
 1

Abstract—File sharing in wireless ad-hoc networks in a peer-

to-peer manner imposes many challenges that make conventional
peer-to-peer systems operating on wire-line networks
inapplicable for this case. Information and workload distribution
as well as routing are major problems for members of a wireless
ad-hoc network, which are only aware of their neighborhood. In
this paper we propose a system that solves peer-to-peer file-
sharing problem for wireless ad-hoc networks. Our system works
according to peer-to-peer principles, without requiring a central
server, and distributes information regarding the location of
shared files among members of the network. By means of a
“hashline” and forming a tree-structure based on the topology of
the network, the system is able to answer location queries, and
also discover and maintain routing information that is used to
transfer files from a source-peer to another peer.

Index Terms—Wireless ad-hoc networks, file sharing, peer-to-
peer networks

I. INTRODUCTION

eer-to-Peer networks have been very popular since
their first emergence. Some systems have already

been deployed to be functional on the Internet, like
Napster [10], Gnutella [7] and Fasttrack [6]. Many peer-
to-peer systems currently serve users who are able to
share files located at their PCs without requiring
information to be used at central servers. Together with
the new users of the Internet and the emergence of
different types of files to be shared (documents, audio
files, etc.), number of users of peer-to-peer systems
increases every day.

At the mean time, mobile devices and wireless
communication technologies are evolving and becoming
very popular. Both areas have experienced rapid
improvements during last few years, which led to
development of high-performance products. Today,
PDAs have almost the same abilities that of ordinary

This work is supported by The Scientific and Research Council of Turkey

(TÜBİTAK), grant number 103E014.
H. Sözer is with the Computer Engineering Department, Bilkent

University, Ankara, 06533, Turkey (e-mail: hsozer@cs.bilkent.edu.tr).
M. Tekkalmaz is with the Computer Engineering Department, Bilkent

University, Ankara, 06533, Turkey (e-mail: metint@cs.bilkent.edu.tr).
İ. Körpeoğlu is with the Computer Engineering Department, Bilkent

University, Ankara, 06533, Turkey (e-mail: korpe@cs.bilkent.edu.tr).

PCs despite their small size and weight. On the other
hand, new wireless technologies enable PDAs and other
handheld devices to communicate and form ad-hoc
networks in an easy and automated way. Bluetooth [2],
for instance, is such a technology that uses short-range
radio communication and that interconnects handheld
electronic devices ranging from cellular phones to
PDAs.

Although high-performance handheld devices that
communicate with each other through ad-hoc wireless
communication technologies are available today, peer-
to-peer file sharing in such an environment imposes
many challenges that make conventional peer-to-peer
systems operating on wire-line networks inapplicable for
this case. Peer-to-peer systems were developed as
opposed to central approaches in order to increase
availability and reliability. In that respect, they are very
suitable for wireless ad-hoc networks (WANETs) where
spontaneous connections occur and users have relatively
higher degree of mobility. However, traditional peer-to-
peer systems are not sufficient for providing file sharing
in such an environment since:

• Such networks can be formed anytime and
anywhere without requiring an infrastructure,

• Nodes in the network may tend to change
their locations frequently,

• There is lack of widely accepted and used
standards for routing data in mobile ad-hoc
networks.

A peer-to-peer file sharing system that is running on
Internet may find a desired file at a member node, which
is identified by a unique ID. This can be achieved by
using centralized or distributed indices that maps the
name of the file to the member node’s IP address
through which the node can be reached. After knowing
the IP address of the node from where a file can be
downloaded, the network layer of the Internet (IP) would
handle all intermediate steps and forwarding needed in
order to reach to the node and to perform the download.
However, this is not possible on a WANET that does not
run an ad-hoc routing algorithm. A WANET may be
composed of heterogeneous mobile systems in which a

A Peer-to-Peer File Sharing System for Wireless
Ad-Hoc Networks

Hasan Sözer, Metin Tekkalmaz, and İbrahim Körpeoğlu

P

 2

standard routing algorithm is not supported at all nodes.
Currently, although there are various efforts [4, 5] that
propose protocols to route packets in a WANET, we still
lack a common and widely used standard routing
protocol for this environment. And it seems that it will
take some more time before we have a widely accepted
common routing protocol and its implementation
available and deployed.

