
www.elsevier.com/locate/comcom

Computer Communications 29 (2006) 2450–2457
A comparison of epidemic algorithms in wireless sensor networks q

Mert Akdere a, Cemal Çaǧatay Bilgin a, Ozan Gerdaneri a, Ibrahim Korpeoglu a,*,
Özgür Ulusoy a, Uǧur Çetintemel b

a Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey
b Department of Computer Science, Brown University, Providence, RI 02912, USA

Available online 3 March 2006
Abstract

We consider the problem of reliable data dissemination in the context of wireless sensor networks. For some application scenarios,
reliable data dissemination to all nodes is necessary for propagating code updates, queries, and other sensitive information in wireless
sensor networks. Epidemic algorithms are a natural approach for reliable distribution of information in such ad hoc, decentralized,
and dynamic environments. In this paper we show the applicability of epidemic algorithms in the context of wireless sensor environ-
ments, and provide a comparative performance analysis of the three variants of epidemic algorithms in terms of message delivery rate,
average message latency, and messaging overhead on the network.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Wireless sensor networks; Epidemic algorithms; Data dissemination; Performance evaluation
1. Introduction

Recent advances in digital and analog electronics and
wireless radio communications have enabled wireless sen-
sor networks to be used for many interesting and new
applications such as real-time remote monitoring and con-
trol, military surveillance, environmental monitoring,
healthcare management, and construction safety. The real-
ization of wireless sensor networks, however, poses a lot of
challenges in system and network design, algorithm and
protocol design, and query language and database design.
One such challenge in wireless sensor networks is efficient
and effective dissemination of information to all or a group
of sensor nodes in the network. This is not an easy task
since the number of nodes in a sensor network can be quite
huge and the environment is dynamic, i.e., nodes can die or
move, and thus topology can change constantly. Also
0140-3664/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2006.02.010

q This work is partially supported by The Scientific and Technical
Research Council of Turkey (TUBITAK) with grant numbers EEEAG-
103E014, 104E028, and 105E065.

* Corresponding author.
E-mail address: korpe@cs.bilkent.edu.tr (I. Korpeoglu).
depending on the application, the information to be dis-
seminated can originate at a single node, such as the base
station, or at multiple nodes, such as sensor nodes
themselves.

A class of algorithms, called epidemic algorithms, have
been successfully used in disseminating information in the
context of various other systems. These systems are usually
decentralized and distributed systems such as replicated
databases. The distributed and decentralized nature of
wireless sensor networks implies that the epidemic algo-
rithms can also be applied in the context of sensor net-
works. However, unlike the powerful computing devices
of today, sensor nodes in a sensor network are much
restricted in terms of computation power and communica-
tion capability.

The goal of this paper is to investigate the use and
performance of some classes of epidemic algorithms in
the context of wireless sensor networks for a specific
application scenario where all nodes are interested in
receiving information messages originating from sensor
nodes. Our evaluations are based on simulations, and we
have used the TOSSIM sensor network simulator for this
purpose. TOSSIM is an event-driven simulation tool; an

mailto:korpe@cs.bilkent.edu.tr


M. Akdere et al. / Computer Communications 29 (2006) 2450–2457 2451
application code written in the TOSSIM environment can
also work on real sensor nodes running TinyOS operating
system.

In a TOSSIM environment, we implemented three dif-
ferent types of epidemic algorithms: a pull-based algo-
rithm, a push-based algorithm, and a pull–push based
algorithm. We did extensive simulation experiments to
compare the performance of these three types of epidemic
algorithms. The performance metrics that we have used
for this comparison include message delivery rate, average
message latency, and the number of redundant messages
seen in the network.

The paper is organized as follows. In Section 2, various
forms of epidemic algorithms are explained and discussed
briefly. In Section 3, we outline the existing approaches
to dissemination of information in sensor networks. In Sec-
tion 4 we provide our methodology and in Section 5 we
provide our simulation results and the related discussions.
Finally, in Section 6 we give our conclusions.

