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Abstract—We propose localized, self organizing, robust, and energy-efficient data aggregation tree approaches for sensor networks,
which we call Localized Power-Efficient Data Aggregation Protocols (L-PEDAPSs). They are based on topologies, such as LMST and
RNG, that can approximate minimum spanning tree and can be efficiently computed using only position or distance information of one-hop
neighbors. The actual routing tree is constructed over these topologies. We also consider different parent selection strategies while
constructing a routing tree. We compare each topology and parent selection strategy and conclude that the best among them is the
shortest path strategy over LMST structure. Our solution also involves route maintenance procedures that will be executed when a sensor
node fails or a new node is added to the network. The proposed solution is also adapted to consider the remaining power levels of nodes in
order to increase the network lifetime. Our simulation results show that by using our power-aware localized approach, we can almost have
the same performance of a centralized solution in terms of network lifetime, and close to 90 percent of an upper bound derived here.

Index Terms—Wireless networks, sensor networks, data gathering, minimum energy control, distributed algorithms.

1 INTRODUCTION

THE design of wireless sensor networks depends on the
application requirements. Environmental monitoring is
an application where a region is sensed by numerous sensor
nodes and the sensed data are gathered at a base station (a
sink) where further processing can be performed. The
sensor nodes for such applications are usually designed to
work in conditions where it may not be possible to recharge
or replace the batteries of the nodes. This means that energy
is a very precious resource for sensor nodes, and commu-
nication overhead is to be minimized. These constraints
make the design of data communication protocols a
challenging task [1].

A common scenario of sensor networks involves deploy-
ment of hundreds or thousands of low-cost, low-power
sensor nodes to a region from where information will be
collected periodically. Hence, sensor nodes will periodically
sense their nearby environment and send the information to
a sink which is not energy limited. The collected informa-
tion can be further processed at the sink for end-user
queries. In order to reduce the communication overhead
and energy consumption of sensors while gathering, the
received data can be combined to reduce message size. A
simple way of doing that is aggregating the data. A
different way is data fusion (aggregation) which can be
defined as producing a more accurate signal by combining
several unreliable data measurements. In this paper, we
focus on scenarios where perfect aggregation is used while
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gathering data, meaning that all forwarded messages are of
the same size.

An important problem studied here is finding an energy-
efficient routing scheme for gathering all data at the sink
periodically so that the lifetime of the network is prolonged
as much a possible. The lifetime can be expressed in terms
of rounds where a round is the time period between two
sensing activities of sensor nodes.

There are several requirements for a routing scheme to
be designed for this scenario. First, the algorithm should be
distributed since it is extremely energy consuming to
calculate the optimum paths in a dynamic network and
inform others about the computed paths in a centralized
manner. The algorithm must also be scalable. The message
and time complexity of computing the routing paths must
scale well with increasing number of nodes. Another
desirable property is robustness, which means that the
routing scheme should be resilient to node and link failures.
The scheme should also support new node additions to the
network, since not all nodes fail at the same time, and some
nodes may need to be replaced. In other words, the routing
scheme should be self-healing. The final and possibly the
most important requirement for a routing scheme for
wireless sensor networks is energy efficiency.

A previous study [2] showed that the minimum
spanning tree (MST)-based routing provides good perfor-
mance in terms of lifetime when the data are gathered using
aggregation. In that work, the authors proposed a new
centralized protocol called PEDAP. The idea in PEDAP is to
use the minimum energy cost tree for data gathering. This
tree can be efficiently computed in centralized manner
using Prim’s minimum spanning tree algorithm [3]. In
PEDAP-PA, the authors changed the cost of the links so that
the remaining energy of the sender is also taken into
consideration. Since the link costs vary over time, the
authors proposed recomputing the routing tree from time to
time using a power-aware cost function. By changing the
routing tree over time, the load on the nodes is balanced
and a longer lifetime compared to the static version is
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achieved. In this way, the lifetime in terms of the first node
failure is almost doubled.

The most important disadvantage of these two protocols,
however, is their centralized nature. In this paper, we
propose a localized version of PEDAP, which tries to
combine the desired features of MST and shortest weighted
path-based gathering algorithms. We also expand the idea
and propose a new family of localized protocols for the
power-efficient data aggregation problem. Our main con-
cern in this work is the lifetime of the network. We name
our new approach localized power-efficient data aggregation
protocol (L-PEDAP).

Our proposed routing approach consists of two phases
and satisfies the requirements stated above. In the first
phase, it computes a sparse topology over the visibility
graph of the network in a localized manner. In the second
phase, it computes a data gathering tree over the edges of
the computed sparse topology. The topology needs to be
efficiently computed by using only the one-hop neighbor-
hood information.

For the first phase, we test two different sparse
topologies in a distributed manner, namely, local minimum
spanning tree (LMST) [4] and relative neighborhood graph
(RNG) [5]. These structures are supersets of MST and can be
efficiently computed in a localized manner. For the second
phase, we propose three different methods and provide
performance results of them. All of the methods are based
on flooding a special packet using only the edges of the
computed structure. According to the decisions made
during this flooding process, the tree is yielded. These
three methods that can be executed at a node for choosing
the parent node toward the sink are to choose: 1) the first
node from which the special packet is received, 2) the node
that minimizes the number of hops to the sink, and 3) the
node that minimizes the total energy consumed over the
path to the sink.

Our solution can also handle new node arrivals and
departures of existing nodes. Hence, it is adaptive. The
routing path is maintained when those dynamic conditions
occur. We also propose power-aware versions of our
protocols that consider the dynamic changes in the
remaining energy levels of nodes while constructing the
sparse topologies and routing trees.

We also derive a new theoretical upper bound for the
lifetime in terms of the first node failure. We used this
upper bound to see how close our protocols are to the
theoretical limit. The simulation results showed that our
protocols can achieve up to 90 percent of the upper bound.

The rest of the paper is organized as follows: Section 2
defines our system model and describes the problem we
solve. Section 3 briefly discusses the related work. In
Section 4, we give a theoretical analysis about the lifetime.
In Section 5, we describe our solution in detail. In Section 6,
we present our comprehensive set of simulation results.
Section 7 concludes the paper and discusses some future
directions of research. Preliminary conference version of
this paper appeared in [6].