Therefore, to support peer-to-peer file sharing in a
WANET, we believe that a peer-to-peer system should
also provide routing functionality besides providing
lookup functionality. In this way, the peer-to-peer
system should be able to determine both from where and
how to obtain a file.

In this paper we propose a system that solves peer-to-
peer file-sharing problem in wireless ad-hoc networks.
Our system works in a peer-to-peer manner and
distributes information regarding the location of files
that are shared among members of the network. Besides
location information, the system also stores routing
information as part of a distributed index maintained in
the system. While designing the system, we have
adapted some techniques from source routing and peer-
to-peer location lookup that were previously proposed
for wire-line networks.

The remainder of this paper is organized as follows. In
the next section, related previous studies are
summarized. In section 3, an overview of the system is
given, which is followed in section 4 by a detailed
description of each operation supported by the system.
In section 5, we present a working scenario of the system
to show how each operation updates and maintains the
distributed location and routing information stored in the
system. Finally, in section 6 we give our conclusions and
discuss some future work issues.

II. RELATED WORK

Network environments can be grouped in three
categories according to their impacts on peer-to-peer file
sharing. The first one is wired Local Area Networks
(LANs). Handling file sharing is rather easy in wired
LANs since they are built-up by relatively low number
of computers, which are well known to each other and
each of which can communicate to all other nodes
directly. Wired LANs are out of interest of this paper
since they do not have much common characteristics
with the wireless ad-hoc networks, which is the network
environment that the paper offers a solution for file
sharing. The second network environment is the Internet.
It connects huge number of computers and is a transport

infrastructure that enables peer-to-peer file sharing. But
unlike wired LANs the computers willing to share files
are usually have little or no awareness of others. Several
works have been carried out in the recent years to cope
with problems posed for peer-to-peer file sharing by the
dense, highly dynamic and lowly aware nature of the
Internet. Napster [10] is one of the earliest and most
popular applications, which enables file sharing on the
Internet among computers that are hard to predict when
to connect and disconnect. The main idea behind Napster
is a central server that stores index information (filename
and address pairs), which is used to answer queries about
where files are stored on the Internet. Once the location
of a file is determined, file transfers are carried on peer-
to-peer (P2P) manner. Although the actual file transfers
are P2P, storage of and accessing index information is
done using client-server paradigm. Napster enables easy
location lookup by using a central server, but it is
affected by the typical weaknesses of centralized
systems. More recent works aim fully distributed peer-
to-peer systems that store index information in a
distributed manner. CAN (Content-Addressable
Network) [11], being one of them, is based on a fully
distributed hash table. In CAN, filenames are hashed and
mapped to points on a d-dimensional space. The d-
dimensional space is divided into chunks and distributed
among the members of the network where each member
is responsible from one portion of the space (i.e. a
chunk). Along with a chunk each node stores some
information about the neighboring nodes, which makes
searching of files possible by providing the location
information for files and an overlay network-level
routing. Chord [8] is another well known fully
distributed peer-to-peer system in which a ring shaped
overlay network is applied. Each node on this ring
maintains pointers to other nodes at various distances.
To gather the location information of a file, these
pointers are followed in a manner that shortens the
access path as much as possible.

Last type of networks is Wireless Ad-hoc Networks
(WANETs), which have dynamic nature causing many
difficulties for file sharing as stated before. First work on
P2P file sharing on WANETs is 7DS [9] and used to
enable nodes browse the web with an intermittent
Internet connection, in which, whenever a node fails to
connect to the Internet, it can search the required data
among peers. Other works on file sharing in WANETs
like [1] and [3] are based on partial flooding where the
searches are carried basically by queries broadcasted
several hops ahead, and where flooding the entire
network is prevented by mechanisms like caching and

 3

selective routing. Such approaches work fine for small-
size WANETs but as the network gets bigger they cause
traffic overhead and the probability of finding a file in
the network reduces. Our system provides a
deterministic way to locate and access files, hence if a
file is shared in the WANET, its location can be
determined and it can be accessed.