2. Epidemic algorithms

Epidemic algorithms [1] are related to the theory of epi-
demics, which describes a theoretical model for the spread
of diseases. Epidemic algorithms follow the model of nat-
ure to spread information and define simple rules for infor-
mation to flow between nodes of a network. An epidemic

round (or cycle) is defined as the interval of time during
which two nodes exchange information. In each epidemic
round, a node chooses a communication partner. In our
study the choice of communication partner is done ran-
domly from the set of neighboring nodes.

Epidemic algorithms can be differentiated from each
other by their style of communication between neighboring
nodes. Following are the three main styles of communica-
tion used by epidemic algorithms:

• Pull based epidemic algorithms. A node asks a selected
neighbor for new information. The node will receive new
information only if the neighbor has new information.

• Push based epidemic algorithms. A node with new infor-
mation sends the information to a selected neighbor.

• Pull–push based epidemic algorithms. These algorithms
are a combination of the two models described above. A
node employing such an algorithm sends information to
a selected neighbor when it has some information avail-
able; it also asks and receives new information from the
selected neighbor if the neighbor has new information.

The information to be disseminated from a node is first
stored at a cache in the node. Even though the information
has been transmitted to a neighbor, it stays there for a
while before getting deleted. Each class of epidemic algo-
rithms can further be categorized with respect to the
scheme used in deciding when to delete the information
from the cache. The following are some schemes that can
be used for this purpose:
• Blind deletion scheme. A node deletes the information
message from its message cache based only on its inter-
nal node state and based on a predetermined probability
of deletion.

• Counter scheme. A node deletes an information message
after k rounds. The parameter k is the value of the
counter maintained at a sensor node.

• Coin scheme. A node deletes information with a proba-
bility of 1/k in each epidemic round. The parameter k is
the value of the counter maintained at a sensor node and
is decreased by one at every round.
3. Related work

Epidemic algorithms have been used in various applica-
tions and environments to disseminate information in a
robust manner. These applications include maintenance
of replicated databases [1], updating code changes [2], dis-
covering resources [3], and achieving ad hoc routing [4].
There is also data dissemination problem in the context
of computer networks and a work in this area is the Net-
work News Transfer Protocol [5]. Similar studies in wire-
less sensor networks area include SPIN [6] and directed
diffusion [7].

Some techniques to disseminate data in the context of
replicated databases for providing consistency are dis-
cussed in the work Epidemic Algorithms for Replicated
Database Maintenance [1]. These techniques include direct
mailing, anti-entropy, and rumor mongering. In direct
mailing, any change in a database is separately mailed to
all other databases. Obviously, this is a simple method
but it is inefficient in terms of the traffic incurred over the
network. In the anti-entropy technique, a database chooses
another database regularly to exchange data. This method
requires resolving the differences between two databases
and is therefore costly. In rumor mongering, when a data-
base receives an update for the first time, the update
becomes a ‘‘hot rumor’’. A database tends to deliver hot
rumors as much as it can. If a hot rumor is known by most
other databases, the algorithm stops spreading it. The anti-
entropy method was implemented on the Xerox Corporate
Network and resulted in impressive performance improve-
ments, both in maintaining consistency and in reducing
network traffic overhead [1].

Trickle [2] is a mechanism designed for propagating and
maintaining code updates in wireless sensor networks. In a
sensor network using this scheme, tasks of sensor nodes are
assigned through code updates, and all nodes in the net-
work will have the same code to execute. A new code is
propagated hop by hop to all nodes in the network. Since
wireless sensor nodes have limited energy, maintenance
costs of the code updates must be low. Another require-
ment is rapid propagation of updates, because some tasks
may have to be activated as soon as possible and newly
assigned tasks make the older ones obsolete. The update
process should also be scalable and should work in a
dynamic environment, which is the case for sensor net-



2452 M. Akdere et al. / Computer Communications 29 (2006) 2450–2457
works. The Trickle mechanism addresses all these issues by
self-regulation and by observing code changes using meta-
data information. The metadata can be considered as the
code summary of each sensor node, and the summary is
exchanged regularly by using a technique called polite
gossiping.

