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Abstract

The existence of a high degree of free riding is a serious threat to Peer-to-Peer (P2P) networks. In this paper, we propose
a distributed framework to reduce the adverse effects of free riding on P2P networks. Our solution primarily focuses on
locating free riders and taking actions against them. We propose a framework in which each peer monitors its neighbors,
decides if they are free riders, and takes appropriate actions. Unlike other proposals against free riding, our framework
does not require any permanent identification of peers or security infrastructures for maintaining a global reputation sys-
tem. Our simulation results show that the framework can reduce the effects of free riding and can therefore increase the
performance of a P2P network.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Peer-to-Peer (P2P) computing paradigm has
attracted a significant amount of interest because
of its capacity for resource sharing and content dis-
tribution. Although there are different architectural
designs and applications for P2P computing, file
sharing is the most commonly used application; in
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nearly all P2P file sharing systems files are stored
at peers, searched through the P2P network mecha-
nisms, and exchanged directly between peers using
the underlying network infrastructure and its proto-
cols. In the ideal case, a file that is downloaded by a
peer is automatically opened for sharing with other
peers. However, peers may be reluctant to share a
downloaded file to save their own resources. There-
fore, the primary property of P2P systems, the impli-
cit or explicit functional cooperation and resource
contribution of peers, may fail and lead to a situa-
tion called free riding.

As a P2P concept, free riding means exploiting
P2P network resources (through searching, down-
loading objects, or using services) without contrib-
uting to the P2P network. A free rider is a peer
that uses the P2P network services but does not
.
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contribute to the network at an acceptable level. A
contributor, on the other hand, is a peer that con-
tributes to the network by sharing its resources with
other peers.

Researchers have observed a high degree of free
riding in P2P networks, and they argue that it is
an important threat against efficient operation of
P2P networks [1,12]. Free riding causes several neg-
ative side effects. In a free riding environment, a
small number of peers serve a large number of peers;
many download requests are directed towards a few
serving peers and this may lead to scalability prob-
lems [3]. This also leads to a more client–server like
paradigm [8,9] and adversely affects P2P network
advantages. For example, the fault-tolerance prop-
erty of P2P networks may be weakened when a very
small portion of the peers provides most of the con-
tent. Renewal or presentation of interesting content
may decrease in time, and the number of shared files
may grow very slowly. The quality of the search
process may degrade due to an increasing number
of free riders on the search horizon. As the peers
age in the network, they may stop finding interesting
files and may leave the system for good with all the
files they shared earlier [3,10]. Moreover, the large
number of free riders and their queries will generate
a lot of P2P network traffic, which may lead to deg-
radation of P2P services. Furthermore, underlying
available network capacity and resources will be
occupied by free riders; this will cause extra delay
and congestion for non-P2P traffic.

Our focus in this paper is unstructured (pure)
P2P networks, specifically the Gnutella network
[17], and we provide a remedy to free riding in such
networks. In an unstructured P2P network, there is
no central coordination and central indexing mech-
anism for shared resources [4,24,25]. No peer has a
global view of the network, and global behavior of
the network emerges from local interactions. While
these features enable unstructured P2P networks to
be very successful, they also bring some problems.
Among the problems of such networks is the so-
called reputation problem. In an unstructured P2P
network, peers interact with unknown peers and
have no information about their reputations. In
other words, they do not know to what extent they
can trust the other peers and the data provided by
them. As a result, it is not easy to detect free rider
peers and act against them.

Our proposed framework consists of two mecha-
nisms. The first mechanism is to be used for locating
and detecting free riders. The second one is pro-
vided to take discouraging counter-actions against
free riders. The mechanisms are distributed and
localized, where each peer is only required to mon-
itor its neighbors and make decisions and take
actions based on this localized monitoring. Our
solution also requires minimal changes to the cur-
rent protocol processing rules and it does not
require any architecture changes. As opposed to
many solutions that execute the counter-actions at
the download request phase, our solution executes
some counter-actions at the query forwarding
phase, i.e. during the search operation. In this
way, our solution reduces not only the downloads
performed by free riders, but also the query mes-
sages flowing in the network due to free riders. This
considerably reduces the network traffic overhead.

