
Research Article
A Wi-Fi Cluster Based Wireless Sensor Network Application
and Deployment for Wildfire Detection

Alper Rifat Ulucinar,1 Ibrahim Korpeoglu,1 and A. Enis Cetin2

1 Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey
2Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, 06800 Ankara, Turkey

Correspondence should be addressed to Alper Rifat Ulucinar; ulucinar@cs.bilkent.edu.tr

Received 10 April 2014; Accepted 3 September 2014; Published 20 October 2014

Academic Editor: Wen-Hwa Liao

Copyright © 2014 Alper Rifat Ulucinar et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We introduce the wireless sensor network (WSN) data harvesting application we developed for wildfire detection and the
experiments we have performed.The sensor nodes are equippedwith temperature and relative humidity sensors.They are organized
into clusters and they communicate with the cluster heads using 802.15.4/ZigBee wireless links. The cluster heads report the
harvested data to the control center using 802.11/Wi-Fi links. We introduce the hardware and the software architecture of our
deployment near Rhodiapolis, an ancient city raising on the outskirts of Kumluca county of Antalya, Turkey.We detail our technical
insights into the deployment based on the real-world data collected from the site.We also propose a temperature-based fire detection
algorithm and we evaluate its performance by performing experiments in our deployment site and also in our university. We
observed that our WSN application can reliably report temperature data to the center quickly and our algorithms can detect fire
events in an acceptable time frame with no or very few false positives.

1. Introduction

The Firesense (fire detection and management through a
multisensor network for the protection of cultural heritage
areas from the risk of fire and extreme weather conditions,
FP7-ENV-2009-1244088-FIRESENSE) project is a 3-year-
long STREP aiming to develop an early warning system to
protect areas of archaeological and cultural interest from the
risk of fire and extreme weather conditions [1]. Protecting
archaeological and cultural sites that are surrounded by
forests fromwildfires is one of themost important goals of the
developed system. The system provides reactive protection
from wildfires by the early detection of the fire from the time
of ignition. In order to achieve this goal, a wireless sensor
network capable of sensing ambient temperature and relative
humidity is used together with a network of both visible and
infrared (IR) cameras. Data from the sensors and the smoke
and fire detection software arrive at the data fusion module
which decides whether there is a fire or not at the monitored
area. One of the pilot sites where the developed system is
deployed is the ancient city of Rhodiapolis. Rhodiapolis lies

on the outskirts of Kumluca, Antalya, Turkey. For Rhodiapo-
lis deployment, we have developed WSN software to collect
and process sensor data and make it available for external
querying and analysis. In this paper, we will detail our WSN
software together with the hardware components used. We
will detail our network architecture and we will give temper-
ature and humiditymeasurements from the site together with
other measurements related to the lifetime of the WSN.

We also designed and implemented a fire detection
algorithm that takes the sensed data as input and raises an
alarm when a fire is detected. We tested our algorithms with
the temperature data collected fromRhodiapolis andwith the
temperature data collected during outdoor fire experiments.
We observed that the algorithm can successfully detect fires
with no false positives.

The rest of the paper is organized as follows. In Section 2,
we briefly discuss the related work on test-based fire moni-
toring with wireless sensor networks. In Section 3, we detail
the network architecture used by our sensor network. In
Section 4, we introduce the relevant hardware components
used in Rhodiapolis for realizing the network architecture.

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2014, Article ID 651957, 12 pages
http://dx.doi.org/10.1155/2014/651957

http://dx.doi.org/10.1155/2014/651957

2 International Journal of Distributed Sensor Networks

Wi-Fi/ZigBee
Cluster head (2)

8
0
2
.1
1g link

Temperature
Humidity

sensor node
Internet

Broadband
modem

GSM
tower

3G link

Wi-Fi
access
point

Control
RDBMSCenter

3G
NAT router

Ethernet/ZigBee
Cluster head (3)

Ethernet/ZigBee
Cluster head (1)

802.3 (Ethernet)

802
.15

.4

link

Figure 1: WSN network architecture.

In Section 5, we detail the software components of the system
and explain the interaction between them. We also present
our fire detection algorithm that is run at the control center.
In Section 6, we report on some real-world data we collected
from the site and we discuss the performance of our system
and our fire detection algorithm. Finally in Section 7, we
conclude the paper.

2. Related Work

In previous work, wireless sensor networks (WSN) have
been considered as an efficient alternative to satellite based
monitoring [2, 3] for the early detection of wildfires. The
proximity of the sensors to the monitored fuel gives WSNs
great advantage to meet the timeliness and accuracy con-
straints over other fire monitoring technologies, such as
satellites.

In [4, 5], the authors propose a cluster based WSN
paradigm for real-time detection of forest fires. They employ
Chipcon CC2430 based ZigBee sensor nodes equipped with
relative humidity and temperature sensors. Sensor data col-
lected by the cluster heads is delivered via network coordina-
tors to the gateway (router) nodes which are responsible for
delivering the data to the monitoring computer.

In [6], Yu et al. propose a cluster based WSN paradigm
with a neural networks based method for in-network data
processing and evaluate the performance of the proposed
system via simulations.

In [7], the authors describe the system architecture and
the software and hardware framework of a WSN for wildfire
monitoring. The sensor nodes used in this study are Mica2
motes withMTS400 sensor boards.The authors list field tests
for the system among their plans of future work.

We have realized a very flexible WSN deployment for
monitoring and early detection of wildfires using COTS

(commercial off-the-shelf) hardware components. The sen-
sor data from the site and the derived alarm data are exposed
to the outside world through an XML web service we have
implemented. We have also designed and implemented a
new temperature-based fire detection algorithm that can
timely detect fire events. The parameters of the algorithm are
optimized for low false positive rate and high probability of
detecting fire events.