In ad hoc networks, since the topology may constantly
change, flooding and its variants can be a good alternative
for routing data messages from a single node to some other
nodes, or for routing route discovery messages that are
required during the route discovery phase of many ad
hoc routing protocols like DSR [8] and AODV [9]. Gossip-
ing [4] is also an alternative data dissemination strategy for
this environment. In gossiping, nodes decide whether to
forward a data message or not by looking to the result of
tossing a coin with a predetermined probability.

Directed diffusion [7] is one of the data dissemination
methods that is proposed for use in sensor networks.
Directed diffusion is an example of data-centric routing
where the content stored in a packet determines the route
of the packet. The content stored in a packet is represented
as a sequence of attribute–value pairs. A node that is inter-
ested in receiving data with some attributes indicates its
interest to the network and this interest is disseminated.
During this process, reverse paths are also set up. These
reverse paths are then used to direct the information from
the sensor nodes having the desired data towards the nodes
interested in the information.

Another work on data dissemination on sensor net-
works is sensor protocols for information via negotiation
(SPIN) [6]. It is an adaptive protocol and it tries to over-
come some problems of flooding and gossiping based pro-
tocols. The main problems associated with flooding and
gossiping are: implosion (i.e., a node is forced to get infor-
mation twice from two different nodes), overlapping (i.e., a
node is forced to get some subset of the information twice
from two different nodes because of their overlapping
regions), and resource blindness (i.e., nodes do not adopt
energy saving schemes) [6]. SPIN uses data descriptors
called meta-data for negotiation. These descriptors are
smaller in size than actual data. In this way the overhead
on the network is reduced both in terms of bandwidth
and energy consumption.

The studies mentioned above are concerned with infor-
mation dissemination in ad hoc and dynamic environments
and in providing some schemes for efficient and effective
dissemination of information in these kind of environ-
ments. There are also studies about the performance eval-
uation of the suggested schemes. A study similar to our
work was conducted by Ganesan et al. [10]. In that study,
empirical analysis of flooding is done for large scale multi-
hop wireless sensor networks. The work also shows the
effects of various layers of the protocol stack on the com-
plexities of flooding as an epidemic algorithm. For this pur-
pose, the authors define useful metrics for each layer. The
metrics include providing some statistics on packet loss,
effective communication range and link asymmetry for
physical and link layers, contention rate, collusion ratio
and latency for the MAC layer. The structures of routing
trees constructed as a result of flooding technique are
examined to analyze their effects on network and applica-
tion layer performance. The results have implications for
algorithm design and measurement. One of the conclusions
states that simple protocols like flooding may incur unan-
ticipated complexity due to the complex physical world.
Another conclusion states that it is useful to make vertical-
ly integrated measurements to understand the contribution
of the physical, medium access control, and application
layers to application behavior. An interesting result also
explains that the designed algorithms should use a probabi-
listic abstraction to model the connectivity in an ad hoc
network. The last important conclusion is that protocols
must be robust to asymmetry, because asymmetry is an
expected issue in those environments. The work presented
in [10] focuses on a simple epidemic algorithm, flooding.
However, in this paper we are focusing on the performance
of other epidemic algorithms.

4. Methodology and simulation model

We have evaluated the use of different types of epidemic
algorithms in wireless sensor networks through simula-
tions. For this purpose, we have used the TOSSIM simula-
tor [11,12]. We have implemented the epidemic routing
protocols in nesC, which is the programming language of
TinyOS [13].

TOSSIM is a bit-level simulator for TinyOS applications
and it can simulate the entire TinyOS network stack. Tiny-
OS [14] is an operating system designed for wireless sensor
nodes. TOSSIM can compile directly from the TinyOS
application code and in this way can enable code written
for real sensor nodes to be used for simulations as well.
We also used TinyOS’s scripting language, Tython [15],
during the development and running of our simulations.
Tython was helpful in setting up the test scenarios.