2 SYSTEM MODEL AND PROBLEM STATEMENT

The following are our assumptions about the features of
sensor networks and application scenarios we consider in

this paper. The sensor nodes are homogeneous and energy
constrained. Sensor nodes and sink are stationary and
located randomly. Every node knows the geographic
location of itself by means of a GPS device or using some
other localization techniques [7], [8]. Every node senses
periodically its nearby environment and has data to send to
the sink in each round. The nodes have a maximum
transmission range denoted by R. Sensor nodes are thus
normally not in direct communication range of each other.
Therefore, applying centralized approaches will have a high
communication cost for gathering network information at a
node. Data aggregation is used to reduce the data volume.
We assume a perfect aggregation or correlation of data
which means that combining n packets, each packet being
of size k, results in only one packet of size k. We also
assume that the sensing period (the duration of a round) is
much larger than the time required for transmitting all the
information from all nodes to the sink.

2.1 Problem Statement

We model the reachability in a sensor network using a
visibility graph G = (V, E), where V is the set of sensor
nodes and the base station, and F is the set of edges e;;,
where the distance between node i and j is smaller than the
maximum transmission distance R. In the application
scenario, we consider that for this network model (called
the unit disk graph model), sensor nodes periodically sense
the environment and generate data in each round of
communication. Given a routing plan, each sensor node
receives the data from its children, aggregates them into one
single packet, and sends the packet to the next node on its
way to the sink. Instances of such an application can be
event (fire and intrusion) detection systems (starting from
all the sensors located near an event) or average data
(temperature and humidity) extraction systems (where all
active sensors can participate).

The problem is to find an energy-efficient routing plan
which maximizes the network lifetime. The routing plan
determines for each node the incoming and outgoing
neighbors for data forwarding and aggregation. In other
words, a tree spanning all the nodes must be found as the
routing plan. The routing scheme should also include
mechanisms to handle node failures and support new
node arrivals.

In the context of sensor networks, the network lifetime
can be defined in various ways. One of the definitions can
be the time elapsed in terms of rounds until the first node
depletes all of its energy, as investigated in Section 2.2. This
metric is appropriate to measure the load balancing feature
of a routing algorithm. So, if the energy is balanced well
among the nodes, the time until the first node drains out its
energy will be maximized. Another alternative definition
can be the time elapsed until the network is partitioned so
that some of the alive sensor nodes cannot transmit their
data to the base station. With this metric, one could measure
how the bottleneck nodes are handled. If the network
becomes partitioned quickly, it means that the energy
expenditure of the bottleneck nodes is not managed well. It
is desirable that a routing scheme considers several lifetime
definitions and provide reasonably good results for them.
In our work, we provide results related to both of the
definitions mentioned above.
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2.2 Energy Consumption Model

There are different models proposed for modeling energy
consumption in sensor nodes. Here, we use the first order
radio model proposed in [9]. In this model, the energy
consumed to transmit a k bit packet to a distance d
(denoted as FEj;) and the energy consumed to receive a k
bit packet (denoted as E,;) are given as follows:
Ey.(k,d) = ak + bkd", E,.(k) = ck. In this model, ¢ and ¢
are the energy consumption constants of the transmit and
receiver electronics, respectively, and b is the energy
consumption constant for the transmit amplifier. There
are various studies in the literature based on this model.
Heinzelman et al. [9] propose and use this model,
assuming that a = ¢ =50, b = 0.1, and n = 2. On the other
hand, in [10], (a+¢) =2 x 10%, b =1, and n = 4.
According to our model, if we express the total energy
cost of transmitting a k bit packet from a node i to a
neighboring node j as Cj;(k), then C;;(k) is given as follows:
Cij(k) = ak + bkd};, if jis sink, (1)
= (a + ¢)k + bkd}};, otherwise. (2)
The costs of transmission of one packet to another node
and to the sink are different, since the sink has no energy
constraints and its cost for receiving messages is ignored.
We are assuming that we are routing the data packets on
a tree rooted at the sink. Hence, a sensor node receives data
from several children and transmits to a single parent after
aggregation. Therefore, the total energy consumed at a
node i (w;(k)) for receiving a k bit packet from its children
and for sending the packet to its parent is given as:
wi(k) = &f ck + ak + bkd}};, where 6] denotes the in-degree of
node ¢ in the given routing tree. Thus, there are two
parameters that affect the energy consumption of a node:
the in-degree of the node and the distance of the node to its
parent. Nodes with high in-degrees could quickly drain
their energies. Since distance has a power of n, the increase
in load is exponential when the distance is increased.
Therefore, to obtain a routing tree that is maximizing the
lifetime, we have to balance the energy load among the
nodes, and we have to try to minimize the degree for a
node while minimizing the distance the node will transmit.
If we use a static routing tree, the lifetime of a node
(L;) and the lifetime of the network (L) can be given in
terms of rounds as follows: L; = Ey/w;, L = min(L;), where
Ey is the initial energy of the nodes (assuming that all
nodes have the same initial energy). So, in order to
maximize L, we have to choose the routing tree which
maximizes the minimum L; value.

3 RELATED WORK

3.1 Routing Protocols

There exist several routing protocols for data gathering
without aggregation. The majority of them use the shortest
weighted path approach using several combinations of
transmission power, reluctance, hop count, and energy
consumption metrics [11], [12], [13], [14]. The classical
routing algorithms such as AODV [15] or Directed Diffu-
sion [16] can be considered also for this case.