3. Network Architecture

A cluster based topology is used by the WSN. There are two
types of nodes: cluster heads and sensor nodes. Sensor nodes
are connected to cluster heads with ZigBee links. The cluster
heads can be heterogeneous in hardware. Since the sensor
nodes communicate with ZigBee radios, each cluster head
must have at least one ZigBee radio used to talk to sensor
nodes in its cluster. In order to communicate with the control
center (CC), a cluster head can use any appropriate interface
such as WiFi, Ethernet, 3G modem, or a combination of
these as depicted in Figure 1. There are no intracluster or
intercluster multihop communications in the WSN network
we deployed in Rhodiapolis. All sensors report sensor data
to their designated cluster heads in one hop and all cluster
heads report their gathered data to the control center in one
hop. Therefore, one can expect minimal network delays in
this architecture. However, multihop communication can be
supported for some other cases and for other deployment
sites with multihop routing protocols such as OLSR [8, 9] or
AODV [10, 11].

Figure 1 depicts our deployment inRhodiapolis.There are
three clusters each consisting of a cluster head and associated
sensor nodes. Sensor nodes are capable ofmeasuring ambient
temperature and relative humidity. A cluster head operates as
the ZigBee network coordinator and each of the sensor nodes

International Journal of Distributed Sensor Networks 3

in the cluster operates as a ZigBee end device. The sensor
nodes of a cluster report data to their respective cluster head
in one hop. The cluster head for each sensor is determined
at deployment time. We use ZigBee PAN ids to discriminate
the clusters from each other. Each cluster head uses a distinct
PAN id. And each sensor is configured, at deployment time,
with the PAN id of the cluster it is planned to join.

As indicated in Figure 1, cluster head 1 is equipped with
an Ethernet network interface card (NIC). It resides on the
same LAN as the control center and it sends the gathered
sensor data to the control center via the Ethernet bus. The
second cluster is located far away from the control center and
so cannot reside on the same Ethernet LAN as the control
center. Hence, cluster head 2 uses a Wi-Fi link to send sensor
data to the control center via an access point (AP). The AP
is configured in bridge mode, so it basically extends the
wired LAN with the wireless LAN (WLAN). Finally, cluster
head 3 is equipped with an Ethernet NIC which it uses to
communicatewith a 3GGSMNATrouter.The3GNATrouter
is connected to the Internet via a 3GGSM link.On the control
center side, there exists a broadband modem which connects
the control center to the Internet. Hence, cluster head 3 is
able to send the gathered sensor data to the control center
via Internet.

TheWSN does not currently support queries. The sensor
nodes are programmed to report sensor data periodically to
their cluster heads. However, control center can issue other
commands to the sensor nodes. For instance, it can specify
the transmit period (TXT) which determines the interval
between two successive reports of the sensor node. Or it
can specify the measure interval (MSI) which determines
the interval between two successive samplings of the sensor
node. The control center can set or get any of the parameters
specified in the ZBS-120/121 interface control document
[12] including TXT and MSI values. Hence, data flow is
bidirectional between the sensors and the control center.This
issue will be detailed further in Section 5.

4. Hardware Architecture

The ZigBee sensor nodes deployed on the site are Pikkerton
ZBS-120/RH sensors [13]. These modules are ruggedized for
outdoor deployment. They operate on the 2.4GHz ISM band
and have an outdoor line-of-sight transmission range of up
to 120m. Some of the Pikkerton nodes are equipped with
both temperature and humidity sensors whereas others are
equipped with only a temperature sensor. The ZigBee radio
modules used on the Pikkerton sensor nodes are Digi’s XBee
S2OEMRFmodules [14].These are low power radiomodules
designed to prolong battery lifetimes. When the boost mode
is enabled, the transmit power output for these modules is
3 dBm and when the boost mode is disabled, it is 1 dBm.

As part of the cluster-head hardware, we use Digi’s XStick
ZBUSBadapters [15].These adapters have an outdoor line-of-
sight range of 50m.TheRFdata rate is 250Kbps and the serial
interface data rate is 115.2 Kbps. This adapter interfaces the
ZigBee network on the cluster head. The XStick ZB adapters
we are using employ FTDI USB converter chips and basically
they are virtual serial ports to the cluster-head modules.

A cluster-head module communicates with the ZigBee net-
work via this virtual serial port.

XBee S2 modules support three operational roles in the
ZigBee network: coordinator, router, and end device. Since
we use the XStick ZBUSB adapters in the cluster heads as our
coordinators, we configure theXBee S2modules as end devices
and no ZigBee radio is configured as a router. This forms
the star topology ZigBee network that we have discussed in
Section 3.

The cluster-head hardware consists of, apart from the
XStick ZB USB adapter, a PC Engines Alix2d2 system board
[16]. The Alix.2 series system boards have 2 Ethernet/2 mini-
PCI or 3 Ethernet/1 mini-PCI ports. The Alix2d2 boards
we are using are equipped with 2 Ethernet interfaces, 2
mini-PCI ports, 1 CompactFlash socket, and 2 USB ports,
with a 500MHz AMD Geode LX800 CPU and 256MB
of RAM. The operating system image is stored on a 1GB
CompactFlash card. We are using Debian 6 on these cards.
If Wi-Fi connectivity is needed on a cluster head, then one
Wistron CM9mini-PCI 802.11a/b/g card [17] is installed with
twohigh gain omnidirectional antennas to theAlix2d2 board.

5. Our Software Architecture, Components,
and Fire Detection Algorithm

OurWSN software consists of twomainmodules: the cluster-
head module and the control center module. Both modules
are implemented using the Python programming language.
The cluster-head module, referred to as CHm from now on,
is responsible for gathering the sensor data from the sensor
nodes in its cluster and for making the sensor data available
as documents formatted in extensible markup language
(XML). CHm is also responsible for issuing commands to
the sensor nodes in its cluster. The control center module,
referred to as CCm from now on, is responsible for gathering
cluster data from the cluster heads and making the data
from all of the clusters available from a single source as a
document formatted in XML. Clients can request the data
of all clusters deployed at a site from CCm. Both CHm and
CCm implement a RESTful [18] web service for WSN data
gathering and management. We now detail CHm and CCm
in the following subsections.

5.1.TheCluster-HeadModule. CHmis responsible for gather-
ing periodic sensor data from each of the sensors in its cluster
and for sending management messages to them. The sensor
nodes run an application that periodically collects sensor
data and sends the collected data to the network coordinator
(cluster head). This application is part of the firmware of the
sensor nodes. The sensor data that is periodically sent by a
sensor node consists of the following items:

(i) the long address associated with the sensor,
(ii) last temperature measurement value,
(iii) last relative humidity measurement value (if the

related sensing module is available),
(iv) last battery voltage measurement value,
(v) last battery state (OK or LOW).