We have used the following metrics in comparing three
types of epidemic algorithms: message delivery rate, mes-
sage latency, and messaging overhead. We have observed
the values of these metrics depending on the values of the
following factors: maximum transmission range of sensor
nodes, number of sensor nodes, buffer size in a sensor node,
and epidemic interval length.

The scenario that we have used in our simulation
experiments consists of a grid, covered with wireless sen-
sor nodes. The grid structure used is a square with length
of one side equal the square-root of the number of nodes
used in the experiment. There is at most one node placed
per grid cell. Each cell in the grid is a 10 · 10 unit2.
Periodically, a randomly selected sensor node generates
an information message to be disseminated to all other
nodes in the network. We assume that only one node at
a time generates new information. We also assume that
all nodes in the network are interested in receiving the
new information.



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Delivery Rate of Algorithms

time (sec)

D
el

iv
er

y 
R

at
e

pull
push
pull&push

Fig. 1. Delivery rate of three different type of epidemic algorithms: pull
based, push based, and pull–push based.

M. Akdere et al. / Computer Communications 29 (2006) 2450–2457 2453
We have involved three different transmission ranges for
the sensor nodes in our simulation experiments: 10, 15, and
20 units. We have used the disc radio model provided by
TinyOS in defining the range of a sensor node. In this mod-
el, a mote receives messages from and sends messages to
other motes within its communication range without any
error. The transmission range is specified as the radius of
this disc. With a transmission range of 10 units and a grid
topology of 10 · 10 for each cell, only the adjacent nodes
hear each other. With a transmission range of 15 units,
the nodes at the corners of each other can also hear each
other. That is, with a radius of 10 units a sensor node has
a maximum of four neighbors (left, right, up, and down),
whereas with a radius of 15 units a sensor node has a max-
imum of eight neighbors. We have used the default MAC
layer protocol in TOSSIM, CSMA, which introduced mes-
sage drops due to collisions during the simulations.

In our application scenario, a randomly selected sensor
node generates a new information message every 6 s. A
new information message is generated periodically between
18 and 120 s of the simulation lifetime. When the cache of
a node is full and a new message arrives at the node (or the
node generates a new message), one of the existing messages
in the cache is deleted and the new message is put into this
place.

Unless otherwise stated, we have used the counter based

cache item deletion scheme with a counter of 4, an epidemic
interval of 2048 ms, a buffer size of 8 messages, and a neigh-
bor cache size of 15 entries. In the neighbor cache, we keep
information about the neighboring nodes. Neighbor cache
provides a list of neighbors from which a communication
partner can be selected. The information in a neighbor
cache entry includes the id of neighbor node, and some
other node specific information. The epidemic interval spec-
ifies the length of one round of information exchange in the
epidemic algorithm. In every epidemic round, each node
selects a random time at which it executes the epidemic algo-
rithm by pulling or pushing data from its neighbor nodes.

Our scenario, of course, is a scenario that can be valid
for some type of applications, but definitely not for all.
There are certainly other sensor network application sce-
narios where not all nodes but only a small subset of them
are interested in a data item generated by a sensor node.
There are also application scenarios where more than one
node can generate information messages at the same time.
For this paper we have focused on a single application sce-
nario and evaluated the three epidemic algorithms for this
single sample scenario. We basically aim to study the rela-
tive performance of these algorithms in a sensor network
for the application scenario that we have used in this paper.

5. Simulation results

In the experiments, we first observed the delivery rate
and message latency for the three types of epidemic algo-
rithms over the course of the simulation period. We define
the delivery rate as the percentage of nodes that received an
information message. In finding this value, we take the
average over all information messages disseminated in the
network during a given time interval.

The average message latency is defined as the average
amount of time between the start of disseminating a data
item and its arrival at a node interested in receiving the
data. Since some messages may not arrive at some nodes,
their latency is set at infinity and we do not consider those
messages in the calculation of the average message latency.

We compute the values of these metrics in a scenario
where the number of nodes is 50 and the transmission
range of nodes is 15 units. Fig. 1 shows the observed deliv-
ery rate of the three types of algorithms with respect to the
simulation time, and Fig. 2 displays the average message
latency of the algorithms.