There are also a number of protocols for data gathering
with aggregation. Most of them are centralized approaches
and assume that all the sensor nodes are in direct
communication range of each other and the sink. Kalpakis
et al. [17] propose a linear programming solution to
maximize the lifetime. The solution provides near-optimal
results. However, their approach has high computational
cost and must be applied in a central location. Heinzelman
et al. [9] propose a distributed two-level hierarchy called
LEACH. In this protocol, sensors randomly decide whether
or not to become clusterheads. If not, they join the nearest
clusterhead and transmit sensed data to it. Clusterheads
aggregate collected data and transmit directly to the sink.
Since LEACH protocol relies on randomization, it is far
from being optimal. Lindsey and Raghavendra [18] pro-
posed PEGASIS protocol in which the sensors are organized
into a chain by a centralized algorithm. They transmit to
each other along the chain, aggregate received data, and last
sensor in the chain transmits to the sink. This approach is
also not very efficient, since the transmission distances can
be quite long and finding a minimum distance chain is NP-
complete (traveling salesman problem). Also, the delay is
another problem for PEGASIS.

There are also algorithms in the literature that take the
data growth factor into consideration, where data may not
be perfectly aggregated. The purpose of these papers is to
provide an optimal routing solution which is adaptive to
the data growth factor. Hua and Yum [19] described an
algorithm for joint optimization of routing and data
aggregation. Row data are sent to downstream neighbors.
The receiving neighbor encodes the data using local
information, with certain compression rate. Transit data
(already compressed by upstream neighbors) are directly
forwarded to the next-hop neighbors. Therefore, data
aggregation is done only by neighbors of measuring
sensors, and the size of aggregated data varies. This
problem statement and the model are different from the
ones used in this paper. Upadhyayula and Gupta [20]
proposed a combination of single-source shortest path
spanning tree and minimal spanning tree algorithms to
construct optimal data aggregation tree which controls
latency by limiting the number of children of each node
while optimizing energy consumption. Constant data
growth factor spans aggregation level from no aggregation
to full aggregation at each intermediate node. Although the
problem statement is more general than the one in this
papet, their algorithm is centralized. One important point is
that the authors consider MST as optimal solution in perfect
correlation case. Park and Sivakumar [21] optimized
number of messages sent while aggregating data originat-
ing from k of the n sensors, with various data growth
factors. Their solution aggregates correlated data from
neighboring sources at nodes of minimum dominating set
(MDS). It then creates shortest path of MDS nodes tree by
basic flooding. We consider perfect correlation with k = n.
For this case, the work in [21] reduces to a constant number
of messages (one per each sensor) and does not consider
energy optimization.

In [2], Tan and Korpeoglu showed that their protocol
PEDAP, which routes the packets on the edges of an MST,
improves the system lifetime dramatically compared to its
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Fig. 1. Comparison of different topologies. (a) MST. (b) LMST. (c) RNG.

alternatives. PEDAP protocol uses the link costs given in (1)
and (2) and computes the minimum energy cost tree by using
Prim’s MST algorithm. PEDAP protocol differs from the
euclidean MST with only the degree of the sink. Fig. 1a shows
this difference. Fortunately, for the nodes, the properties of
the euclidean MST are conserved. For example, the degree of
the nodes (except the sink) is at most 6. Also, as stated in [22],
the longest edge in the euclidean MST is the minimum
common transmission range for network to be connected. So,
the transmission distances are also optimal for the nodes
routing using PEDAP. As shown in Section 2, the energy load
of a node (w;) is directly related with its degree and the
distance to its parent, and PEDAP balances these parameters
well. Also, PEDAP consumes the minimum amount of energy
in a single round. Moreover, the authors also propose a
power-aware version of their protocol, which they call
PEDAP-PA. This protocol provides near-optimal lifetime
for the first node failure by sacrificing the lifetime for the last
alive node. The idea behind PEDAP-PA is to use a power-
aware cost function for a link that considers the remaining
energy of the sender. Specifically, the cost function is:
C}; = Cij/ri, where r; is the normalized remaining energy of
node i. This cost metric is not symmetric. It is used by anode j
when looking for candidate neighbor i on route toward sink.
The PEDAP-PA algorithm simply finds the minimum
spanning tree with these link costs. In order to balance the
load, itrecomputes the routing tree after a predefined number
of rounds.

Hussain and Islam [23] proposed energy-efficient span-
ning tree approach (EESR) which is similar to PEDAP-PA
but has some advantages over PEDAP-PA algorithm. For
instance, edge weight assignment used in EESR considers
both transmitters and receivers remaining energy levels.
With the edge weights they use, the algorithm prevents
transmitters and receivers from being overloaded. Another
advantage of it is dynamic determination of the duration of
recomputation period. The algorithm is, however, centra-
lized. MST-based structure is suitable for environments
where all the nodes have data to send and data can be
aggregated (fused) in the relay nodes. The drawback of
PEDAP and EESR protocols is the centralized nature of
MST and the lack of quick response to node failures.

Wu et al. [24] study the construction of a data gathering
tree to maximize the network lifetime, which is defined as
the time until the first node depletes its energy. Nodes do
not adjust their transmission radius to the distance to
neighbors (different from our model). The problem is

shown to be NP-complete. They design a centralized
algorithm which aims at finding a spanning tree whose
maximal degree is the minimum among all spanning trees,
since energy consumption at each node only depends on the
number of messages received from children nodes, that is,
on the number of children. Such tree then reduces the load
on bottleneck nodes.

3.2 Power-Efficient Topologies

There are many topologies proposed in the literature which
can be efficiently computed using the location information
of one-hop neighbors.

Rodoplu and Meng [10] proposed a localized topology for
estimating the shortest weighted path tree which they called
enclosure graph. An edge e;; is in the enclosure graph if and
only if the direct transmission between node i and node j
consumes less energy than the total energy of all links of any
path between them. The enclosure graph includes the
shortest weighted path tree, and thus, provides a good
performance when it is used in routing without aggregation.

The topologies that we focus in this work are supersets of
euclidean MST. One of them is the RNG [5]. An edge e;; is
included in the euclidean RNG graph if there are no nodes
closer to both nodes ¢ and j than the distance between nodes
i and j. That is, an edge e;; remains inARNG if it does not
have the largest cost in any triangle ikj, for all common
neighbors k. The euclidean MST of a graph is a subgraph of
its RNG.

