, TULIP’s window size is 8
packets, and the offered traffic is a Poisson source with an average rate of 1Mbps.
These specifications are the same as those used in the Snoop experiments [7],
except for the radio characteristics (including a lower transmission rate for our

experiments).

5.1. Ezperiment One: Low Error Rates

In this experiment the bit error rate is varied from 0 to 15 bits/million
and the TCP receiver window is set at 42kbytes and 16kbytes. TCP’s behavior is
examined in detail to gain insight into its operation during moderate loss periods.
The throughput, packet delay, and goodput of all the protocols are also examined.

5.1.1. Throughput

Figure 9(a) shows the progression of sequence numbers for a 10Mbyte TCP
file transfer with a bit error rate (BER) of 3.9 bits per million. Though this is in
fact a modest error rate, corresponding to a packet error rate of approximately
4%, it is evident that the TCP session with no assistance from the link layer (the
no LL line) suffers from timeouts and as a result degraded throughput. TULIP
performs slightly better than the Snoop protocol because Snoop is waiting to re-
transmit a lost packet until it has received 2 duplicate acknowledgments, whereas
TULIP retransmits on the first indication of a loss. In addition, TULIP returns
LACKs from the receiver to the sender with MAC Acceleration as described in
Section 3. When the Snoop protocol is running at the network layer, the TCP ac-
knowledgment packets from receiver to sender must of course compete for channel
access with the data packets flowing in the forward direction.

Figure 9(b) shows the progression of sequence numbers with a BER of 15
bits/million, or a packet loss rate of approximately 16%. It is again apparent
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Figure 9.  Experiment 1: TCP Sequence number growth. (a) BER = 3.9 bits/million =
1/256Kbytes (b) BER = 15 bits/million = 1/64Kbytes. Receiver window 42 Kbytes.

in this transfer that TCP is suffering considerably due to losses on the wireless

link. TULIP and the Snoop protocol, on the other hand, achieve nearly identical

throughput and are able to complete the transfer with no TCP timeouts. At the

time these two protocols are finished, unassisted TCP has progressed only 30%

into the transfer.
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Figure 10. Experiment 1: Average throughput for all three protocols with varying BER. (a)
42k receiver window (b)16k receiver window

Figures 10(a) and (b) are summary plots of the average throughput for all
three protocols with bit error rates varying from 0 to 15 bits/million and receiver
window sizes of 42Kbytes and 16Kbytes, respectively. When the link errors are
zero the graphs show that MAC Acceleration provides a 4 — 5% improvement in
throughput. For error rates under 0.5 bits/million, TCP is able to keep up with
the losses and does not show appreciable performance degradation. However,
as losses begin to rise, it is apparent that traditional TCP can no longer keep
up with the losses and the throughput degrades considerably. Both the Snoop
protocol and TULIP show decreased throughput as the BER rises; however, their
overall throughput is consistently better than unassisted TCP. The reduction in
throughput is due to the numerous retransmissions that occur as error rates in-
crease. Because a TCP congestion window size of both 42Kbytes and 16Kbytes

15.0
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is more than enough to accommodate the bandwidth-delay product of this con-
nection, the graphs show no appreciable difference in throughput for different

window sizes.

5.1.2. Goodput

Figure 11 shows the goodput for the three protocols. Goodput gives a sense
of the redundant information transmitted over the channel as a result of losses
and subsequent retransmissions. Ideally every loss would be retransmitted at
most once; however, as error rates increase it is possible that, for example, TCP
could timeout and retransmit a packet which has already undergone retransmis-
sion at the link layer or by the Snoop protocol. In this plot, the ideal goodput
is indicated by the top line and the goodput achieved over the wireless link is
then plotted for each protocol. It is clear from the figure that both the Snoop
and TULIP protocols are able to maintain perfect goodput, which means they
retransmit only what is absolutely necessary to insure all the packets reach the
destination without error. Regular TCP, however, diverges slightly from ideal
goodput as the errors on the link increase. Table 1 indicates for each protocol
the link losses, theoretical and achieved goodput, number of TCP timeouts and
number of redundant transmissions over the wireless link for a BER, of approx-
imately 15 bits per million. The numbers verify that Snoop and TULIP have
no redundant transmissions and therefore achieve ideal goodput. The reduced
goodput of regular TCP is due to the retransmission of 158 redundant packets.

Goodput

1
0.98 Theoretical Goodp
0.96 M . no.LL -e---
Tk TULIP -+
0.94 Snoop =
5 o092
g 0.9
& o088
0.86
0.84 T
0.82 jm\
0.8
0 0.05 0.15 0.2

0.1
Data Pkt Error Rate

Figure 11. Experiment 1: Goodput for all three protocols with varying packet error rates and
a receiver window of 42Kbytes.