III. SYSTEM OVERVIEW

The system expects three basic functionalities from
the underlying network layers:

• Device discovery
• Communication with nodes in the range
• Notification of link failure

Together with these functionalities the system makes
use of a fully distributed hash table where keys are the
names of the files to be shared and the values are the
globally unique locations of these files (MAC address of
the device together with the full path of the file on the
device may provide this uniqueness) together with
necessary routing information which will be described
soon. The basic dynamics of the system is as follows. A
one-dimensional space (i.e. a line) is used to store (key,
value) pairs by mapping each key to a point P on the
”hashline” using a uniform hash function. In fact, any
hash function that can map a file name to a real number
between 0 and 1 may be used for this purpose. However,
uniformity would lead to a more balanced information
distribution among the nodes. Each node in the WANET
is responsible for storing a segment of the hashline (i.e.
the hash table entries which correspond to points that are
included in this hashline segment).

We call the node which is responsible for the segment
of hashline containing a point P as P-Node, and the node
which stores a file with name F as F-Node. Hence a P-
Node stores index information along with location
information and an F-Node stores the actual file.

At the highest abstraction level, a file is accessed
following the steps listed below:

1. Name of the file to be searched is hashed to
determine a point P on the hashline.

2. P-Node is accessed.
3. The location of the searched file, F-node, and

the route to that location is determined from
P-Node.

4. F-Node is accessed, and the file is
downloaded.

These steps seem simple but determining routes
between nodes are the heart and distinguishing part of
the system. System is designed to cope with this problem
using a logical tree structure that is imposed on the

nodes of a WANET. The tree-structure helps in
accessing to P-Node, and the information obtained from
the P-Node helps in determining the route to F-Node
from where the file will be downloaded. Hence, although
the network may include loops at the link layer, loops
are not allowed in the layer at which P2P system is
implemented, which is usually the application layer.
While the network grows with the addition of new
members, a new member node is not permitted to join
the same file sharing enabled WANET via more than
one link (i.e. via more than one neighboring node). A
loop-free network can be achieved by providing a unique
network ID (e.g. MAC address of the root node) for each
file sharing enabled MANET and not allowing a node to
have more than one parent with the same network ID.

The next section describes the details of the design
along with the operations in the system.

IV. OPERATIONS OF THE SYSTEM

There are several basic operations supported by the
system to locate files and route the download to enable
file sharing. Node-Join operation is carried on when a
node is connected to a file sharing enabled WANET and
Network-Join is carried on when two file sharing
enabled WANETs are merged. Access2P-Node operation
is used to find and access the node which stores segment
of the hashline including a desired point P. Access2F-
Node operation is used to find and access the node which
stores a desired file with name F. Insert and Delete
operations are used to add a file to the network (i.e.
enable sharing) or remove a file from the network.
Recover operation is carried on to preserve the
consistency between the actual location of shared files
and the hash table storing the routing information when
a disconnection with an adjacent node is detected.
Finally Leave operation is carried on when a node
decides to leave the file sharing enabled WANET.

Some of the operations mentioned above include other
operations (e.g. Join includes Access2P-Node and
Insert). Detailed information about each operation is
given in the following subsections.

A. Node-Join
Whenever a node N decides to join a file sharing

enabled WANET, the following steps are executed:
1. N connects to an already existent node K of

the network, which is accomplished by the
underlying protocols specific to the WANET.

2. K assigns a portion of its segment of hashline
to N and passes related hash table entries to it.

3. N adds K to the routing path information

 4

maintained at each hash table entry for files
indexed at N before saving the hash table
entries.