Free riders can conceive various attacks to bypass
our framework. For example, to cheat the detection
mechanism free riders may behave as if they share
files by submitting fake query hit messages or by
sharing fake files. To avoid the counter-actions free
riders can continuously change their neighbors. We
provide a detailed discussion on possible attacks
and how the proposed framework copes with them.
Simulation experiments prove that most of the possi-
ble attacks cannot render our mechanisms obsolete.

The organization of the paper is as follows. In
Section 2, we discuss the related work. The mecha-
nisms used for locating free riders and taking
actions against them are described in Section 3.
The simulation model used in performance experi-
ments and the results obtained are presented in Sec-
tion 4. We discuss some possible attack scenarios
from free riders to our framework and provide some
possible solutions in Section 5. Finally, in Section 6,
we summarize our conclusions.

2. Related work

Adar and Huberman were the first researchers to
extensively analyze the user traffic on the Gnutella
network and to point the high level of free riding
[1]. They found out that 70% of the peers do not
share any files at all. Furthermore, 63% of the peers
who share some files do not get any queries for these
files. It is interesting that 25% of all the peers pro-
vide 99% of all the query hits in the network.

After Adar and Huberman’s work, there have
been other studies observing free riding in P2P net-
works [9,37–39]. In general, the results indicate an
increasing level of free riding. For example, Hughes
et al. observed that 85% of peers share no files at all
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[37]. Similarly, Yang et al. reported a high level of
free riding in the Maze P2P network in spite of
the incentive mechanism provided by the system
[38]. Recently, Handurukande et al. observed free
riding in eDonkey P2P network and concluded that
the free riding phenomenon is common to most
Peer-to-Peer file sharing systems, and the eDonkey
P2P network is not an exception [39].

Some researchers have attempted to solve the
free riding problem by following incentive-based
approaches. For example, in [3], Ramaswamy and
Liu propose calculating a utility function for each
peer in order to estimate its usefulness to the whole
community. With this method, free riders cannot
download files from the system if their utility value
is lower than the size of the requested file. The pro-
posed solution depends on accurate information
about peers which is provided by the peers them-
selves. Such a P2P network can be cheated by mali-
cious client programs. Therefore, this method
cannot fully prevent free riding. Any method to pre-
vent free riding should be designed so that it does
not solely depend on user-submitted information,
or it should create incentives for the peers to report
accurate information [9,18,19]. As another example,
Vishnumurthy et al. [13] suggest using a single scalar
value called Karma to evaluate a peer’s utility to a
system as in [3]. A peer’s account is replicated by
a group of peers, called the bank-set, in order to
secure the Karma against tempering or being lost.
Each of the above schemes that depends on micro
payments has limitations when applied to many
common P2P network architectures [11,21,36] due
to the requirement of an infrastructure for account-
ing. In general, incentive schemes based on persis-
tent identifiers are complicated by the anonymity
of peers, by collections of widely dispersed peers,
and by the ease with which peers can modify their
online identity [11,21,36]. For example, to make
the scheme work, a group of peers must be known
to store Karma value. Whenever a peer’s Karma
changes, a predefined number of these peers should
be reachable. Therefore, the identification of the
peers should be known and be permanent. How-
ever, unstructured P2P networks do not support
permanent and reliable identification mechanisms.

In our work, we do not propose to use any scor-
ing value for a peer’s utility to the system. Thus, we
do not have to bother with storing, retrieving, and
saving a utility value. Each peer just stores informa-
tion about the neighbors’ messages which are routed
through it. Furthermore, we do not require the
explicit cooperation of any group of peers to make
the system work. Each peer executes the same kind
of mechanisms alone and does not depend on any
other peer’s cooperation. Our approach can be
implemented on both types of P2P networks, i.e.,
structured and unstructured. In this work, we focus
on implementing it on unstructured P2P networks.

There are a number of reputation systems, such as
[33–35], proposed to form a basis of an incentive sys-
tem and to assist peers in their decision making while
interacting with other peers. Tracking peer reputa-
tions in decentralized P2P networks may be prob-
lematic due to lack of a central authority. In the
proposed solutions a certain amount of centraliza-
tion is required to realize the reputation system,
which contradicts with the principles of unstructured
and decentralized P2P networks, such as Gnutella.
The main difference between these approaches and
our proposal is that our mechanisms are fully decen-
tralized and distributed conforming to the principles
of unstructured decentralized P2P networks.