4 International Journal of Distributed Sensor Networks

CHm receives the sensor data made available by a sensor
node and puts this data in its in-memory cache or updates
the data associated with the sensor in its cache. When a
sensor data message is received, CHm uses the sender’s
long address as a key to index the sensor data in its cache.
Each measurement value in CHm’s cache is labeled with a
timestamp value. Timestamps are generated with accuracies
in seconds. Later when a client requests the cluster data, CHm
formats the sensor data in its cache as an XML document
and respondswith this document. Since CHmonlymaintains
an in-memory cache of sensor data and no persistent cache,
when the in-memory cache is destroyed as a result of the
restart of the CHm software, there will be no data available
for a sensor till the sensor sends its next data message to the
cluster head.

CHm dynamically learns about the sensors in its cluster
as the sensors report to the cluster head.This approachmakes
the addition of new sensors to a cluster very easy. A new
sensor can be added to a WSN cluster by just configuring
the ZigBee PAN id of the sensor to the PAN id used by the
network coordinator of the cluster. As the new sensor node
reports to its cluster head, CHmwill learn about it and put its
data in CHm cache.

CHm has two main modes of operation. Either it peri-
odically pushes (HTTP POSTs) cluster data to CCm as XML
documents or the CCm pulls (HTTP GETs) the cluster data.
In Rhodiapolis site, cluster heads push data to the control
center. This approach makes the addition of new clusters to
the site very easy. As depicted in Figure 1, it is possible to add
a new cluster to the site via the Internet. This greatly reduces
deployment costs by making it possible to use the existing
network infrastructure. It is even possible to easily build a
wireless sensor network covering geographically distributed
clusters.

CHm is also responsible for broadcasting commands to
the sensor nodes in its cluster and receiving ACK/NACK
messages from the sensors in response to these commands.
Currently, CHm only supports broadcasting commands and
it is not possible to address a single sensor as the recipient
of a command message. As part of the CHm RESTful service
interface, a timeout value has to be specified with a command
invocation that determines the interval for which the cluster
head should listen for ACK/NACK messages from sensors
in response to the broadcasted command message. After the
end of this interval, CHm reports with an XMLdocument the
long addresses of the sensors that have sent an ACK and the
long addresses of the sensors that have sent a NACKmessage
in response to the command message. Sensors that did not
receive the broadcast commandmessage or sensors that have
failed to respond within the specified timeout or sensors
whose responses simply got lost are missing in CHm’s report.
A client issuing a command to the WSN cluster shall need
a priori knowledge about the long addresses of the sensors of
the cluster in order to be able to identify suchmissing sensors.

CHm is able to generate temperature threshold alarms. If
a SETHITEM command [12] is issued to the cluster viaCHm’s
web service API (by the end user or by another software
module), CHm records the temperature threshold value.
Later, if a sensor node reports a temperature value higher

than or equal to the configured threshold, CHm adds alarm
state to its cache. Subsequently when the sensor node that has
caused the temperature threshold alarm to be raised reports a
temperature value lower than the configured threshold, CHm
clears the cached alarm state.

5.2. The Control Center Module and Our Fire Detection
Algorithm. CCm gathers sensor data from all the clusters
and builds an in-memory cache of the data from all of the
sensors deployed on a site. A client can retrieve site data as
an XML document from CCm. It is also possible for a client
to request a specific cluster’s data from CCm. As explained in
Section 5.1, cluster heads push data to CCm and CCm puts or
updates the cluster data in its in-memory cache. Each CHm
module is configuredwith a unique numeric cluster identifier
which is sent with the cluster data to CCm. CCm uses this
identifier as a key to index the cluster data in its cache.

CCm is using a sigma-threshold (standard deviation)
based fire detection algorithm we designed, which generates
fire alarms based on the temperature values. The algorithm
requires a training phase to reduce generation of false alarms.
Hence, at startup, CCm is trained for each sensor node at
the site using the available temperature data in the RDBMS.
Ideally, the training data should cover a whole day. If whole
day’s data is available in the training set, then a separate
sigma-threshold is calculated for each hour of the day for a
sensor (using Algorithm 1). The standard deviation (𝜎it) of
themeasured temperature values is calculated iteratively over
sliding windows of wnd size samples using Algorithm 2. The
sigma-threshold is calculated separately for each sensor node
because temperature values change in different magnitudes
for each sensor due to the unique location of each sensor.
After the sigma-thresholds have been initialized, the standard
deviation of the sequence of fresh samples arriving from a
sensor is calculated iteratively over a sliding window and
compared to the calculated sigma-threshold for that sensor.
If the change (𝛿) in the last reported temperature value of a
sensor node from the current window’s mean (𝜇) is higher
than the sigma-threshold of that sensor, CCm raises a sigma-
threshold alarm for that sensor node.

sigma coeff, wnd size, and the size of the training data
set are three important parameters affecting the performance
of the proposed system. As mentioned above, the training
data set should cover at least 24 hours of measurement data
because the changes in temperature vary greatly during the
course of the day due to the angle of the sunlight beams
and shades of the landforms surrounding the sensors. As
discussed in Section 6, if the training data spans multiple
days, the rate of false positives is greatly reduced.

The selection of wnd size depends on the transmit period
of the sensors. The greater the wnd size is, the older the
historical data taken into account while calculating the 𝛿
is. And the system gets more sensitive to rapid temperature
increases. However, this also increases the rate of false
positives. For the purposes of our system, a time frame of 80
minutes is a good balance between sensitivity and rate of false
positives.

The sigma coeff controls how much increase in tempera-
ture is allowed before the system generates an alarm. It allows

International Journal of Distributed Sensor Networks 5

Global: 𝜎thres, sigma-thresholds dictionary. Keys will be the hours of the day.
Global: sigma coeff, sigma coefficient for threshold calculation.
Global: 𝑤𝑛𝑑 𝑠𝑖𝑧𝑒, window size.
Global: 𝑠 𝜎

𝑖𝑡
, dictionary of sum of 𝜎

𝑖𝑡
. Keys will be the hours of the day.