4. N assigns K as its parent and K adds N to its
children list in the logical tree-structure.

5. N calls Insert operation for each file it wants
to share and whose hashed value is out of its
responsibility.

As it can be noticed, the hashline segment assigned to
the new node is not randomly determined. Instead, the
node, to which the new node directly connects, shares
some portion of its responsibility on the hashline (e.g.
half of it). This simple design is crucial for easy and
efficient routing of location queries to the nodes that can
answer them. The corresponding operation is described
in detail in section 4.3.

B. Network-Join
Let the nodes N and K be the members of two distinct

file sharing enabled WANETs, N-Net and K-Net
respectively, which are going to merge by N-K
connection. To obtain a larger file sharing enabled
WANET from two smaller ones, the following steps are
executed:

1. N and K decide on which one is going to
share its responsibility on hashline,
equivalently which one is going to be the
parent of other. (Say N is chosen as the one to
share its area of responsibility using some
decision criteria).

2. Every node of K-Net on the path from node K
to the root of K-Net (node with no parent),
exchanges the parent-child role with its
parent, including node K and the root of K-
Net. That is every node on the specified path
adds its former parent to its children list and it
becomes the parent of its former parent. In
this way, K becomes the new root of K-Net.

3. K is connected to N, hence N becomes the
parent of K.

4. Based on the new parent-child relationships
among K-Net nodes and N, starting from node
N each parent shares some portion of its
responsibility on the hashline with its
children, in an iterative manner.

5. Each node in K-Net calls Insert operation for
each file it wants to share.

C. Access2P-Node
Whenever a node N wants to access P-Node (i.e. the

node which is responsible for the segment of the
hashline containing point P), it invokes the Access2P-

Node operation. A node K receiving Access2P-Node
request follows these rules:

1. If point P is included by the segment of
hashline that K is responsible for: P-Node is
found and is K.

2. If point P is included by the segment of
hashline that one of the children of K is
responsible for: K adds itself to the route list
and forwards Access2P-Node request to the
relevant child node.

3. Otherwise: K adds itself to the route list and
forwards Access2P-Node request to its parent.

Note that initially N = K. Also note that the P-Node
finally has the routing information between the node
issuing Access2P-Node request (i.e. node N) and itself,
since each node on the path from N to P-Node adds itself
to the routing information carried inside the Access2P-
Node request.

D. Access2F-Node
Whenever a node N wants to access F-Node (i.e. the

node which contains the file with name F), it invokes the
Access2F-Node operation, which consists of the
following steps:

1. N hashes F and determines P, that is P =
hash(F).

2. Having point P, N invokes the Access2P-Node
operation with F-Node location request, that is
N asks P-Node the routing information from
P-Node to F-Node.

3. Having the route information back to N, due
to the feature of Access2P-Node, the P-Node
sends to N the route from itself to F-Node
(Remember that the route from P-Node to F-
Node is stored as part of the hash table entry
corresponding to point P).

4. N combines the route information from itself
to P-Node and from P-Node to F-Node and
constructs the route necessary to access the F-
Node.

E. Insert
Whenever a node N wants to share a file with name F,

it invokes the Insert operation, which consists of the
following steps:

1. N hashes F and determines P, that is P =
hash(F).

2. Having point P, N invokes the Access2P-Node
request with insertion as the request type and
F as the filename.

3. Upon receiving the request, the P-Node stores
the filename F and the route information back

 5

to N, which is obtained during Access2P-Node
operation, as part of the hash table entry
created.

F. Delete
Whenever a node N wants to stop sharing a file with

name F, it invokes the Delete operation, which consists
of the following steps:

1. N hashes F and determines P, that is P =
hash(F).

2. Having point P, N invokes the Access2P-Node
operation with deletion as the request type and
F as the filename.

3. Upon receiving the request, the P-Node
removes the entry for the file with name F
from the hash table.

G. Recover
Whenever a node N determines a disconnection with

one of its child nodes K:
1. N regains the responsibility of the segment of

hashline that K was responsible for.
2. N broadcasts to the WANET a message that

includes information about the regained
segment to force all the nodes to invoke Insert
operation again for the files whose hashed
names are included by the segment that K
used to be responsible for. In this way, node N
will have the hash table entries created for
these files.