The results show that the push-based epidemic algo-
rithm starts the dissemination faster than the pull-based
algorithm. This is understandable since we have a singe
source injecting a new packet to the network at a given
time. As time passes, however, the pull based algorithm
reaches a faster delivery rate than the pull–push based algo-
rithm and close to the delivery rate of the push based algo-
rithm. When enough simulation time has passed and the
delivery rate becomes stabilized, we see that the push based
algorithm performs slightly better than the pull based algo-
rithm but the difference is not very significant.

Fig. 1 also shows that the delivery rate of the pull–push
based algorithm is much less than to the delivery rate of the
pull and push based algorithms. We think that this result is
due to the buffer management strategy used during a mes-
sage exchange operation in the pull–push based algorithm.
In the pull phase of the pull–push based algorithm, the
messages that will be sent in the push phase may be over-
written because of buffer overflow. This causes a reduction
in the delivery rate of the pull–push based algorithm.



pull push pull_push
0

20

40

60

80

100

120

140

160

180
Latency of Epidemic Algorithms

La
te

nc
y(

se
c)

Algorithms

Fig. 2. Message latency of the three different types of epidemic algorithms.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (sec)

D
el

iv
er

y 
R

at
e

Scalability of Pull

10 node
20 node
50 node 

Fig. 3. Delivery rate of pull based algorithm with respect to the number of
nodes in the network.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (sec)

D
el

iv
er

y 
R

at
e

Scalability of Push

10 node
20 node
50 node

Fig. 4. Delivery rate of push based algorithm with respect to the number
of nodes in the network.

2454 M. Akdere et al. / Computer Communications 29 (2006) 2450–2457
The delivery rate of messages, however, is not 100% for
any of the algorithms, as opposed to the observation of
Vahdat and Becker [16]. They report a 100% delivery rate
since they assume a buffer size of 2000 and dissemination
of a total of 1980 messages. Under this situation, no dele-
tion is required.

Fig. 2 shows the average message latency of the algo-
rithms. The figure shows that the latency of the pull–push
based algorithm is the lowest; the latency values should be
interpreted together with the delivery rates. The pull and
push algorithms have high delivery rates and it is reasonable
for them to have high latencies since they distribute informa-
tion for a longer time. However, the pull–push based algo-
rithm exhibits a lower delivery rate which means that it
stops disseminating information quicker. As a result, the
observed latencies are lower for the pull–push based algo-
rithm. In addition, the pull–push based algorithm can
disseminate information faster since both parties in commu-
nication can send and receive information at the same time.
The figure also shows that the push-based algorithm has
lower latency than the pull-based algorithm. This is also
expected since the push-based algorithm can exchange data
immediately when data is available, and in this way available
data can reach neighbors and other nodes more quickly.

We have also investigated the reaction of the algorithms
to the size of the network. For this experiment, we have set
the transmission range of each node to 15 units and chan-
ged the size of the network to 10, 20, and 50 nodes. The
nodes are again placed on a grid. Figs. 3–5 display the
observed delivery rate for each of these algorithms for dif-
ferent network sizes. We can see that as the number of
nodes increases, both pull based and push based algorithms
attain similar delivery rates, whereas the pull–push based
algorithm’s delivery rate is much less. This suggests that
for some type of applications using the scenario we have
defined in this paper, pull-based and push-based algo-
rithms can perform better when the number of nodes is
increased in a sensor network. In other words, they are
more scalable to the size of the network.

It is also important to investigate the bandwidth over-
head of the epidemic algorithms over the network they
are running. The bandwidth overhead can be due to vari-
ous reasons: large packet headers, retransmissions, flood-
ing, or control messages required during the exchange of
data between nodes, etc.

The epidemic algorithms we use in the paper first resolve
the differences between the data available at two nodes that
would like to exchange data, and then the data is
exchanged. In this way, a node does not receive an infor-
mation message that it already has. This reduces the num-



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (sec)

D
el

iv
er

y 
R

at
e

Scalability of Pull_Push

10 node
20 node
50 node

Fig. 5. Delivery rate of pull–push based algorithm with respect to the
number of nodes in the network.