In [26], the authors propose an incentive model,
SLIC, to encourage cooperation in unstructured
P2P networks, which also depends on the local
interactions of peers. In SLIC, each peer assigns
and updates weights to its neighbors based on the
number of query hits it receives via its neighbors.
Those weights determine the amount of messaging
capacity assigned to each neighbor. Our framework
does not do such a capacity assignment for neigh-
bors. Instead, it focuses on detection of neighbors
that are free riders and taking counter-actions
against them. Moreover, our framework counts
both query hits and query messages, and considers
also the originator and receiver of these messages.
Based on these information peers make a decision
about their neighbors. Our framework also catego-
rizes the free riders into several categories. This
enables us to apply several different counter-actions
that are tailored to the types of free riding. Addi-
tionally, while we assess the contribution of each
individual neighbor to the monitoring peer and
the overall system, SLIC evaluates the contribution
of the sub-network reachable via each neighbor.

3. Our framework and mechanisms against free riding

In our framework against free riding, peers’ con-
tribution to the network will be monitored; if they
want to use the network’s services and resources,
they will be forced to act cooperatively. The goal
of our framework, however, is not to eliminate all



1 Due to the power-law distribution of node degrees observed
in P2P networks [6], we expect the average number of neighbors
of a peer to be around 3–4, and therefore the overhead imposed
by the solution on each peer will not be very large. Even if the
number of neighbors is larger than the average, the space and
processing requirements are very low.
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possible kinds of free riding. For example, we do
not aim to promote or enforce new content contri-
bution by peers, as this may not be feasible. Our
low-overhead framework aims to improve the cur-
rent situation and reduce the ill-effects of free riding
by detecting free riders and reducing the amount of
service they get from the network. In this way, peers
will be indirectly forced to cooperate in order to use
the services a P2P network provides.

3.1. How an unstructured P2P network operates

Before going into details about the proposed
mechanisms, we would like to summarize the impor-
tant components and processes in an unstructured
P2P network. Gnutella [17] represents an important
class of these P2P networks. Below we mainly use
the Gnutella protocol for explaining operations in
unstructured P2P networks.

In an unstructured P2P network, to become a
member of the network, a user (peer) has to open
one or more connections with other peers that are
already in the network. Once connected to the net-
work, the user can search the network by sending
a Query message (request) to its neighbors. Each
neighbor then forwards the request to all its neigh-
bors, and these peers in turn forward the request,
and so on, until the message is forwarded by a pre-
determined number of ‘‘hops” from the sender. To
restrict the broadcasting of a Query message, the
number of hops is controlled using the Time-To-
Live (TTL) field of the Query message. Each for-
warding peer decreases TTL value by one. If TTL
value of a Query is zero, peers drop this message
instead of forwarding it. If a Query turns up a
result, the peer that has the result sends back a
Query Hit message to the originating peer. The
Query Hit message is sent back along the opposite
path the Query came in through. The Query Hit
message contains the IP address and port number
of the answering peer. If the user decides to down-
load the file, it requests the file from the provider
through a direct connection.

A two-tiered overlay structure which divides
peers into two groups (ultrapeers – or superpeers –
and leaf peers) has also been proposed. Leaf nodes
are located at the ‘‘edge” of the network and they
are not responsible for any routing. The leaves are
connected to the overlay through a few ultrapeers.
On the other hand, the nodes which have high-
bandwidth and are not behind firewalls are selected
as ultrapeers. Ultrapeers accept leaf connections
and route their queries. This approach reduces the
number of messages forwarded towards leaf peers
which in turn increases the scalability of the net-
work. In this paper, we focus on the flat unstruc-
tured P2P networks.

3.2. Our approach

Our approach against free riding requires every
peer to passively monitor its neighbors. Two roles
are defined for each peer: monitoring and being con-

trolled. A peer takes both roles at the same time. As a
monitoring peer, a peer monitors and records the
number of messages coming from and going towards
its neighbors (i.e. keeps some statistical informa-
tion). The neighbors are controlled peers. At the
same time, the peer is also a controlled peer, which
implies that its messages are monitored and recorded
by its neighboring peers. By monitoring the mes-
sages of its neighbors, a monitoring peer can decide
if a neighbor is acting like a free rider. Upon deciding
that the neighbor is acting as a free rider, the moni-
toring peer can take counter-measures against that
neighbor to reduce the adverse effects of free riding.