Whenever a node K determines a disconnection with
its parent node N:

1. K takes full hashline as the area of
responsibility.

2. Starting from K each parent shares some
portion of its responsibility on the hashline
with its children.

3. Each node calls Insert operation for each file
it wants to share.

H. Leave
When a node N wants to leave the file sharing enabled

WANET, it invokes the Leave operation, which consists
of the following steps:

1. N invokes the Delete operation for each file it
shares after which all index information about
the files stored in N is removed from the
WANET.

2. N gives its responsibility on its segment of the
hashline to its parent.

3. N informs its parent PN and children C1, C2,
…, Cn about its departure to make sure PN

adds C1, C2, …, Cn to its children list and C1,
C2, …, Cn assign PN as their parent.

Note that the third step is possible only if all the
children of node N are in the communication range of
PN. For the children that are not in the communication
range of PN, Recover operation is executed.

Due to the nature of ad-hoc networks, nodes are not
expected to leave the network with notification. But it
may still be the case where Leave operation is beneficial.
Otherwise, Recover operation still handles the situation
despite its higher communication cost.

V. A SAMPLE SCENARIO

After specifying each operation supported by the
system, this part of the paper presents a sample scenario
in which the way that system works can be observed.
Suppose that initially two nodes called A and B meet. A
includes files A1, A2, while B has B1, B2, B3. B
discovers A, in other words, B joins the network, which
is only composed of A. Previously, A was responsible of
all hashline and files A1 and A2 were mapped on to this
line as depicted in Figure 1.a. As explained in 4.1, when
B is connected to A, A divides the entire hashline into
two and gives one of them to B. Since, A2 falls within
the segment that B is now responsible for, A sends the
location information (index information) for file A2 to
B. Previous location information for A2 was null,
meaning that the file was stored at the same node where
the location information is kept. But, from now on, B
stores an index entry for A2 with location information
like [A2, A]. Then B executes Insert operation for files
B1 and B2, since these are the files owned by B but they
are not mapped to the part of the hashline that B is
responsible for. Now, A stores location information, [B1,
B] and [B2, B], for these files as depicted in Figure 2.b.

Suppose that a new node C discovers B and connects
to it. Again a Node-Join operation will be invoked and
the hashline segment that B is responsible for will be
divided into two parts, as depicted in Figure 1.c. C stores
and shares files C1 and C2, which map to the points on
the hashline as shown in the figure. First of all, B sends
information about A2 to C, since A2 falls now in C’s
segment of responsibility. C should not only keep
information about the node where file A2 can be found,
but also keep path information about how it can be
reached from C to that node. Therefore, C adds also B to
the path information and stores an index entry like [A2,
BA]. This indicates that file A2 is stored at node A
(right-most node in the path) and the path from C to that
node is “AB”. Next, C invokes the Insert operation both

 6

for C1 and C2. C1 maps to the segment controlled by A
and C2 maps to the segment controlled by B. Therefore,
Access2P-Node request reaches to B for file C2, and to
A for file C1. So, corresponding nodes stores file names
together with their route information to the node where
files are actually stored. The route information is
obtained during the path traversals of the Access2P-
Node requests. The current state of location and routing
information that is maintained in the network can be
observed in Figure 2.c. As the last member of the
network, D discovers B and connects to it. B, again
divides the segment of hashline it is responsible for into
two parts and sends information about B3 to D. After
that, D sends information about a single file it owns, D1
to A using Insert operation. Final view of the hashline
and the network topology together with distributed index
information can be observed in figures 1.d and 2.d,
respectively.