M. Akdere et al. / Computer Communications 29 (2006) 2450–2457 2455
ber of redundant data messages in the network. But there is
still bandwidth overhead due to the control messages used
in epidemic rounds, while data messages are exchanged
between neighbors. For example, the pull based and pull–
push based algorithms periodically check for a new data
message from a neighboring node even if they are fully
synchronized.

Therefore, rather than relating the redundancy in the
network to the unnecessary data transmissions, we relate
the redundancy to the total number of messages transmit-
ted in the network. Fig. 6 presents the overhead observed
for various transmission ranges for 50 nodes. We see that
tx10 tx15 tx20
0

5

10

15

20

25

30

Transmission Range

O
ve

rh
ea

d

Overhead of Epidemic Algorithms

pull
push
pull_push

Fig. 6. Overhead of pull based, push based, pull–push based epidemic
algorithms in terms of number of redundant messages they cause to be
transmitted in the network.
the pull–push based algorithm has the least overhead com-
pared to the others. This is because after resolving the dif-
ference, the pull–push based algorithm can send and
receive more data messages. In pull or push based algo-
rithms, however, data messages flow only in one direction.
This behavior allows the pull–push based algorithm to syn-
chronize faster than the others, and therefore the overhead
of the pull–push based algorithm is less than the others.
From the same figure we also see that the push based algo-
rithm performs better than the pull based algorithm in our
application scenario since the push based algorithm does
not have to periodically poll neighbors for new message
availability. The pull based algorithm on the other hand
periodically checks to see if there is any new data available
from its neighbors and therefore introduces more
overhead.

We also wanted to see the impact of transmission range
on the delivery rate of the algorithms. Fig. 7 shows the
delivery rate of the algorithms for three different transmis-
sion ranges: 10, 15, and 20 units. Again the scenario
involves 50 nodes deployed on a grid.

We observed that the delivery rate of each epidemic
algorithm improves as the transmission range increases.
For push based epidemic algorithms, for example, the
delivery rates are 73%, 79%, and 89% for transmission
ranges of 10, 15, and 20 units, respectively. As the trans-
mission range increases, the connectivity of a node (i.e.,
the number of its neighbors) increases as well. And as the
number of neighbors of a node increases, the delivery rate
also increases. This is because the probability of a node
receiving a message is higher when there are more neigh-
bors. However, the contention in the network and the
power consumption also increase with increasing transmis-
sion range. As a result, transmission range should be opti-
mized with respect to the application scenarios.
tx10 tx15 tx20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Transmission Range

D
el

iv
er

y 
R

at
e

Delivery Rate vs Transmission Range

pull
push
pull_push

Fig. 7. Effect of transmission range on delivery rate of three types of
epidemic algorithms.



Buffer Size and Epidemic Interval Length

Epidemic Interval Length

D
el

iv
er

y 
R

at
e

100

80

60

40

20

0
1024 2048 4096 6144

buffer size 4

buffer size 8

Fig. 9. The relation between the buffer size in a node and the length of the
epidemic round during which a data exchange can be performed between
two nodes.

2456 M. Akdere et al. / Computer Communications 29 (2006) 2450–2457
We have also investigated the effect of buffer size on the
performance of the epidemic algorithms. We do not expect
sensor nodes to have much memory and therefore the buff-
er capacity is a very precious resource; it can affect perfor-
mance in terms of the delivery rate, since a message may
have to be deleted when a buffer becomes full. To observe
the effect of buffer size, we have taken measurements for
three different buffer sizes: 4, 8, and 10. We have fixed
the transmission range at 15 units, and the number of
nodes in the network has been set to 20.

As can be seen in Fig. 8, we have a better delivery rate
for all of the algorithms as the buffer size increases. How-
ever, the difference is more pronounced for the pull based
and push based algorithms.