3.3. Counters

The statistical information1 that a monitoring
peer maintains about a controlled peer P consists
of a set of counters that are shown in Table 1. These
counters are maintained and updated by the moni-
toring peer as follows.

� QRP , the number of Query messages routed by
peer P, is incremented whenever the monitoring
peer receives a Query message from peer P in
which the TTL value is less than the fixed max
TTL. The Queries originating from peer P are
not counted; only the Queries originated at some-
where else and routed by peer P are counted. The
monitoring peer decides if the Query was origi-
nated by the neighbor or not by looking at the
TTL value. If the neighbor P has originated the
Query, then the Query message would have a
TTL value equal to the fixed max TTL.



Table 1
Observed counters

Symbol Description

QRP Number of Query messages routed by peer P

QT P Number of Query messages routed towards peer P

QHP Number of QueryHit messages submitted by peer P

QHRP Number of QueryHit messages routed by peer P

QHSP Number of QueryHit messages satisfying queries
of peer P

Table 2
Summary of free riding types and their properties

FR type None Non-
contributor

Consumer Dropper

Sharing
content?

Yes,
much

No Yes, but
little

No

Replicating
content?

Yes No No No

Routing
messages?

Yes Yes Yes No

Request
generation
rate

Normal Normal Higher Normal
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� QT P , the number of Query messages routed
towards peer P, is incremented whenever the
monitoring peer sends a Query message to the
neighbor P. Both the Query messages originated
at the monitoring peer and the Query messages
just forwarded by the monitoring peer are
counted.
� QH P , the number of QueryHit messages sub-

mitted by peer P, is incremented whenever the
monitoring peer receives a QueryHit message
from peer P. The message must be originated
(not forwarded) by peer P. The monitoring peer
can decide this by looking at the IP address field
of the message, which stores the IP address of the
originator of the message.
� QHRP , the number of QueryHit messages rou-
ted by peer P, is incremented whenever the mon-
itoring peer receives a QueryHit message from
peer P in which the IP Address field in the mes-
sage contains an IP address different than that
of the peer P. QueryHit messages originating
at peer P are not counted.
� QHSP , the number of QueryHit messages sat-
isfying queries of peer P, is incremented
whenever a Query message formerly submitted
by peer P receives a QueryHit through or from
the monitoring peer. To observe this, whenever
the monitoring peer receives a Query message
whose TTL is the fixed max TTL, it records in
its internal table (using the message ID of the
Query message) that the Query originated from
the neighbor P. Then, after receiving a Query-

Hit message with the same message ID, the
monitoring peer decides that the QueryHit mes-
sage is for that controlled neighbor and incre-
ments the counter QHSP . The monitoring peer
counts only once for all the QueryHit messages
received for the same query.

The values of these counters indicate both
whether the neighbor is a free rider and the type
of free riding. A different set of counters is main-
tained for each neighbor. The details of how we
employ these counters are explained in the following
sections.

We need to consider the issue of whether there is
enough time during a typical monitoring process to
collect sufficient information about the neighbors to
make correct decisions about their behavior. In one
study [8], about 40% of peers in a Gnutella network
leave the network in less than 4 h; only 25% of the
peers are alive for more than 24 h. In another work
[9], the average session duration of both Napster
and Gnutella network clients is reported to be about
60 min. A similar work [10] found that 90% of
Kazaa clients have sessions averaging 30 min in
length. All these studies show that most peers in a
P2P network stay connected long enough for mon-
itoring peers to collect enough information to make
correct decisions.