5.1.3. A Closer Look at TCP
In this section we investigate why TCP makes so many unnecessary retrans-
missions. First of all, unless a connection has a large number of outstanding
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| Comparison of Goodput for TULIP Protocol, Snoop and no LL |

‘ Protocol ‘ ‘ Packet Loss ‘ Ideal Achieved #TCP | #redundant
bits / mllhon (percent) Goodput | Goodput | timeouts packets

| TuLP | 15.1 | 0.159 | o841 | o080 | 0o | 0 |

| Snoop | 15.5 | 0.169 | o831 | 0.829 | 0 | 0 |

| NoLL | 15.2 | 0.166 | o834 | 0814 | 732 | 158 |

Table 1
Experiment 1: Ideal and achieved goodput, number of TCP timeouts and redundant packets
transmitted over the wireless link for a BER of 15 bits per million and a receiver window of
42Kbytes.

packets and enough ACKs flow back from the receiver, TCP cannot recover from
two losses per window without resorting to a timeout. Figure 12(a) shows the
sequence number growth and returning acknowledgments for the first two seconds
of the transfer when T'CP has no link-level retransmissions. The packets dropped
by the wireless link are indicated by arrows and are labeled with their sequence
numbers. At time ¢ = 0.15, the third duplicate acknowledgment for packet 4
arrives, a fast retransmission occurs and the TCP congestion window is reduced
by half. At time ¢ = 0.24 and t = 0.25, packets 12 and 13 are both dropped.
Packet 12 is not recovered by a fast retransmission because the reduced window
size does not produce enough outstanding packets to return duplicate ACKs and
as a result there is a TCP timeout at ¢ = 1.75 prompting the retransmission of
packet 12. When the ACK for this packet arrives it is determined that packet 13
is also missing. Because the session is now in the slow start phase (following a
timeout), the current congestion window of 2 allows for the transmission of two
packets from the beginning of the window, namely 13 and 14. The retransmission
of packet 14, however, was redundant because it was received correctly the first
time, and as a result both the wired and wireless goodput decrease accordingly.

Regular TCP: no Link Layer retransmissions TCP with TULIP retransmissions
30 120
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Figure 12. Experiment 1: Sequence number and ACKs at the source for the first 2 seconds of
the TCP transfer. Packets dropped on the channel are shown with arrows. BER = 15 bits per
million. (a) no link retransmissions (b) TULIP protocol
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In contrast, as depicted in Figure 12(b), TULIP is able to handle many
sequential losses within a window, perform the necessary retransmissions, and
prevent TCP from having a timeout. When this plot is compared to Figure
12(a), we see that TULIP’s retransmissions improve the situation considerably:
TULIP suffers from 17 packet losses (compared to only 3 losses in Figure 12(a))
and though there are noticeable idle periods lasting not more than 200ms (during
which time TULIP is retransmitting lost packets), there are no TCP timeouts and
the transfer makes considerable progress. It is interesting to note that, beginning
at time ¢ = 0.9, packet 42 is dropped from the channel three times. This series
of losses would have required a minimum of three timeouts for TCP without
underlying link layer retransmissions; instead, the dropped packets are quickly
retransmitted and the losses are not noticed by TCP.

5.1.4. TCP Round-trip Time

Figure 13 shows the estimated RTT and deviation calculated by TCP
throughout the session, the actual measured RTT and the retransmission timeout
value for TCP with a channel BER of 15bits/million and TULIP retransmissions.
TCP’s retransmission timer ¢ generally produces a timeout value with plenty of
slack for TULIP to quickly retransmit packets. It is interesting to note in the plot
that the variation in RTT is generally within the 500ms granularity of the TCP
timer in our implementation. Arguments against link-layer approaches [13] point
out an increased variance when retransmissions are performed at the link layer;
however, increased variance decreases TCP’s susceptibility to timeouts (because
the timeout value increases) and in effect reduces the number of timeouts! This is
a well-known phenomenon in public wireless networks such as Metricom’s Rico-
chet [2] which have a large delay variance through the RF portion of the network,
which in effect causes very large TCP timeout values.”
5.1.5. Packet Delay

Figure 14(a) shows the average packet delay with TULIP is lower than the
Snoop protocol in every instance, and as the error rates increase, TULIP’s stan-
dard deviation is also lower than the Snoop protocol. TULIP’s delay is smaller
because, as discussed previously, TULIP has a faster retransmission mechanism.