Li et al. [4] propose a neighborhood structure called local
MST (LMST) as an alternative topology. LMST is computed
as follows: First, each node determines its one-hop
neighbors and computes an MST for that set of nodes,
based on the distance between nodes as the weight of the
edges. After computing the MST of the neighbors, each
node i selects the edges (e;;) where node j is a direct
neighbor of node ¢ in its MST. The resulting structure is a
directed graph. The structure can be converted to an
undirected one in two ways [4]. First way is to include
edge (e;;) only when both nodes ¢ and j include that edge
(LMST™). The second way is to include that edge when
either node i or node j includes it (LMST™). In this work,
we choose to use LMST™ in our simulations, but our
algorithm can support both.

There are some desirable properties of the LMST structure
which make using the structure in the context of sensor
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networks advantageous. MST of a graph is a subgraph of its
LMST and the LMST is a subgraph of its RNG [25]. The
maximum degree of a node is bounded by 6. This is a
desirable property since the load of a node is directly related
to the degree of the node, as shown in Section 2. In [4], the
authors compare their LMST structure with the enclosure
graph and find out that the enclosure graph performs better
in terms of energy consumption. However, the comparison
did not consider the effect of data aggregation.

Although the RNG and LMST structures are defined
based on euclidean distances, they can be used with other
link cost functions as long as the functions are symmetric
[26], [27]. We can use, for instance, the cost function given in
(2), while computing the structures. Figs. 1b and 1c show
this case. For the rest of the paper, if we mention MST,
LMST, and RNG, we mean the structures that are computed
using the link costs given in (1) and (2). They resemble the
original MST, LMST, and RNG structures, except replacing
some links by direct links to sink (the effect of adding (1)).
However, the structure may become considerably different
in the whole network, if a cost function that depends on
nodes’ remaining energies is used to define them.

An important advantage of using structures like RNG
and LMST is that they can be constructed very efficiently
in a localized manner. Node deletions and additions do
not globally change the structure. Only local changes in the
structure are required and they can be efficiently com-
puted when a node fails or when a new node is introduced
to the network.

4 LIFETIME ANALYSIS

In this section, we derive a theoretical upper bound for the
lifetime of the first failing node in a sensor network using
tree-based routing. This upper bound will be used to test
the performance of our protocols against a theoretical limit.

Theorem 4.1. The lifetime of a sensor network (L) in terms of
first failing node is bounded by L = nEy/|Tyinl|, where | Ty
is the minimum possible total energy consumption for a round
that can be achieved.

Proof. Let T, be the tree that gives the minimum total
energy consumption for any round. That is, it is a fixed
tree which minimizes the total energy consumption for
the network. This tree can be derived from the minimum
spanning tree algorithm [3] by using the cost functions
given in (1) and (2).

Let |T,n| be the total energy expenditure in using
Tonin as the routing tree. We can state that in any round,
the total energy consumption is > [T, |.

Although the routing trees may change in each round,
the total energy consumption in L rounds is always
> L|T,,n|. This implies that there exists at least one node
whose energy consumption in L rounds is > L|T,y|/n.
Since energy of each node is limited by E,
L|Tin|/n < Ey. Consequently, L < nEy/|Tpinl- O

Thus, we can easily compute the upper bound L for any
sensor network, where we know the locations of the nodes,
by just computing T,;, which is the minimum spanning
tree with edge weights as in (1) and (2). The total cost of the
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minimum spanning tree gives us |T,,|, and since we know
n and Ejy, we can find the upper bound L.

For static routing tree approach, it seems to be very
difficult to achieve this upper bound, since the load on the
nodes cannot be balanced in a static tree. As we will see in
our simulations, the lifetime of a static method will be far
from being optimal.

In this paper, instead of using a static routing tree, we
propose dynamically changing the routing tree repeatedly
in order to balance the load among the nodes over the time.
Although optimal load balance (|T,,,|/n) cannot be
achieved for a single round, if we can use a good
randomization scheme, we expect maximum average value
for w; to become closer to |T,,,|/n, and consequently,
lifetime becomes closer to L.

As mentioned in Section 3, PEDAP-PA algorithm
recomputes the routing tree in every 100 rounds by using
an asymmetric cost function, by applying Prim’s minimum
spanning tree algorithm [3]. However, our algorithms need
a symmetric cost function to compute LMST and RNG.
Consequently, we changed the power-aware cost function
to the one given below for our dynamic case:

C:] = C,]/(T7 X Tj). (3)

For the rest of the paper, whenever we refer to PEDAP-D
or LMST-D, we mean the structures that are computed
using the link costs given in (3). Our simulation results with
these cost functions showed that our dynamic approach is a
good randomization scheme.

5 PROPOSED SOLUTION

Our aim is to combine the energy-efficient features of the
MST with the distributed nature of the shortest weighted
path-based routing schemes, in order to efficiently and
locally compute the routing paths that can also provide a
superior network lifetime.

5.1 Our Approach

Our approach for solving the aggregation and routing
problem consists of two phases: topology construction and
aggregation/routing tree computation.

5.1.1 Topology Construction

In this phase, we aim to construct a sparse and efficient
topology over the visibility graph of the network in a
distributed manner. We have different alternatives for
sparse topologies that can be efficient for energy-aware
routing. In this work, we choose to investigate the use of
RNG and LMST and compare their relative performance.
We expect that LMST performs better than RNG because it
is sparser. However, there are some aspects that make RNG
and LMST comparable. First, the computation of RNG is
more efficient than LMST. RNG needs only the location
information of one-hop neighbors, whereas LMST needs a
second message for informing about the LMST neighbors.
This second message contains the local MST neighbors of
the nodes, and hence, it is larger in size compared to the
first message which contains only the location information.
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Fig. 2. Comparison of different route computation techniques. (a) LMST. (b) Shortest path on LMST. (c) Minimum hop path on LMST.

On the other hand, one advantage of LMST is that it can
approximate MST well especially when the density is high.

In both topologies, we can also use the power-aware cost
functions, and consequently, we can efficiently approximate
PEDAP-PA. Figs. 1a, 1b, and 1c show MST, LMST, and
RNG structures. As seen in the figure, LMST is sparser than
the RNG structure. Both can use the same cost functions ((1)
and (2)) used in PEDAP.