We have observed that there is also a relationship
between the buffer size and the length of the epidemic inter-
val. This observation has been obtained with the push based
epidemic algorithm. In Fig. 9, results for the push-based epi-
demic algorithm with 4 and 8 message buffer sizes are pro-
vided for the following epidemic interval lengths: 1024,
2048, 4096, and 6144 ms. We have observed that with a buff-
er size of 8, the maximum delivery rate is 94% at 2048 ms
interval length. However, we have had a maximum delivery
rate of 70% with a buffer size of 4 at 1024 ms. We can draw
the following conclusions from the results of these experi-
ments. First, with a fixed buffer size, epidemic interval
length has a specific value for which the delivery rate is max-
imum. For example, with a buffer size of 4, 1024 ms is the
optimum epidemic interval length. Second, with larger buff-
er sizes, the optimum value of epidemic interval length is
larger. For example with a buffer size of 8, the value is
2048. This means that if we want to extend the epidemic
interval length to consume less power, and at the same time
maintain a high delivery rate, we might extend the buffer
size. Therefore, we can conclude that with a larger buffer
4 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Buffer Size

D
el

iv
er

y 
R

at
e

Effect of Buffer Size

pull
push
pull_push

Fig. 8. Effect of the buffer size in sensor nodes on the delivery rate of the
algorithms.
size we can extend the interval length and still obtain similar
delivery rates compared to lower buffer sizes.

6. Conclusions

In this study, we have made a comparative analysis con-
cerning the performance of epidemic algorithms in the con-
text of wireless sensor networks. Our results show the
applicability of epidemic algorithms in this context.

The experiment results show that the pull based and
push based algorithms perform better than the pull–
push based algorithm in terms of delivery rate and
scalability. The weak performance of the pull–push
based algorithm observed in our simulations is in con-
trast to its good performance in some other application
domains like replicated databases. We believe that the
restricted memory resource of sensor devices is the cause
of the relatively poor performance of the pull–push
based algorithm.

As future work, we are planning to compare epidemic
algorithms against protocols like SPIN which exploit
the broadcast nature of the wireless medium. Another
possible research direction is the investigation of power
consumption by the epidemic algorithms discussed in this
paper.

References

[1] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H.
Sturgis, D. Swinchart, D. Terry, epidemic algorithms for replicated
database maintenance, in: Proceedings of the Sixth ACM Symposium
on Principles of Distributed Computing, Vancouver, Canada, August
1987.

[2] P. Levis, N. Patel, D. Culler, S. Shenker, Trickle: a self-regulating
algorithm for code maintenance and propagation in wireless sensor
networks, in: First USENIX/ACM Symposium on Network Systems
Design and Implementation (NSDI), 2004.

[3] D. Johnson, Routing in ad hoc networks of mobile hosts, in:
Proceedings of the IEEE Workshop on Mobile Computing Systems
and Applications, December 1994.

[4] L. Li, J. Halpern, Z. Haas, Gossip-based ad hoc routing, in:
Proceedings of the 21st Conference of the IEEE Communications
Society (INFOCOM’02), 2002.

[5] Network News Protocol, RFC 967.



M. Akdere et al. / Computer Communications 29 (2006) 2450–2457 2457
[6] J. Kulik, W. Rabiner, H. Balakrishnan, Adaptive protocols for
information dissemination in wireless sensor networks. Proceedings
of the Fifth ACM/IEEE Mobicom Conference, Seattle, WA, August
1999.

[7] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin,
Directed diffusion: a scalable and robust communication paradigm
for sensor networks, in: Proceedings of the Sixth Annual ACM/IEEE
International Conference on Mobile Computing and Networking
(Mobicom’2000), Boston, MA, August 2000.

[8] D.B. Johnson, D.A. Maltz, Dynamic Source Routing in Ad hoc
Wireless Networks, Kluwer Academic Publishers, Dordrecht,
1996.

[9] C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance vector
routing, in: Proceedings of the Second IEEE Workshop on
Mobile Computing Systems and Applications, February 1999,
pp. 90–100.