(a)

(b)

(c)

(d)

Fig. 1. Hashline states during network formation

(a)

(b)

(c)

(d)

Fig. 2. Network Topology & Information Distribution

Now, assume that D needs file A2. D does not know

where the file A2 resides or even whether such a file
exists or not. However, according to the hash value of
the filename, it is known that this information is held by
another node. D has only one neighbor, B (as its parent)
to which the query is forwarded. So, B receives the
query, expressed as [A2, D], meaning that file A2 is
requested by D. B has two neighbors, A and C.
According to the hash value of the filename and the
current state of the hashline, B decides to forward the
query to C. This is because B knows that one of its
children, C in this case, is responsible for the segment of
the hashline that includes the point that represents the
hash value of the name of requested file. Otherwise, B
was going to forward the query to its parent, A. When
query is forwarded to C, it is not guarantied that it will
be answered by C. C may have some other nodes
connected to it meanwhile, so it may further forward the
query to one of its children again by looking within
which segment the point lies. However, it does not
matter for B whether C or some descendant of it answers
the query. B only knows that query should be forwarded

 7

towards C in order to be resolved. For this particular
case, C does not have any children and C holds the
location information for A2. The path to source at which
the query is initiated is also attached to the query. In this
way, C receives a query [A2, BD], which means that
node D requested file A2 and its request reached through
node B. This path is used in order to send the query
response (location information), [A2, BA], back to node
D. C generates a query response message, [A2, BA],
targeted to D and including the source route information
“CBD” that gives the path to be followed. C passes the
response to the next node on the path which is B. Again
by looking to the path information in the response
message, B passes the message to the next node on the
path, which is D. D is the originator of the query to
locate file A2. D receives the query response message
and the message includes the location information [A2,
BA]. Now, D knows that the file A2 is located at node A
and D also knows two paths: the path from D to C (the
node which holds the location information) and the path
from C to A (the node which stores the file). Node D
concatenates those paths (D-B-C-B-A) and then
eliminates the unnecessary loop B-C-B. The result is “D-
B-A”, the path from D to A. This is the path from query
originator D to the node A that stores and shares the file
A2. By means of this path, file A2 can now be directly
reached and downloaded from A. These steps are
depicted in figures 3.a through 3.c.

(a)

(b)

(c)

Fig. 3. File Search & Retrieval

As more nodes join to the file sharing enabled network

as explained in section IV.A, the tree-structure become
more involved. In Figure 4 a later phase of the WANET
shown in Figure 1 and Figure 2 is given. New nodes
have joined to the WANET in alphabetical order.
Connections between nodes can be inferred from the
tree-structure given in Figure 4.b. The state of the
hashline is shown in Figure 4.a.

(a)

(b)

Fig. 4. Before Network Join

Now, consider the case where the file sharing enabled

WANET in Figure 4 (WANET-1) merges with another
file sharing enabled MANET shown in Figure 5.a
(WANET-2) and assume that the connecting nodes are E
of WANET-1 and V5 of WANET-2. For such a merge
operation, Network-Join procedure, which is explained
in IV.B, is executed where nodes N and K in the
procedure correspond to the nodes E and V5 in this

 8

sample scenario, respectively. Due to the Step 2 of
Network-Join all nodes on the path from node V5 to the
root node V0, (i.e. V5, V2, V0) exchange their parent-
child relationships. The resulting parent-child
relationships are depicted in the subtree, rooted at V5, of
the combined network shown in Figure 5.b. Once the
subtree rooted at V5 is built, E shares a portion of its
responsibility on the hashline with V5. All descendants
of V5 share their responsibility on hashline in a similar
manner, iteratively. One possible distribution of
responsibilities on the hashline among the nodes of the
new combined tree is depicted in Figure 5.c. Note that
the resulting distribution may differ due to the order of
children that a parent shares its responsibility with.