5.1.2 Routing Tree Computation

There are several methods for obtaining a tree structure
(spanning all the nodes) given a graph. In this work, we use
a flooding-based tree construction algorithm. A special
route discovery packet is broadcasted by the sink and when
a node receives that packet, it decides its parent according
to the information in the packet. After selecting the parent,
it rebroadcasts the packet. The details will be given in
Section 5.2. Here, we investigate the efficiency of three
different methods: first parent path method (FP), nearest
minimum hop path method (MH), and shortest weighted
path (i.e., least cost) method (SWP).

The FP method is the simplest among the three. In this
method, a node will set its parent as the first neighboring
node (among neighbors in selected sparse structure) from
which the special route discovery packet was received. In
the MH method, the node chooses its nearest neighbor
among those with minimum hops to reach to the sink. So,
the node updates its parent only if the sender node has a
smaller hop count or has the same hop count as the current
parent, but it is closer than the current parent (among
neighbors in selected sparse structure). Otherwise, the
packet is ignored. The SWP method tries to yield a tree
that minimizes the cost of reaching the sink for each node.
The details will be given in the next section.

At first glance, we expect these three algorithms to give
almost the same performance for approximating the
minimum spanning tree, since the topologies are sparse
enough. However, this is not always the case. Since we use
a cost function that uses a power of the distance, minimum
hop method cannot give always the most efficient tree.
Intermediate nodes at closer distances can make the packet
transmission more efficient [12]. Consider the LMST of a
sample network given in Fig. 2a. Note that the sink is at the
center. Only one edge removal yields a tree. As shown in
Fig. 2¢, the longest edge is kept by the minimum hop
method since choosing that edge reduces the hop count of

children nodes toward the sink. However, the shortest path
algorithm yields the same tree as MST since having closer
nodes reduces the total transmission cost especially when
the power of the distance is high, and consequently, longer
paths in terms of hop count can be more efficient than the
shorter ones.

5.2 Algorithm Details

In our proposed routing scheme, at any time, each sensor
node has to know its all one-hop neighbors and their
locations, the neighbors on the computed topology, the
parent node that it will send the data to in order to reach the
sink, and the child nodes that it will receive the data from
before it sends the fused or aggregated packet to its parent
node. Our solution consists of three parts: Route Computa-
tion, Data Gathering, and Route Maintenance.

5.2.1 Topology and Route Computation

The main goal in this phase is to find a sparse topology and
set up the routes over it, which means determining the
children and parent nodes for each node. At the end of this
phase, a data aggregation tree rooted at sink is constructed.
The pseudocode for this phase is given in Algorithm 1.

Algorithm 1. Topology and Route Computation
1: Send HELLO message
: Collect HELLO messages for tpeo
: Reset Parent (7 «— null)
: Compute neighbors on the sparse topology
: while ROUTE-DISCOVERY packet RD received
in tdiscove,ry do
if update required for RD then
Update parent (7 < source(RD))
Broadcast ROUTE-DISCOVERY
end if
10: end while
11: Inform 7 to construct its child-list

Q= W N

Initially, the nodes and the sink are not aware about the
environment. In the setup phase, all nodes and the sink
broadcast HELLO messages, which include their location and
remaining energy, using their maximum allowed transmit
power. The remaining energy level is advertised only when
dynamic (power-aware) protocols are used. We give a time
threshold ¢y, for waiting advertisements, which must be
long enough to hear all possible advertisements. After
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receiving HELLO messages, allnodes are informed about their
one-hop neighbors and their locations and energy levels.
Each node can then locally compute its neighbors in the
desired sparse topology (static and dynamic versions of RNG
and LMST). After finding its neighbors in the sparse
topology, a node can join the distributed route computation
process in order to find its parent and children on the
aggregation tree.

The route computation is done via a broadcasting
process which starts at the sink node. The sink initiates a
ROUTE-DISCOVERY packet in order to find and set up the
routes from all sensor nodes toward itself. When a sensor
node receives a ROUTE-DISCOVERY packet, it broadcasts
the packet to all its neighbors on the computed topology if it
updates its routing table. By this way, the routing tree
rooted at the sink is established over the sparse topology.
An important energy conserving feature of our algorithm is
that the packet is sent with a power just enough for reaching
all the neighbors on the sparse topology instead of using the
maximum power.

Each ROUTE-DISCOVERY packet has three fields: a
sequence ID which is increased when a new discovery is
initiated by the sink, an optional distance field which shows
the cost of reaching the sink, and an optional neighbor list
field which is the list of the neighbors of the sending node
in the chosen topology. The distance field is not required if
FP algorithm is chosen. It holds the minimum number of
hops or minimum energy cost to reach the sink, respec-
tively, if MH or SWP algorithm is chosen. The neighbor list
field must only be used if the LMST topology is chosen. So,
if we use the FP on RNG topology, we can decrease the
message overhead. On the other hand, if we use SWP on
LMST, which gives the best performance in all cases
according to our experiments, we have to have some
overhead. But an important point to mention is that in our
approach, since the LMST computation is combined with
the route computation, no extra messages are used for
negotiation among LMST neighbors. Only overhead is the
size of the ROUTE-DISCOVERY packet.

Upon receiving a new ROUTE-DISCOVERY packet, the
sensor node ignores the packet if it is not coming from a
direct neighbor, in order to ensure using only the edges in
the computed topology.

After that, according to the routing strategy chosen, the
node decides whether or not to update its parent. If FP
strategy is used, the node updates the parent information
only if it has not a parent yet. In MH strategy, the node
compares its current parent with the sending node and
chooses the sender as its new parent if it has a smaller hop
count to the sink or has the same number of hops but is
closer to the node. And finally, if the SWP is chosen, the
node updates its parent only if the path using the sender
node is advantageous in terms of total energy consumption.
Regardless of the chosen strategy if the packet has a higher
sequence ID, the node directly updates its parent. If the
node decides to update its parent, it rebroadcasts the
ROUTE-DISCOVERY packet with updated fields. If in the
time threshold tg;scovery, NO other route discovery packets are
received, we can conclude that the route setup converged.