Global: 𝑠 V𝑎𝑟
𝑖𝑡
, dictionary of sum of V𝑎𝑟

𝑖𝑡
. Keys will be the hours of the day.

Global: 𝑤𝑛𝑑 𝑐𝑜𝑢𝑛𝑡, the number of windows processed so far.
Input: 𝑡𝑟𝑎𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, training data set covering 24 hours. Each sample in the training
set is timestamped. 𝑡𝑟𝑎𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖
.𝑡𝑠 yields this timestamp and 𝑡𝑟𝑎𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖
.V𝑎𝑙

yields the actual temperature measurement for the 𝑖th element.
(1) 𝑤𝑛𝑑 𝑐𝑜𝑢𝑛𝑡 ⇐ 0
(2) for ℎ = 0 to 23 do
(3) ℎ𝑜𝑢𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ⇐ {𝑡𝑟𝑎𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖
.V𝑎𝑙 : 𝑡𝑟𝑎𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖
.𝑡𝑠.ℎ𝑜𝑢𝑟 = ℎ}

(4) 𝑠 𝜎
𝑖𝑡
[ℎ] ⇐ 0

(5) 𝑠 V𝑎𝑟
𝑖𝑡
[ℎ] ⇐ 0

(6) for 𝑠 = 𝑤𝑛𝑑 𝑠𝑖𝑧𝑒 to 𝑙𝑒𝑛[ℎ𝑜𝑢𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠] − 1 do
(7) 𝑛𝑒𝑤 𝑠𝑎𝑚𝑝𝑙𝑒 ⇐ ℎ𝑜𝑢𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑠

(8) 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ⇐ {ℎ𝑜𝑢𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝑖
: 𝑠 − 𝑤𝑛𝑑 𝑠𝑖𝑧𝑒 ≤ 𝑖 < 𝑠}

(9) (𝜎
𝑖𝑡
, V𝑎𝑟
𝑖𝑡
) ⇐ Calculate iterative deviation using Algorithm 2

(10) end for
(11) 𝜎thres[ℎ] ⇐ 𝜎𝑖𝑡 + 𝑠𝑖𝑔𝑚𝑎 𝑐𝑜𝑒𝑓𝑓 ∗ √V𝑎𝑟𝑖𝑡
(12) end for

Algorithm 1: Training.

Global: 𝑤𝑛𝑑 𝑐𝑜𝑢𝑛𝑡
Global: 𝑠 𝜎

𝑖𝑡

Global: 𝑠 V𝑎𝑟
𝑖𝑡

Input: ℎ, hour of the day.
Input: 𝑛𝑒𝑤 𝑠𝑎𝑚𝑝𝑙𝑒, the fresh measured value.
Input: 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, array of measurements of size 𝑤𝑛𝑑 𝑠𝑖𝑧𝑒 prior to 𝑛𝑒𝑤 𝑠𝑎𝑚𝑝𝑙𝑒.
Output: (𝜎

𝑖𝑡
, V𝑎𝑟
𝑖𝑡
, 𝛿), calculated iterative deviance, iterative variance and delta from the mean of 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

(1) 𝜇 ⇐ ∑
𝑖
𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖
/𝑙𝑒𝑛[𝑠𝑎𝑚𝑝𝑙𝑒𝑠]

(2) 𝛿 ⇐ 𝑛𝑒𝑤 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝜇
(3) 𝑠 𝜎

𝑖𝑡
[ℎ] ⇐ 𝑠 𝜎

𝑖𝑡
[ℎ] + |𝛿|

(4) 𝑠 V𝑎𝑟
𝑖𝑡
[ℎ] ⇐ 𝑠 V𝑎𝑟

𝑖𝑡
[ℎ] + 𝛿

2

(5) 𝑤𝑛𝑑 𝑐𝑜𝑢𝑛𝑡 ⇐ 𝑤𝑛𝑑 𝑐𝑜𝑢𝑛𝑡 + 1
(6) 𝜎
𝑖𝑡
⇐ 𝑠 𝜎

𝑖𝑡
[ℎ]/𝑤𝑛𝑑 𝑐𝑜𝑢𝑛𝑡

(7) V𝑎𝑟
𝑖𝑡
⇐ 𝑠 V𝑎𝑟

𝑖𝑡
[ℎ]/𝑤𝑛𝑑 𝑐𝑜𝑢𝑛𝑡

Algorithm 2: Iterative Deviation Calculation.

us to fine-tune our fire detection system according to the
characteristics of the common environment of the sensors. In
a region where daily rapid temperature changes are common,
a high sigma coeff should be used. Section 6 gives an insight
for the effects of sigma coeff on the system performance.

Algorithm 3 details the above procedure for a single
sensor. Before Algorithm 3 can be used, CCm should be
trained using Algorithm 1.The training data is obtained from
the RDBMS and covers 24 hours data. At Rhodiapolis site, we
use 50 for wnd size and 2.5 for sigma coeff.

CCmhas to be configuredwith a static IP addresswhereas
cluster heads do not need to be configured with static IP
addresses. As CHm pushes cluster data to CCm, CCm learns
the IP address of the cluster head. CCm can later send man-
agement messages to the cluster head using this IP address.

CCm also logs sensor data to a relational database. How-
ever, CCm uses only its in-memory cache while servicing
site and cluster data requests. When the in-memory cache is
destroyed (when, for instance, theCCmsoftware is restarted),
CCm will be unaware of a cluster till the cluster head sends
its next message to CCm.

Figure 2 summarizes the sensor data flow. Each sensor
node in a cluster pushes data to the cluster head (CHm)
periodically. The cluster head pushes cached cluster data
to the control center (CCm). A sensor data client pulls
cached cluster or cached site data from CCm in XML
format. In Figure 2, red arrows represent a PUSH operation
which corresponds to an HTTP POST request. Blue arrows
represent a PULL operation which corresponds to an HTTP
GET request.