(a)

(b)

(c)

Fig. 5. Network-Join

VI. FUTURE WORK

As a future work, first of all, we would like to
implement the system and make it practically work in a
real environment, a Bluetooth scatternet of a set of
pocket PCs, for instance. Secondly, some improvements
would be beneficial in order to overcome some
deficiencies that currently exist in our system. The most
crucial of all is the scenario in which a node at the core
of the network looses connection. In such a case, all
information located at the nodes that are connected later
to it, must be updated. Since interconnections are formed
based on parent-child relationships leading to a tree-
structure, the scenario is just like a case of a tree-shape
topology in which a node close to the root loses
connection and all its children must be updated in
reconnection.

VII. CONCLUSION

In this paper, we proposed a peer-to-peer system that
would enable file sharing in wireless ad-hoc networks.

Compared with central approaches, peer-to-peer
systems are much more suitable for wireless networks
for reliability and availability reasons. However, peer-to-
peer systems that are used today are specialized for wire-
line networks, namely the Internet. Although they
introduce neat solutions for the file sharing problem in
general, they make use of transport and network layers
of the Internet. In other words, by default, they have the
ability to look for a file at a specified address directly.
Besides, each node can receive or send files from/to
another one, directly. No doubt, the files do not reach
directly to the end system but intermediate routing
functionalities are handled by the underlying networking
layers.

In wireless networks, this is not the case. Each node is
only aware of its surrounding, i.e. the nodes in its range
of communication. In this paper, we propose a system,
which is able to find the location of a file in a WANET,
if such a file exists in any node of the network, and
which finds a way to bring the file from where it is
stored to where it is needed. The only functionality that
should be supported by the underlying WANET
protocols is to handle communication between any two
nodes that are in the range of each other. Routing of the
files is handled by the peer-to-peer system itself. Our
system also handles disconnections and reconnections
that may happen as a result of mobility or due to
problems in the wireless channel. As mentioned earlier,
in reaching to a solution, we adapt techniques from peer-
to-peer systems developed for wire-line networks as well

 9

as source routing techniques. By means of a “hashline”
and forming a tree- structure based on the topology of
the network, we are able both to distribute the index
information to the nodes of the system and maintain the
routing information between sources and destinations of
files, which make file sharing possible in WANETs.

REFERENCES
[1] A. Klemm, C. Lindemann, and O. Waldhorst, “A Special-Purpose Peer-

to-Peer File Sharing System for Mobile Ad Hoc Networks”, Proc. IEEE
Semiannual Vehicular Technology Conference (VTC2003-Fall),
Orlando, FL, October 2003.

[2] Bluetooth Special Interest Group. http://www.bluetooth.com.
[3] C. Lindemann, O. Waldhorst, “A Distributed Search Service for Peer-to-

Peer File Sharing in Mobile Applications”, Proc. 2nd IEEE Conf. on
Peer-to-Peer Computing (P2P 2002), Linköping, Schweden, 73-81,
September 2002.

[4] D.B. Johnson and D.A. Maltz, “Dynamic Source Routing in Ad-Hoc
Wireless Networks”, Proceedings of SIGCOMM’96, ACM, California,
USA, Aug., 1996.

[5] Elizabeth Royer, C.-K. Toh, A Review of Current Routing Protocols for
Ad Hoc Mobile Wireless Networks, IEEE Personal Communications,
April 1999.

[6] Fasttrack. http://www.fasttrack.nu.
[7] Gnutella. http://gnutella.wega.com.
[8] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.

Balakrishnan, “Chord: A scalable peer-to-peer lookup service
for Internet applications,” in Proceedings of the ACM
SIGCOMM ’01 Conference, San Diego, California, Aug. 2001.

[9] M. Papadopouli and H. Schulzrinne, “Effects of Power Conservation,
Wireless Coverage and Cooperation on Data Dissemination among
Mobile Devices”, Proc. ACM Symp. On Mobile Ad Hoc Networking &
Computing (MobiHoc 2001), ACM, Long Beach, CA, 2001.

[10] Napster. http://www.napster.com.
[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker, “A

Scalable Content-Addressable Network”, Proceedings of SIGCOMM’01,
ACM, California, USA, Aug., 2001.