At this step, each node can inform its parent, in order to
construct the children list which will be used in data
gathering phase. After this final step, the data aggregation

tree is set up and stabilized. This means that each node
knows from which neighbors it will receive data and to
which node it will send the received data after aggregation.

5.2.2 Data Gathering

After the parent and children nodes for an individual
sensor node are determined, the node can join the data
gathering process. In data gathering phase, each sensor
node periodically senses its nearby environment and
generates the data to be sent to the sink. However, before
sending it directly to the parent node, it will wait all the
data from its child nodes and aggregate the data coming
from them together with its own data, and then, send the
aggregated data to the parent node. Thus, at the beginning
of data gathering step, only leaf nodes can transmit their
data to their corresponding parent nodes. At each step, the
data are gathered upward in the tree and reaches the sink
after h steps, where h is the height of the aggregation tree.
The reason for waiting to receive data from child nodes is to
use the advantage of the aggregation. In this way, each
sensor only transmits once in a round, and as a result, saves
its energy.

5.2.3 Route Maintenance

After setting up the routes, three events can cause a change
in the routing plan: route recomputation, node failure, and
node addition. We will discuss them separately.

Recomputation of the aggregation tree is required when
power-aware (dynamic) cost functions are used. In power-
aware methods, the tree must be recomputed at specified
intervals. Since the computation depends on the remaining
energy of nodes, each time the computation takes place and
a different and more power-efficient plan is yielded. In our
case, we handle this requirement by broadcasting a new
ROUTE-DISCOVERY packet with a new sequence ID.
Apparently, in order to utilize the power-aware methods,
each node must know the remaining energy levels of its
neighbors. In order to exchange the remaining energy
levels, we use HELLO messages. So, at the beginning of each
recomputation phase, the nodes advertise their remaining
energy levels. After that, ROUTE-DISCOVERY packet with a
new sequence ID can be broadcasted by the sink. It is worth
to mention that in order to achieve recomputation, each
node must know the predefined time (in terms of rounds) to
send HELLO messages.

Node failures can be due to various reasons. However,
the most critical reason is depletion of energy of a node.
Previous approaches (e.g., [9], [2], [18]) did not discuss the
node failure problem. In these approaches, however, a node
failure in communication phase will cause a routing
problem in which the descendants of the failed node cannot
send their data until next setup phase. In order to prevent
this, failures must be handled as soon as possible. In our
solution, we handle the case where failures are due to
energy depletion. However, the idea behind the solution
can be applied to other failure causes as well.

Failure of a node due to energy depletion can be handled
gracefully, since the node can predict that it will die soon
due to energy limitation. Algorithm 2 presents the route
recovery algorithm. In our solution, when a node’s energy
reduces below a threshold value, the node broadcasts a BYE
message using maximum allowed transmit power. All
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nodes receiving the BYE message will immediately update
their local structure. This message is not required to be
retransmitted since the node failures do not affect the
structure globally. However, in this case, the nodes that
cannot reach the sink because of the energy depletion of
their ancestor must find a new cost-efficient path to send
their packets. In our solution, this is handled in a localized
manner as follows: The child nodes of the failed node that
receive the BYE message reset their routing tables and enter
the parent-discovery phase by broadcasting a special
message PARENT-DISCOVERY to its neighbors on the
structure. According to the receiver of that special message,
if the sender is its own parent on the way to the sink, the
receiver also resets its routing table and broadcasts the
packet to its neighbors. In this way, all the nodes that
should enter the parent-discovery phase will be reached. If
the PARENT-DISCOVERY packet is received by a neighbor-
ing node of the sender and if it has a valid parent, the
receiver constructs a new ROUTE-DISCOVERY packet as
mentioned above and broadcasts it to the sender. This
ROUTE-DISCOVERY packet is handled as mentioned in
Section 5.2.1. It is worth to mention that the sequence ID in
this new packet is not incremented; therefore, the update of
the routing table takes place only when the newly received
cost is smaller. After the route discovery phase converges,
the new routes are set up and data gathering can continue.

Algorithm 2. Route Recovery
1: moq —
if BYE message B received then
remove source(B) from neighbor list
compute the sparse topology
if source(B) = 7 then
Reset parent (7 < null)
Reset child list
Broadcast PARENT-DISCOVERY message
Enter route discovery phase
1 end if
11: end if
12: if PARENT-DISCOVERY message PD received then
13:  if source(PD) = w then

e

14: Reset parent (7 — null)

15: Reset child list

16: Broadcast PARENT-DISCOVERY message
17: Enter route discovery phase

18: else

19: if 7 # null then

20: Send ROUTE-DISCOVERY

21: end if

22: end if

23: end if

24: if 7 # 7,4 then

25: Inform 7,y and 7 to construct their child-list
26: end if

Consider now the case of node additions. When a new
node is deployed, it broadcasts a HELLO message. Its
neighbors update their local structure upon receiving this
message and also inform the new node about their existence
and locations by replying a HELLO message so that the

TABLE 1
Comparison of Algorithms—Normalized Lifetime
N:100, R:20, 1:100, d:10

RNG LMST
n | SWP | MH FP SWP | MH FP
2 1 0917 | 0910 | 0.910 | 0.991 | 0.990 | 0.989
4 | 0.808 | 0401 | 0.384 | 0.907 | 0.744 | 0.737

newly deployed node can also determine its neighbors.
Nodes that update their local structure send back a ROUTE-
DISCOVERY packet including their costs to the newly
deployed node. The new node selects the most efficient
node as its parent and broadcasts this information by a new
ROUTE-DISCOVERY packet. Since the sequence ID is again
not incremented, the new packet is broadcasted throughout
the network only when using the new node is advanta-
geous. This final step can be avoided if FP method is used.
So, the newly added node just chooses its closest neighbor
as its parent and starts sending data.

6 SIMULATION RESULTS

In this section, we will first try to choose the best parent
selection strategy, and then, continue the experiments with
that strategy, since running the experiments with all
topologies and strategies will become too complicated.