5 The TCP timeout value in our implementation is calculated as the estimated round-trip time
plus four times its deviation and has a granularity of 500ms.

" This avoids unnecessary retransmissions when packets are simply delayed, but is highly un-
desirable if packets are in fact lost because so much time lapses before the timeout occurs.
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TCP: Round Trip Time, Timeout, Variance, BERR=15 with TULIP retransmissions
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Figure 13.  Experiment 1: RTT measurement and estimate for TULIP with a BER of 15
bits/million with receiver window of 42Kbytes.

This becomes apparent as the error rate increases and Snoop’s variance jumps up
at a BER of 15 bits per million when it has trouble with scattered losses within

a window and with the occasional loss of retransmitted packets.
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Figure 14. Experiment 1: Average packet delay and std. deviation for TULIP and Snoop
protocols. (a)Receiver Window is 42Kbytes. (b)Receiver Window is 16Kbytes.

Figure 14(b) shows the delay when the receiver’s advertised window is re-
duced to 16Kbytes in an attempt to lower the average end-to-end delay by reduc-
ing the number of packets in the queue at the bottleneck link. The plot shows
that the end-to-end delay is, in fact, reduced by more than half for both protocols
by reducing link layer queuing. This leads to our recommendation that mobile
nodes should, in general, advertise a smaller window size to reduce delay and
lessen the possibility of congestion at the base station.

5.2. Experiment 2: High Error Rates

In this experiment we investigate the effect of high error rates on through-
put and end-to-end packet delay. Some public wireless communication providers
[16][20] report typical wireless one-hop packet loss rates between 10 - 40%. For
this reason, we increase the bit error rates on the channel to very high values,

150
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i.e., from 15 to 75 bits per million (corresponding to packet loss rates from 16 to
85%).

This section shows two different plots for the Snoop protocol. After run-
ning simulations with high error rates, Snoop appeared to perform poorly. After
examining the source code, we discovered that when many losses occurred in
succession, causing Snoop to retransmit multiple lost packets per window, it
would inadvertently update its link rit estimate to an incorrect value, i.e., to
a value during which time one or more retransmissions occurred. This caused
the rtt estimate to grow to very large values, which when uncorrected caused
any subsequent retransmissions to be driven only by the persist timer and not
the round-trip timer. The plots labeled as Snoop w/fix are run with the error
corrected.

5.2.1. Throughput

TCP’s throughput is shown in Figures 15(a) and 15(b) for receiver window
sizes of 42Kbytes and 16Kbytes, respectively. These graphs clearly show that, as
the bit error rate increases, all three protocols show a reduced turn in throughput.
With a BER of 15 bits/million the TCP connection with no link-layer retransmis-
sions (labeled no LL) has degraded significantly and comes to a near standstill
for error rates above 30 bits/million. After a BER of 30 bits/million Snoop’s
throughput drops off quickly and diverges from TULIP’s throughput, which de-
creases slowly as error rates increase. These error rates are characterized by
many multiple losses per window of data. TULIP can easily recover from these
episodes and the connection simply appears increasingly slower to the transport
layer. Because a TCP congestion window size of both 42Kbytes and 16Kbytes
is more than enough to accommodate the bandwidth-delay product of this con-
nection, the graphs show no appreciable difference in throughput for different

window sizes.

5.2.2. Delay

Figure 16(a) shows the average end-to-end packet delay and standard devia-
tion with a receiver window of 42Kbytes for Snoop and TCP. The TCP transfers
with no link layer retransmissions exhibit a lower average delay for bit error rates
up to 60 bits/million; however, considering the corresponding deviation, the delay
is larger than the delay seen by the Snoop protocol. Because the session without
underlying retransmissions operates with a small congestion window (and hence
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Figure 15.  Average throughput for all three protocols with high error rates. (a) 42Kbyte
window (b) 16Kbyte window.
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very little queuing at the base station) due to many TCP timeouts, packets are
either delivered with very low delay or they suffer from high delay when they are
dropped and undergo retransmission. The plot shows that the delay and devia-
tion for Snoop with the fix is significantly lowered. Because the performance of
Snoop with the fix is better, it is compared to TULIP in Figure 16(b). This plot
shows that the delays and deviation with the Snoop protocol are significantly
larger than with TULIP once error rates exceed 35 bits/million. The larger delay
is because the Snoop protocol has trouble recovering multiple losses per window
and also recognizing when retransmissions are also lost. Snoop must rely heav-
ily on its timer and cumulative acknowledgments for retransmissions and gets
stuck trying to retransmit the first packet in a series of losses. The deviation
is high here because losses are tackled one by one and in order, i.e., once the
first loss is recovered, then the next is tackled and so on. TULIP, on the other
hand, creates a retransmission list upon the first receipt of an ACK and knows
exactly which packets are missing because each ACK specifies the complete state
at the receiver’s buffer. In addition, if retransmitted packets need to be again
retransmitted, TULIP is able to do this as soon as it has received any ACK. The
deviation is smaller in TULIP because, with multiple losses per window, it is
often the case that errors further down in the window are recovered before the
first error. Therefore, by the time the first error is recovered, all the packets can
be released to the higher layer in sequence.