[10] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, S.
Wicker, An empirical study of epidemic algorithms in large scale
multihop wireless networks, UCLA Computer Science Department,
Technical Report UCLA/CSD-TR-02-0013, 2002.

[11] P. Levis, N. Lee, TOSSIM: a simulator for TinyOS Networks,
September 17, 2003.

[12] P. Levis, N. Lee, M. Welsh, D. Culler, TOSSIM: accurate and
scalable simulation of entire TinyOS applications, in: Proceedings of
the First ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2003.

[13] nesC 1.1 Language Reference Manual David Gay, Philip Levis, Eric
Brewer, David Culler, May 2003.

[14] The TINYOS web site. Available from: <http://www.tinyos.net/>.
[15] Tython: Scripting TOSSIM Michael Demmer and Philip Levis,

February 5, 2004.
[16] Amin Vahdat, David Becker, Epidemic routing for partially connect-

ed ad hoc networks, Technical Report, Duke University, April 2000.
Available from: <http://issg.cs.duke.edu/epidemic/>.

Mert Akdere received his B.S. in Computer
Engineering from Bilkent University, Turkey in
2005. He is currently a Ph.D. student in the
Department of Computer Science at Brown Uni-
versity. His studies focus on data management
issues in distributed information systems and
design and analysis of distributed computing
infrastructures.
Cemal Çaǧatay Bilgin received his B.S. in Com-
puter Engineering from Bilkent University, in
2005. He is a Ph.D. student in the Department of
Computer Science at Rensselaer Polytechnic
Institute. His current research interest is auto-
mated cancer diagnosis.
Ozan Gerdaneri received his B.S. in Computer
Engineering from Bilkent University, Turkey in
2005. He is currently an M.S. student in the
Department of Computer Engineering at Bilkent
University. He is also working at Siemens PSE,
Turkey, as a software engineer. His studies focus
on parallel and distributed computing.
Ibrahim Korpeoglu received his Ph.D. and M.S.
degrees from University of Maryland at College
Park, both in Computer Science. He is currently
an Assistant Professor in the Computer Engi-
neering, Department of Bilkent University,
Ankara, Turkey. Prior to joining Bilkent Uni-
versity, he also worked in Ericsson, IBM T.J.
Watson Research Center, Bell Laboratories, and
Telcordia Technologies, in USA. He has served
on the program committees of several conferences
and published numerous papers in the area of

networking. His research interests include wireless ad hoc and sensor

networks, P2P networks, Bluetooth, and mobile computing.

Özgür Ulusoy received his Ph.D. in Computer
Science from the University of Illinois at Urbana-
Champaign. He is currently a Professor in the
Computer Engineering Department of Bilkent
University in Ankara, Turkey. His research
interests include web querying, multimedia data-
base systems, data management for mobile sys-
tems, and real-time and active database systems.
Prof. Ulusoy has served on numerous program
committees for conferences and he was the pro-
gram cochair of the International Workshop on
Issues and Applications of Database Technology that was held in 1998. He
coedited a special issue on Real-Time Databases in Information Systems
journal and a special issue on Current Trends in Database Technology in
the Journal of Database Management. He also coedited a book on Cur-
rent Trends in Data Management Technology. He has published over 70
articles in archived journals and conference proceedings.

Uǧur Çetintemel is an Assistant Professor of
Computer Science at Brown University. His work
focuses on the architecture and performance of
distributed information systems and databases.
Dr. Çetintemel has published numerous papers in
leading databases and systems conferences, pri-
marily in the areas of data stream processing, dis-
tributed data storage, and replication. He won the
prestigious CAREER award from the National
Science Foundation in 2004. Dr. Çetintemel
received his doctorate degree in Computer Science

from the University of Maryland, College Park and his undergraduate and

masters degrees in Computer Engineering from Bilkent University, Ankara.

http://www.tinyos.net/
http://issg.cs.duke.edu/epidemic/

	A comparison of epidemic algorithms in wireless sensor networks
	Introduction
	Epidemic algorithms
	Related work
	Methodology and simulation model
	Simulation results
	Conclusions
	References