For our scenario, there are three parameters that we can
change to see their effect: number of nodes N, maximum
transmission radius R, and side length of the square area .
One other parameter that depends on these three para-
meters and that gives direct intuition about the scenario is
the density d, which is defined as the average number of
neighbors per node. For the sake of completeness, we will
give the value of d for each scenario since it is immediately
very informative.

We generated a network with parameters N =100,
R =20m,l =100m = d = 10. On this network, we repeated
the experiments on LMST and RNG topologies with three
alternative parent selection strategies. We compared the
methods in terms of the lifetime they provide for the first
node (normalized lifetime) and how well they approximate
the PEDAP tree (approximation percentage). Normalized
lifetime is the ratio of the lifetime to the lifetime provided by
PEDAP for the same network, whereas approximation
percentage is the ratio of the number of common edges with
PEDAP tree to the total number of edges.

In Tables 1 and 2, we provide results of experiments that
compare the efficiency of three parent selection methods.
Here, n denotes the power of distance in the cost function.
We can conclude with these results that if the propagation is
free space (n =2), using FP algorithm on RNG can be
advantageous because the setup cost is minimal in that case
and the performance is almost the same as in the best
solution SWP on LMST (< 9 percent lesser lifetime). If
n = 4, however, choosing the shortest weighted path on
LMST gives considerably better performance in terms of
lifetime. We can also see that the difference among parent
selection strategies is more striking when n =4. These
results also show that the SWP strategy outperforms its
alternatives in each case. Therefore, for the rest of the
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TABLE 2
Comparison of Algorithms—Approximation Percentage
N:100, R:20, 1:100, d:10

RNG LMST
n | SWP | MH FP SWP | MH FP
2 | 0.686 | 0.682 | 0.666 | 0.897 | 0.895 | 0.894
4 | 0.825 ] 0.629 | 0.613 | 0.927 | 0.869 | 0.869

simulations, we always use SWP approach to compare the
performances of different topologies.

The rest of the simulations evaluates the performance of
our routing scheme. We conducted experiments with
different values of N, R, and . For each parameter, we ran
the experiments 100 times and obtained an average value for
the two evaluation metrics: First Node Failure Time (FNF)
and Network Partition Time (NPT). The initial energies of
the nodes were given as 0.5 J. For dynamic algorithms
(PEDAP-D, LMST-D, etc.), we used the power-aware cost
functions given in (3) and recomputed the routing paths
every 100 rounds. For transmission costs, we used the
parameters of the first order radio model given in [9]. In all of
the routing schemes, data aggregation is used at every step
for a fair comparison. Also, for all methods, the setup and
maintenance costs are not included in energy expenditures,
which means that only the cost of data packets is considered.
We used a fixed value of 1,000 bits for data packet size k.

In order to compare our algorithms based on LMST and
RNG, we also implemented the centralized PEDAP algo-
rithm and the shortest weighted path tree (SPT) as other
alternatives. With the dynamic versions, it adds up to eight
different methods to compare (PEDAP, LMST, RNG, SPT,
PEDAP-D, LMST-D, RNG-D, and SPT-D).

Since the most informative parameter for our scenarios is
d, we try to investigate the performances on different values
of d. However, there are three ways of changing d: for each
of the parameters N, R, and I, we can keep two of them
fixed and change the third one. One important point is that
in the rest of simulations, we give the results normalized to
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TABLE 3
Upper Bound for FNF—R:20, 1:100
N, d [ 50,5 | 100, 10 | 200, 20 | 500, 52 | 1000, 105
OPT | 4748 | 4949 5063 5125 5165

upper bound L which is computed as given in Section 4. In
all cases, we provide the actual values of L.

Consider the impact of the number of nodes N on the
lifetime. In Fig. 3a, we can see the normalized lifetimes for
various values of N in terms of FNF. Since the upper bound
for each case is different, we give the exact values of the
upper bound in Table 3. We can see that the upper bound
slightly increases with increasing N. We observe that the
effect of N is not much significant in static MST-based
approaches. For the static SPT approach, however, increas-
ing d decreases the lifetime of the system. This is mainly
because of the fact that the SPT approach cannot balance the
degree of a node. So, if N is increased, the maximum node
degree will also increase. However, in MST-based ap-
proaches, since the maximum node degree is bounded by 6,
the decrease is not much significant. On the other hand, in
all MST-based approaches, the maximum node degree is
increasing (from 3-4 to 4-5) with increasing d, and thus, the
network lifetime is slightly decreased when N is increased.

Next, we study the impact of NV on the dynamic versions of
algorithms (PEDAP-D, LMST-D, RNG-D, and SPT-D). When
N increases, the lifetimes increase until reaching a maximum
and decrease afterward. Since the dynamic versions of the
algorithms almost balance the degree among the nodes, this
behavior is due to the distances between the neighbors. In
low-density case, the distances are long, and since the
overhead because of the distance is exponential, the lifetime
is far from being optimal. As d increases, the average distance
among the nodes becomes closer to the optimal distance—
which may be the same as given in [12], [28]. After some point,
however, the decrease in distances has a negative effect due to
the constant cost of wireless transmission. So, we can
conclude that using too many nodes is not always very

Timings of Network Partition - R:20, I=100
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Fig. 3. Effect of number of nodes on network lifetime for various data gathering schemes. (a) Normalized FNF timings versus (IV, d). (b) Normalized

NPT timings versus (X, d).
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Timings of First Node Failure — N:100, 1:100
90 T

Timings of First Node Failure — N:100, :100
120 T

Fig. 4. Effect of transmission radius on network lifetime for
(b) Normalized NPT timings versus (R, d).

effective in providing longer network lifetime. If we compare
RNG- and LMST-based approaches, RNG gives very close
results with LMST, but LMST performs always slightly better
than RNG. At their best, both PEDAP-D and LMST-D achieve
90 percent of the upper bound.