6 International Journal of Distributed Sensor Networks

Global: 𝜎thres
Global: sigma coeff
Input: 𝑛𝑒𝑤 𝑠𝑎𝑚𝑝𝑙𝑒, the fresh measured value.
Input: 𝑡𝑠, the timestamp of 𝑛𝑒𝑤 𝑠𝑎𝑚𝑝𝑙𝑒.
Input: 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, array of measurements of size 𝑤𝑛𝑑 𝑠𝑖𝑧𝑒 just prior to 𝑛𝑒𝑤 𝑠𝑎𝑚𝑝𝑙𝑒.
(1) ℎ ⇐ 𝑡𝑠.ℎ𝑜𝑢𝑟
(2) (𝜎

𝑖𝑡
, V𝑎𝑟
𝑖𝑡
, 𝛿) ⇐ Calculate iterative deviation using Algorithm 2

(3) if 𝛿 > 𝜎thres[ℎ] then
(4) Raise sigma-threshold alarm
(5) else
(6) Clear sigma-threshold alarm
(7) end if
(8) 𝜎thres[ℎ] ⇐ 𝜎𝑖𝑡 + 𝑠𝑖𝑔𝑚𝑎 𝑐𝑜𝑒𝑓𝑓 ∗ √V𝑎𝑟𝑖𝑡

Algorithm 3: SigmaThreshold Classification for a Single Sensor.

Cluster
data

(PUSH)

CHm 1 Sensor data clientCCm

Cluster
data

(PUSH)
CHm n

RDBMS

Sensor
data

(PUSH)

Sensor
data

(PUSH)

Sensor
data

(PUSH)

Sensor
node 1

Sensor
node 1

Site/cluster
data

(PULL)

Cluster
IP

(PUSH)

...

· · ·

· · ·

Sensor
node n

Sensor
node n

Figure 2: Sensor data flow diagram.

In Figure 3, we summarize the command data flow.
Again, red arrows represent PUSH operations and blue
arrows represent PULL operations. A management client
queries the RDBMS for cluster head IP addresses and sends
unicast commands to selected cluster-head modules. Each
CHm that has received a command broadcasts that command
in its cluster. Each receiving sensor node in the cluster
processes the command and pushes an ACK or a NACK
message back to CHm. CHm accepts these ACK/NACK
messages within a specified interval, prepares a report in
XML at the end of this interval, and responds back to the
management client that has issued the command Figure 3.

6. Measurements, Experiments, and Results

After deploying our sensor network and data harvesting
system in Rhodiapolis, we collected and recorded sensor
data over an extended period of time. To illustrate typical
summer weather conditions under which the sensors operate
in Rhodiapolis, we give temperature and relative humidity
plots, respectively, in Figures 4 and 5, for one of the sensor
nodes (node with id 17), for a period of 9 days. Also in

Figure 6, we report the normalized temperature values and
the relative humidity values on the same plot. The temper-
ature values are normalized with respect to the maximum
temperature measured in the course of 9 days, which is
37.7∘C. The oscillation of the temperature and the relative
humidity values, as seen in Figures 4 and 5, are typical
due to the rotation of the Earth around its own axis. As
it can be seen in Figure 6, generally speaking, temperature
and relative humidity are inversely proportional with each
other. When other atmospheric parameters stay the same,
increasing temperature implies decreasing levels of relative
humidity, which in turn implies increasing probability of fire.

Using the sensor data from Rhodiapolis, we investigated
the performance of the sigma-threshold based algorithm for
the temperature values given in Figure 4. If the system is
trained with 24 hours of data from August 28, 2012, then we
get 42 false positives for the rest of the observation interval
with a wnd size of 50 and a sigma coeff of 2.5. The total
number of samples in the rest of the observation interval is
6956, which corresponds to a false positive ratio of 0.006.The
plot of the false positives is given in Figure 7.The temperature
readings that have caused a false positive are marked with

International Journal of Distributed Sensor Networks 7

Broadcast
command
(PUSH)

Unicast
command 1

(PUSH)

CHm 1 Management client

Sensor
node 1

Sensor
node n

Sensor
node n

Broadcast
command
(PUSH)

(PUSH)
Unicast

command n
(PUSH)

ACK/NACK

ACK/NACK

ACK/NACK

(PUSH)
ACK/NACK

CHm n

Sensor
node 1

RDBMS

Cluster
IP addresses

(PULL)

...

· · ·

· · ·

Figure 3: Command data flow diagram.

 24

 26

 28

 30

 32

 34

 36

 38

 40

28
 A

ug
.

29
 A

ug
.

30
 A

ug
.

31
 A

ug
.

1
Se

p.

2
Se

p.

3
Se

p.

4
Se

p.

5
Se

p.

6
Se

p.

Date (12:00 a.m.)
Sensor-17 temperature

Te
m

pe
ra

tu
re

 (∘
C)

Figure 4: Temperature plot for sensor-17.

an arrow. As it can be seen in Figure 7, majority of the false
positive incidents (about 67%) occur on August 29 and 30,
the two days immediately following the training day.

However, using the samewnd size and sigma coeff values,
if the system is trained with 48 hours of data from the days
August 28 and 29, 2012, then the number of false positives
decreases to 2 for the rest of the observation interval, which
consists of a total of 6106 measurements. The false positive

 10

 20

 30

 40

 50

 60

 70

 80

 90

28
 A

ug
.

29
 A

ug
.

30
 A

ug
.

31
 A

ug
.

1
Se

p.

2
Se

p.

3
Se

p.

4
Se

p.

5
Se

p.

6
Se

p.

Re
lat

iv
e h

um
id

ity
 (%

)

Date (12:00 a.m.)
Sensor-17 relative humidity

Figure 5: Relative humidity plot for sensor-17.

ratio decreases to about 0.0003.Theplot of false positiveswith
two days of training is given in Figure 8.

If we increase sigma coeff from 2.5 to 3.0 and the system is
trainedwith the one-day data fromAugust 28, thenwe obtain
23 false alarms, all on August 29 as shown in Figure 9. The
false positive rate for the rest of the observation period is now
about 0.003. And if the system is trained with 48 hours of
data from the days August 28 and 29, 2012, and a sigma coeff

8 International Journal of Distributed Sensor Networks

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1
28

 A
ug

.