When the receiver’s window is reduced to 16Kbytes, as shown in Figures
17(a) and (b) we notice that the end-to-end delays are greatly reduced. As error
rates increase Snoop suffers from a very high standard deviation and an average
packet delay of more than twice that of TULIP. These results again support our

recommendation of a smaller receiver window size.



Time(msec)

Time(msec)

Parsa and Garcia-Luna-Aceves / Improving TCP Performance over Wireless Networks 27

Average Packet Delay and std. deviation, 42K TCP Window Average Packet Delay and std. deviation, 42K TCP Window
8000 8000
7000 Snoop — 7000 TFULIP
Snoop w/fix =---4 5 Snoop w/fix +H=—i
6000 no LL B 1 ] 6000
5000-] | | | § 5000
4000 . | £ 4000
3000 ! ! i E 3000 l
2000 B i i ! 2000 1 g 4
wol o R | 1000 f o gk E
oy 21 N 01 1 VO 1 1V L 0
20 25 30 35 40 45 50 55 60 65 70 75 20 30 40 50 60 70
Bit Error Rate(Bits per million) Bit Error Rate(Bits per million)
(a) (b)
Figure 16. Experiment 2:Average packet end-to-end delay and std. deviation with high error
rates and 42Kbyte receiver window. (a) Snoop, Snoop w/fix, and No LL (b) Snoop w/fix and
TULIP
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Figure 17. Experiment 2:Average end-to-end packet delay and std. deviation with high error
rates and 16Kbyte receiver window. (a) Snoop, Snoop w/fix and No LL (b) Snoop w/fix and
TULIP
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5.3. Experiment 3: Fading and Burst Losses

In this section we examine TCP’s performance in the presence of packet
burst losses and fading on the wireless link. Fading causes periods of silence on
the channel, during which time neither sender nor receiver can hear each other.
Fading is often caused by the movement of mobile nodes, but can also be caused
by objects which move in front of and around a mobile node.

5.3.1. Experiment 5a: Uniform Distribution of Burst Losses

In the method used by Balakrishnan et. al. [6], burst losses of a specific
size are distributed uniformly over the run of the experiment. The results when
bursts of sizes 2,4 and 6 data packets are spread every 64Kbytes of data are shown
in Table 2. Because of FAMA’s handshake, the sender would not send more than
one packet into the channel during a fading period, because it would not receive
the necessary CTS to send any more data packets. The same would the case
for DWFMAC [1]. However, this experiment is still interesting to show, because
it indicates that TULIP provides smaller delays and slightly better throughput
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than Snoop, even in such rare cases in which the MAC layer manages to send
multiple packets into the channel that reach the receiver in error, even though
the corresponding RTS and CTS packets did not.

Bursts Distributed every 64Kbytes

|

‘ Burst Size ‘ TULIP Snoop ‘ ‘ TULIP Snoop
#packets Throughput(Kbps) | Throughput(Kbps) | (Kbps) | Delay + dev.(ms) | Delay + dev.(ms)

| 2 | 587.3 | 562.6 | 247 | 54056 | 58260

| 4 | 550.0 | 527.6 | 224 | 579+74 | 62184

| 6 | 516.1 | 496.4 | 197 | 618£98 | 660114

Table 2
Experiment 5a: Throughput of TULIP and Snoop in the presence of bursts of length 2,4 and 6
packets. Burst periods are distributed every 64Kbytes of data. Receiver Window is 42Kbytes.

Figure 18 (a) and (b) show how TULIP and Snoop retransmit lost packets
during a period of 6 consecutive data packet losses. It takes Snoop slightly longer
to recover from the errors than TULIP, because TULIP has a more systematic
approach to recovery, i.e., it is absolutely clear upon receipt of the first ACK at
time ¢t = 0.95, that packets with SN #43 through 48 are missing, because the bit
vector returned with the cumulative acknowledgment indicates the precise losses.
The protocol can then immediately retransmit all necessary packets. Snoop, on
the other hand, must try to figure out which packets are missing based upon
timeouts, which occur at ¢ = 0.87sec and ¢t = 0.93 for the first loss; thereafter,
it must interpret the values of returned cumulative acknowledgments to guess if
additional errors have occurred. It should also be noted that in this transfer,
Snoop only suffers from 4 original packet losses (and 2 retransmissions), whereas
6 original packets are dropped for TULIP.