In Fig. 3b, the lifetimes in terms of network partition time
are given, normalized to the values given in Table 3. Again,
as expected, the lifetime improves with increasing d in static
versions of the protocols. However, for the power-aware
(dynamic) methods, the increase is smaller. This is
explained by the fact that in order to provide longer
lifetime in terms of FNF, the system uses more resources.

The lifetimes for different R values are given in Figs. 4a
and 4b. As can be seen in Fig. 4a, increased transmission
radius dramatically reduces the lifetime of the dynamic
methods after some point. The maximum value is achieved
when R = 25 m. This can be explained by the effect of the
distance to parent. With increasing R, although there exist
more alternative nodes to choose, the average distance of

Timings of First Node Failure — N:100, R:20
100 T

I I
2514 30,21

(b)

L
20,10

various data gathering schemes. (a) Normalized FNF timings versus (R,d).

the alternatives also increases. So, the nodes will tend to
send to long distances as the residual energy of the neighbor
nodes decreases, and this will cause a decrease in FNF. So,
we can say that increasing the radius above some point has
an inverse effect on lifetime for our dynamic approach. The
dynamic versions may give the best performance when R is
chosen equal to the same optimal distance mentioned
above. One important point here is that the upper bound
for the lifetime is always the same in this scenario, since
increasing R does not affect the MST topology. On the other
hand, similar results are observed for the network partition
times as in the previous case (Fig. 4b).

Another scenario that changes the density is increasing
the area size while keeping graph with parameters N and R
the same. Fig. 5a shows the normalized simulations results
for this case. The upper bounds of each specific case are
given in Table 4. The optimal value of the same graph is
decreasing with increasing area size, since the average
distance among the nodes is increasing. However, if we

Timings of Network Partition - N:100, R:20

130 T
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Fig. 5. Effect of area size on network lifetime for various data gathering schemes. (a) Normalized FNF timings versus (/, d).

timings versus (I, d).
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TABLE 4
Upper Bound for FNF—N:100, R:20
I,d | 50,33 | 75,17 | 100, 10 | 125,6 | 150, 4
OPT | 5871 5256 4983 4776 | 4576

normalize the lifetime, we observe that for the static
methods, the normalized lifetime is slightly increasing with
decreasing density. If the dynamic versions are examined,
above some density, the PEDAP-D and LMST-D methods
can achieve 90 percent of the upper bound. With decreasing
density, after some point, the lifetime decreases dramati-
cally. This is expected since when there are more alternative
neighbors to choose, our dynamic version can balance the
load among the nodes. If the density is low, the number of
alternative routing trees becomes also small. This fact
combined with the distance effect reduces the system
lifetime considerably on wide networks. The reason of the
decrease in lifetime on high-density networks is that as the
area size becomes smaller, the effect of the distance gets
smaller. Similar to the first scenario, the degree plays more
important role to determine the lifetime. So, as in the first
case, the maximum degree is increased slightly and the
overall lifetime decreases.

We can observe similar result also for the NPT timings
(Fig. 5b). As the area enlarges, connectivity decreases, and
distances get longer. This leads to a decrease in NPT timings.

7 CONCLUSION

In this paper, we presented a new energy-efficient routing
approach that combines the desired properties of minimum
spanning tree and shortest path tree-based routing schemes.
The proposed scheme uses the advantages of the powerful
localized structures such as RNG and LMST and provides
simple solutions to the known problems in route setup and
maintenance because of its distributed nature. The pro-
posed algorithm is robust, scalable, and self-organizing. The
algorithm is appropriate for systems where all the nodes are
not in direct communication range of each other. We show
through simulations that our algorithm outperforms the
shortest weighted path-based approaches, and can achieve
90 percent of the upper bound on lifetime.

One important contribution of this paper is the easily
computable theoretical upper bound. By using this value, we
can see how good a data aggregation protocol is. The
simulation results showed that the SWP over LMST approach
is the best among our new family of protocols and by using
this approach, one can achieve almost the same performance
with the best known centralized solution PEDAP.

Another important result is that dynamic methods tend
to increase both FNF and NPT timings especially in
reasonable densities for sensor networks (d < 15). This
means that dynamic methods can balance the energy
expenditure among the nodes well while providing good
lifetimes for bottleneck nodes.

As a result of the experiments, we also conclude that
increasing the node density up to some point results in
higher system lifetime. However, after this point, high
density leads into poor network performance. With this
result, we can see that there should be an optimal density
which gives the maximum possible performance.

Although in this work, we have used 100 rounds to
recompute the aggregation tree as in PEDAP-PA, it is worth
to mention that the period of the recomputation is an
important factor for achieving long lifetimes. With a small
period, we can achieve a good balance among the nodes,
whereas we have larger overhead due to control packets.
Determination of the optimal recomputation period needs
complex mathematical analysis, and it is beyond the scope
of this work. An example of changing recomputation period
dynamically in a centralized solution can be found in [23].

The area size and the maximum transmission range are
usually set by the application itself. It is an interesting open
problem to theoretically derive the optimum number of
nodes for given R and [. Also, based on this result, one
could combine our method with some sort of sleep
scheduling algorithm to get a performance increase on
high-density networks. So, if a sleep scheduling algorithm
[29] recomputes the roles of the nodes periodically, the
same period can be used to recompute the routing tree
spanning only the active nodes with our protocols. More-
over, with the advantage of using periodic recomputations,
our dynamic methods can be used efficiently in such a
scenario. One can also investigate the application of
connected dominating sets (CDSs) [30] to limit internal tree
nodes to such a set, and rotating periodically these sets.
Tree computation via broadcasting is possible only via
nodes in CDS, and leaves can even sleep temporarily while
data are being gathered.

We did not measure the cost of setup and maintenance.
However, our motivation is exactly to address this setup
cost and maintenance cost by proposing localized solutions.
Almost all existing papers do ignore these costs by
describing centralized solutions, without even mentioning
the communication overhead involved in gathering needed
information. In our study, measuring this cost would be
even counterproductive. This cost in our approach is
negligible compared to the same cost in existing algorithms
which are centralized. By ignoring this cost, we were able to
conclude that our localized solutions perform almost as
well as centralized, and with over 90 percent.
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