29
 A

ug
.

30
 A

ug
.

31
 A

ug
.

1
Se

p.

2
Se

p.

3
Se

p.

4
Se

p.

5
Se

p.

6
Se

p.

N
or

m
al

iz
ed

 v
al

ue

Date (12:00 a.m.)
Sensor-17 normalized temperature
Sensor-17 relative humidity

Figure 6: Normalized temperature and relative humidity plot for
sensor-17.

 24

 26

 28

 30

 32

 34

 36

 38

 40

28
 A

ug
.

29
 A

ug
.

30
 A

ug
.

31
 A

ug
.

1
Se

p.

2
Se

p.

3
Se

p.

4
Se

p.

5
Se

p.

6
Se

p.

Date (12:00 a.m.)
Sensor-17 temperature

Te
m

pe
ra

tu
re

 (∘
C)

Figure 7: False positives for sigma-threshold alarm if the system is
trained only with the data from August 28, 2012.

of 3.0 is used, then the false positive rate for the rest of the
observation period drops to 0.0.

We did not have any wildfires after the WSN deployment
in Rhodiapolis. So, in order to evaluate the performance of
our fire detection algorithms in case of a fire, we conducted
a fire experiment at the parking lot of the Department of
the Electrical and Electronics Engineering (EE parking lot)
at Bilkent University. Figure 10 shows the placement of the
sensor nodes. The fire was ignited at 15:01 at the parking lot
and a total of five sensors were placed around the ignition
point. The sampling interval (MSI) and the transmit interval
(TXT) of each sensor are set to 1 s.

Figure 11 shows the temperature data for all of the five
sensors. Amongst the five sensors, Sensor-11 has the highest

24

26

28

30

32

34

36

38

40

28
 A

ug
.

29
 A

ug
.

30
 A

ug
.

31
 A

ug
.

1
Se

p.

2
Se

p.

3
Se

p.

4
Se

p.

5
Se

p.

6
Se

p.

Date (12:00 a.m.)

(01.09 15:36:17, 31.4)

(06.09 03:52:53, 27.4)

Sensor-17 temperature

Te
m

pe
ra

tu
re

 (∘
C)

Figure 8: False positives for sigma-threshold alarm if the system is
trained with the data from August 28/29, 2012.

24

26

28

30

32

34

36

38

28
 A

ug
.

29
 A

ug
.

30
 A

ug
.

31
 A

ug
.

1
Se

p.

2
Se

p.

3
Se

p.

4
Se

p.

5
Se

p.

6
Se

p.
Date (12:00 a.m.)

Sensor-17 temperature

Te
m

pe
ra

tu
re

 (∘
C)

Figure 9: False positives for sigma-threshold alarm if the system
is trained only with the data from August 28, 2012, and a sigma
coefficient of 3.0 is used.

increase in temperature due to the wind, as the wind was
blowing towards Sensor-11 and carrying the heat energy
released by the fire.This phenomenon can be clearly observed
in Figure 11, where the temperature readings of Sensor-11
reache as high as 40∘C.

Figure 12 shows the sigma-threshold alarms given for
Sensor-11 during the EE parking lot experiment. The system
has been trained with the temperature data of August 28 and
29 given in Figure 4. The sigma coeff is 3.0. As explained in
the previous paragraphs, the system in Rhodiapolis generates
no false positives with these parameters. For the EE parking
lot experiment, the system generated 14 sigma-threshold
alarms for Sensor-11, all during the starting phase of the fire as
seen in Figure 12, where each alarm is marked with an arrow.
Hence, the system was able to successfully detect the fire in

International Journal of Distributed Sensor Networks 9

1m 1m 1m

1m

1m

Fire

Sensor-12 Sensor-27 Sensor-11

Sensor-25

Sensor-10

Figure 10: Placement of the nodes in the EE parking lot experiment.

 28

 30

 32

 34

 36

 38

 40

 42

14
:3

0

14
:3

5

14
:4

0

14
:4

5

14
:5

0

14
:5

5

15
:0

0

15
:0

5

15
:1

0

15
:1

5

15
:2

0

15
:2

5

15
:3

0

15
:3

5

15
:4

0

Time
Sensor-10 temperature
Sensor-11 temperature
Sensor-12 temperature

Sensor-25 temperature
Sensor-27 temperature

Te
m

pe
ra

tu
re

 (∘
C)

Figure 11: Temperature data for all of the five sensors deployed for
the EE parking lot experiment. MSI and TXT of all sensors are 1 s.

this experiment by generatingmultiple fire alarms (onewould
be enough to warn the firefighting personnel) using the data
arriving from Sensor-11.

A second outdoor experimentwas performed at a parking
lot of the North Campus of the Bogazici University (another
partner in the Firesense Project). A total of four sensors were
deployed around the fire ignition point.The sampling interval
(MSI) and the transmit interval (TXT) of each sensor are set
to 100 s. Figure 13 shows the temperature measurements of
all of the four sensors for the duration of the experiment.
Sensor-22 was closest to the fire and measured a maximum
of 47.2∘C, the highest temperature among the four sensors.
In Figure 14, the sigma-threshold alarms given for Sensor-22
by the system after being trained with the temperature data
of August 28 and 29 (Figure 4) are shown. The sigma coeff
is again 3.0. There are a total of 6 alarms; hence the fire was
detected successfully.

We also tested the system’s indoor fire detection capabil-
ities using artificial heat sources. After training the system

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

14
:3

0

14
:3

5

14
:4

0

14
:4

5

14
:5

0

14
:5

5

15
:0

0

15
:0

5

15
:1

0

15
:1

5

15
:2

0

15
:2

5

15
:3

0

15
:3

5

15
:4

0

Time
Sensor-11 temperature

Te
m

pe
ra

tu
re

 (∘
C)

Figure 12: Sigma-threshold alarms given for Sensor-11 during the
EE parking lot experiment.