5.3.2. Ezxperiment 5b: Markov Model of Burst Losses

The method to simulate channel fading consists of a two-state Markov model
taken directly from the work by Lettieri et al.[22], which is also discussed by Wang
et al. [30] and Swarts et al. [27]. Briefly, the model consists of a two-state Markov
chain representing Good and Bad states on the channel, transition probabilities
into and out of the states, and error loss probabilities associated with each state.
As bits arrive on the channel, the error probability for the given state is first
applied to the bit, and then a decision is made as to whether or not a change of
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Figure 18. Experiment 5a: Burst loss of 6 packets. (a)TULIP (b)Snoop
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state should occur. Thus, it is possible to change states many times within one
packet.

We have performed this experiment for a pedestrian speed of 2km/hr and
the results are presented in Figures 19(a) and (b) as the BER in the Good state is
varied from 0.01 to 100 bits/million and the loss probability in the Bad state held
constant at 50%. The plot shows that TULIP and the Snoop protocol display
similar performance as long as the error rates are low; however, as shown in Fig-
ure 19(a), Snoop’s throughput begins to diverge and fall below TULIP once error
rates exceed 10 bits/million. The performance of TCP with no underlying re-
transmissions degrades once error rates exceed 0.1 bits/million, or approximately
1/8Mbytes. The end-to-end packet delay, depicted in Figure 19(b) shows that
the average delay for TULIP and the Snoop protocol are similar; however, the
standard deviation for Snoop is again higher. For the highest error rate shown,
100 bits/million, TULIP provides a much lower delay and a tighter bound on the
deviation.

Throughput - Markov Fading Model, 2km/hr., 16K TCP Window Average Delay and Deviation - Markov Fading Model 16K TCP Window
2500 — - T — T

TULIP —-—

Snoop:-+-- 2000 |- TULIP —

noLlL -8- Snoop wifix *
noLL

1500

Time(msec)
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ho |

100 100
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Bit Error Rate in Good State(Bits per million)
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Figure 19. Experiment 5b: TULIP and Snoop protocols during Markov Fading Model. Loss
probability in bad state is 50% and BER in good state is varied. Pedestrian speed 2km/hr. (a)
Throughput (b) End-to-end delay and standard deviation

0.1 1 10
Bit Error Rate in Good State (bits/million)
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6. Conclusion

We have presented a link-level solution to TCP’s performance degradation
over lossy wireless links, which stems from TCP’s interpretation of packet loss due
to link errors as a sign of congestion. Our Transport Unaware Link Improvement
Protocol (TULIP) hides the wireless losses from TCP by taking advantage of the
speed with which feedback is provided at the link level and TCP’s generous time-
outs. TULIP is designed to work over half-duplex wireless links and interleaves
traffic from both ends of a link very efficiently, even when the underlying MAC
protocol is contention based and provides no channel-access delay guarantees.

We have shown through simulation that, when errors are exponentially dis-
tributed over the channel, our approach not only minimizes TCP timeouts for all
bit error rates, but also provides improved throughput over the Snoop protocol,
which is one of the best performing prior published approaches to the problem.
End-to-end delay becomes a problem as the losses on the link increase; however,
TULIP provides significantly improved end-to-end delay and delay variation. In
addition, reducing the size of the receiver’s advertised window can help to allevi-
ate the queuing delay. We have examined the effects of burst losses and channel
fading and our results show that again the TULIP approach quickly retransmits
the dropped packets once the channel is active again, yielding reduced but con-
sistent throughput. The simulations show that during fading TULIP provides
higher throughput and lower end-to-end delays compared to both Snoop and
TCP with no underlying retransmissions.

The advantage of our approach over other published approaches is that we
keep no TCP state and therefore do not need to look into the TCP packet headers.
This means that TULIP works correctly with any current or future version of TCP
(e.g., TCP-SACK), even if TCP headers are encrypted. TULIP works with both
IPv4 and IPv6; in the latter case, TCP data packets can be identified as requiring
reliable service from the NextHeader field in the IPv6 header. In addition, because
our approach does not restrict the network to the presence of a base station, it can
easily be applied to multi-hop wireless networks. Furthermore, by controlling the
MAC layer, TULIP conserves wireless bandwidth by piggybacking TCP ACKs
with link-layer ACKs and returning them immediately across the channel through
MAC Acceleration.
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