 20

 25

 30

 35

 40

 45

 50

 55

14
:2

3
14

:2
8

14
:3

3
14

:3
8

14
:4

3
14

:4
8

14
:5

3
14

:5
8

15
:0

3
15

:0
8

15
:1

3
15

:1
8

15
:2

3
15

:2
8

15
:3

3
15

:3
8

15
:4

3
15

:4
8

Time
Sensor-22 temperature
Sensor-23 temperature

Sensor-29 temperature
Sensor-30 temperature

Te
m

pe
ra

tu
re

 (∘
C)

Figure 13: Temperature data for all of the four sensors deployed for
the Bogazici University parking lot experiment. MSI and TXT of all
sensors are 100 s.

consisting of a single sensor with the temperature data from
August 28 and 29 (Figure 4) and using a sigma coeff of 3.0,
we generated heat using a lighter to make the sensor heat up.
The sensor’s TXT and MSI periods are 1 s. Figure 15 shows
the sigma-threshold alarms given during this experiment
together with the temperature data recorded. The lighter was
lit three times as the figure reveals and a total of 66 alarms
were given at these times by the system, all of which were
given when the lighter was on and no alarm was given when
the lighterwas off.Themaximum temperature value recorded
by the sensor during this experiment is 38.5∘C.

We have also observed the battery voltage levels of the
sensor nodes deployed in Rhodiapolis. In our deployment,
all sensor nodes have been configured with exactly the same
parameters, including the transmission period (TXT = 100 s)
and the sampling period (MSI = 100 s). However, after two

10 International Journal of Distributed Sensor Networks

 20

 25

 30

 35

 40

 45

 50

 55
14

:2
3

14
:2

8
14

:3
3

14
:3

8
14

:4
3

14
:4

8
14

:5
3

14
:5

8
15

:0
3

15
:0

8
15

:1
3

15
:1

8
15

:2
3

15
:2

8
15

:3
3

15
:3

8
15

:4
3

15
:4

8
15

:5
3

Time

(15:16:24, 26.8)(15:23:05, 27.6)

(15:34:45, 36.6)

(15:36:25, 43.4)
(15:38:04, 45.6)

(15:39:44, 47.2)

Sensor-22 temperature

Te
m

pe
ra

tu
re

 (∘
C)

Figure 14: Sigma-threshold alarms given for Sensor-22 during the
Bogazici University parking lot experiment.

20

25

30

35

40

16
:5

5

17
:0

0

17
:0

5

17
:1

0

17
:1

5

17
:2

0

17
:2

5

17
:3

0

17
:3

5

17
:4

0

17
:4

5

17
:5

0

17
:5

5

18
:0

0

18
:0

5

Time
Sensor temperature

Te
m

pe
ra

tu
re

 (∘
C)

Figure 15: Sigma-threshold alarms given during the indoor artificial
fire experiment. MSI and TXT of the sensor are both 1 s.

weeks of operation, two sensor nodes in one cluster and one
sensor node in another cluster started reporting low battery
levels.

Figure 16 shows the change in the battery voltage levels
of Sensor-6 and Sensor-17 from the September 12 till the
September 18. Sensor-6 is amongst the quick battery drainers
whereas Sensor-17 is a normal (relatively slower) drainer.
As it can be seen in Figure 16, the voltage levels of Sensor-
17 are rather stable at about 4.6 V and drop rather slowly
as expected. However, the voltage level of Sensor-6 drops
from 4.27V to 3.31 V on the September 14 in about 100 s,
stays below 3.41 V for about 1300 s, and rises back to 4.16V.
Sensor-6 voltage levels oscillate asmuch as 22%, progressively
spending more time below 3.4V during the observation
interval. The standard deviation of the measured battery
voltage levels of Sensor-17 between September 12, 2012, and
September 18, 2012, is about 0.019V, whereas the standard

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

12 Sep. 13 Sep. 14 Sep. 15 Sep. 16 Sep. 17 Sep. 18 Sep.

Ba
tte

ry
 v

ol
ta

ge
 (V

)

Date (12:00 a.m.)
Sensor-6 battery
Sensor-17 battery

Figure 16: Battery voltage levels of Sensor-6 and Sensor-17.

deviation of the measured battery voltage levels of Sensor-6
for the same period is about 0.489V.

Based on the battery voltage readings of Sensor-6 and
Sensor-17 in Figure 16, it should be noted that even though
the ZigBee radio module parameters and the application
parameters of the sensor nodes are kept the same, the power
consumption of individual nodes might differ significantly.
One important factor that may cause such differences is
the location of the sensor nodes. The XBee S2 radio mod-
ules employed by the sensor nodes for ZigBee connectivity
retransmit a unicast packet if they do not receive a network-
layer acknowledgement for the packet from its destination
within specific timeout [14]. If a sensor node is located far
away from the ZigBee network coordinator (the cluster head)
or if the wireless medium between the sensor node and the
coordinator is obstructed, for instance, by trees, then the
sensor node may have to retransmit packets frequently. This
would imply more power consumption for this sensor node
when compared to an unobstructed or nearer node.

We further investigate the maximum battery lifetime of
a sensor node by conducting an indoor experiment with a
single sensor. The sensor node is placed 1m apart from its
cluster head and there are no other clusters or sensor nodes or
known ZigBee transmitters nearby. Since there are no other
sensor nodes or ZigBee transmitters, we expect no packet
collisions and we expect that the number of retransmissions
will be at a minimum for the single sensor. The sensor node
is configured to sample its sensing units once every second
(1Hz) and to send the sensor readings once every second to
the cluster head. We start the experiment with new, unused
batteries and leave the system running till the batteries are
completely depleted and the sensor is no longer able to
transmit packets.

Figure 17 shows the change in the voltage levels of the
sensor during the course of the experiment. The experiment
has been rununinterrupted from23:27:55,October 1, 2012, till
21:53:26, October 24.This corresponds to a battery lifetime of
1981531 seconds (about 23 days).

International Journal of Distributed Sensor Networks 11

2.5

3

3.5

4

4.5

5

02 04 06 08 10 12 14 16 18 20 22 24

Ba
tte

ry
 v

ol
ta

ge
 (V

)

Day of October (12:00 a.m.)

Sensor-30 Battery

Figure 17: Battery voltage levels of Sensor-30 in the battery lifetime
experiment.

In the ideal conditions where there are no packet colli-
sions or packet retransmissions and the transmit power of the
ZigBee radio is kept at minimum, we may expect a battery
lifetime of about 2293 days (about 6.3 years) for a sensor node
in our deployment, where the transmission period is set to
100 s. This is a loose upper bound on the battery lifetime of a
sensor node deployed in Rhodiapolis because the sensors are
placed tens of meters away from their cluster heads and they
share the wireless medium. The increased distance between
the sensors and their cluster heads causes the sensors to spend
more power for transmitting packets than the sensor of the
battery lifetime experiment. Also since there are multiple
sensor nodes inRhodiapolis sharing thewirelessmedium, the
increased number of packet collisions and retransmissions
will yield shorter battery lifetimes.

7. Conclusions and Discussion

In this paper, we introduced and described ourWSN deploy-
ment in Rhodiapolis, which has been realized as part of
the Firesense EU FP7 project. We explained our network,
hardware, and software architectures in detail with the hope
that they will be useful to other researchers and networking
practitioners with a similar goal of developing and deploying
a WSN for habitat monitoring. We gave insights from the
operation of the WSN. We also presented a temperature
variation based fire detection algorithm and provided some
measurement results. From the results discussed in Section 6
it can be concluded that it is better to train the system with at
least two days of measurements, and using a sigma coefficient
(Section 5.2) of 3.0 should eliminate most of the false positive
alarms for the Rhodiapolis deployment.

Also betweenAugust 25, 2012, and September 21, 2012, the
maximum temperature value recorded by a sensor is 47.5∘C.
This should be consideredwhendetermining the temperature
threshold above which an alarm will be issued.

In our outdoor fire experiments we have observed the
importance of wind for successfully and timely detecting

wildfires with ambient temperature sensors. As the wind
blows from the fire towards a nearby sensor, the sensor’s
temperature readings rise more rapidly because the wind
carries some of the heat energy released by combustion to the
sensor. Wind blowing from the fire to the sensors makes the
convective heat transfer more efficient.

An important direction for future research is to equip our
sensor nodes with a variety of other sensing units such as
ambient light or CO units to collect data inmore dimensions.
Utilizing these data in our sigma-threshold based detection
algorithm can increase the system performance and decrease
the time needed to detect forest fires.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported in part by the European Union
FP7 Programme with Project Firesense, FP7-ENV-2009-1-
244088-FIRESENSE. The authors thank Dr. Dimitris Syriv-
elis and Mr. Dimosthenis Delimpasis of ITI-CERTH for
providing them valuable support in the sensor and cluster
head hardware. This work was performed when Alper Rifat
Ulucinar was a Ph.D. student in theDepartment of Computer
Engineering, Bilkent University, Ankara, Turkey.

References

[1] “Firesense project home page,” 2014, http://www.firesense.eu/.
[2] Z. Li, S. Nadon, and J. Cihlar, “Satellite-based detection of

CanadianBoreal forest fires: development and application of the
algorithm,” International Journal of Remote Sensing, vol. 21, no.
16, pp. 3057–3069, 2000.

[3] Y. E. Aslan, I. Korpeoglu, and Ö. Ulusoy, “A framework for use
of wireless sensor networks in forest fire detection and moni-
toring,”Computers, Environment andUrban Systems, vol. 36, no.
6, pp. 614–625, 2012.

[4] J. Zhang, W. Li, Z. Yin, S. Liu, and X. Guo, “Forest fire detection
system based on wireless sensor network,” in Proceedings of the
4th IEEE Conference on Industrial Electronics and Applications
(ICIEA ’09), pp. 520–523, Xi’an, China, May 2009.

[5] J. Zhang,W. Li, N. Han, and J. Kan, “Forest fire detection system
based on a ZigBeewireless sensor network,” Frontiers of Forestry
in China, vol. 3, no. 3, pp. 369–374, 2008.

[6] L. Yu, N. Wang, and X. Meng, “Real-time forest fire detection
with wireless sensor networks,” in Proceedings of the Interna-
tional Conference onWireless Communications, Networking and
Mobile Computing (WCNM ’05), vol. 2, pp. 1214–1217, IEEE,
September 2005.

[7] Y. Li, Z.Wang, and Y. Song, “Wireless sensor network design for
wildfire monitoring,” in Proceedings of the 6th World Congress
on Intelligent Control and Automation (WCICA ’06), vol. 1, pp.
109–113, IEEE, Dalian, China, June 2006.

[8] “Rfc3626: optimized link state routing protocol (olsr),” 2003,
http://dl.acm.org/citation.cfm?id=RFC3626.

[9] “olsrd project home page,” 2014, http://www.olsr.org/.

12 International Journal of Distributed Sensor Networks

[10] “Rfc3561: Ad hoc on-demand distance vector (aodv) routing,”
2003, http://portal.acm.org/citation.cfm?id=RFC3561.

[11] “kernel aodv,” 2014, http://w3.antd.nist.gov/wctg/aodv kernel/
index.html.

[12] “Pikkertonzbs-120/121 interface controldocument,”2012, http://
www.pikkerton.com/ mediafiles/62-interface-control-docu-
ment-zbs-x2x.pdf.

[13] “Zbs-120/220-r (outdoor/ruggedized) datasheet,” 2009, http://
www.pikkerton.com/ mediafiles/37-ds zbs-x20-r v1 01 en.pdf.

[14] “Xbee/xbee-pro zb rf modules manual,” 2014, http://ftp1.digi
.com/support/documentation/90000976 T.pdf.

[15] “Xstick usb to xbee wireless pan adapter for laptops & pcs
datasheet,” 2010, http://www.digi.com/pdf/ds xstick.pdf.

[16] “Pcengines alix.2/alix.3/alix.6 series system boards,” 2009,
http://www.pcengines.ch/pdf/alix2.pdf.

[17] “Wistron cm9 minipci card product home page,” 2014, http://
www.mini-box.com/s.nl/it.A/sc.8/category.1557/.f?%20id=387.

[18] R. T. Fielding, Architectural styles and the design of network-
based software architectures [Ph .D. dissertation], University of
California, Irvine, Calif, USA, 2000, http://www.ics.uci.edu/∼
fielding/pubs/dissertation/top.htm.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