Another issue is whether a monitoring peer can
monitor enough messages. In one study [2], the
average number of queries received per second for
three peers located at three different locations is
about 50. In that same study, each peer receives or
sends an average of 30 query responses per second
and the query response ratio per peer is around
10–12%. This study shows that a monitoring peer
will have enough messages forwarded through itself
to or from a neighbor to judge if the neighbor is a
free rider.
3.4. Free riding types

Previous works on free riding [12–14,21,22] have
generally assumed that only one type of free riding
is exhibited in a P2P network. However, studies
[1–3,9,10] on P2P network traffic and user behavior
suggest that not all free riders behave the same.
Therefore, in this paper we define three types of free
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riding (non-contributor, consumer, dropper) with
different properties as summarized in Table 2. The
types of free riding that we define here are not
exhaustive. It is possible to define new types of free
riding with different properties [20]. We believe that
three types are sufficient for developing a general
framework, and these free riding types that we focus
on in this paper constitute a large fraction of all free
riders. A detailed description of each type is given
below.
3.4.1. Non-contributor

If a peer does not share anything at all or shares
uninteresting files, it is identified as a non-contribu-
tor. A controlled peer P exhibiting this type of free
riding can be detected by a monitoring peer who
counts the QueryHit messages (QH P ) originating
from the neighbor and compares them to the num-
ber of Query messages (QT P ) sent to the neighbor
(Table 1).

If the number of QueryHit messages received is
very few compared to the number of Query mes-
sages sent, then the neighbor is identified as a
non-contributor. More precisely, if the ratio
(QH P=QT P ) is below a threshold value, then the peer
is identified as a non-contributor.

Not receiving (or receiving very few) QueryHit
messages from a neighbor may indicate that the
neighbor is either not sharing any files at all, or is
sharing files that are not interesting and therefore
they do not match the search queries. Unfortu-
nately, a method like this, which is based on count-
ing the QueryHit messages, cannot distinguish
between these two types of reasons of not respond-
ing.2 Different approaches for setting up a threshold
value can be used. Whatever the approach, how-
ever, the proposed framework enables a monitoring
peer to judge if a neighbor is a non-contributor just
by observing the neighbor’s existing protocol mes-
sages, without requiring that any new control mes-
sage be defined for detection of free riders. Below,
we formulate our method to detect non-contribu-
tors as a condition that is evaluated whenever an
2 Peers who are cooperative but share unpopular files would be
affected by false positives. From the perspective of the perfor-
mance measures we have investigated, it seems that punishing
such kind of users has a small impact on the overall performance
of the network. A bias against these peers is one unintended
consequence of emphasizing performance in an incentive mech-
anism. We acknowledge that the solution of this issue is beyond
the scope of this paper.
update is performed on the values of the respective
counters. We have used this formula in our simula-
tion experiments.

if ðQT P > sQT Þ and QH P
QT P

< snon-contributor

� �
then

peer P is considered as a non-contributor

endif

To eliminate the warm-up period and to obtain
valid statistical information we propose using a
threshold value, sQT , for the number of forwarded
Query messages to the controlled peer. A monitor-
ing peer starts making a decision about the con-
trolled peer after this threshold is exceeded.
3.4.2. Consumer

Peers may contribute some content to the net-
work. They are not therefore non-contributors,
but the services they use may greatly exceed their
contribution. This is not a desirable behavior in
terms of the long term stability of the P2P network
and fairness to other peers.

To identify whether a controlled peer P is a con-
sumer, a monitoring peer counts the QueryHit

messages that originate from the neighbor ðQH P Þ
and the QueryHit messages that are destined to
the neighbor ðQHSP Þ. By comparing the ratio of
these two values against a threshold value sconsumer,
the monitoring peer can decide if the neighbor is a
consumer or not.

In identifying consumers, the number of actual
downloads, instead of QHSP , could have been used.
However, in unstructured P2P networks, the down-
load process is executed directly between two peers
[17]. Therefore, the intermediate nodes are not aware
of the download process. This means that, the mon-
itoring peers are not able to use actual download
numbers to identify the consumers. Therefore, we
propose using the QueryHit messages as an indica-
tion of possible downloads. We assume that if a
query gets one or more QueryHits, the owner of
the query would download at least one file. Further-
more, we only count once for all the QueryHitmes-
sages received for the same query. All QueryHits
that is received for the same Query message will
have the same unique message ID value.

The following condition is checked to decide if a
neighbor is a consumer or not whenever a respective
counter maintained for the neighbor and used in the
formula is modified. Again thresholds for QT P and
QH P counters are used to eliminate the warm-up



3 Actually, we implemented and observed the effects of different
values between 2 and 6 in the simulation experiments. To give
some insight about the effect of the Modifying TTL Action with
different reduction amounts on the system performance, we select
TTL-2 and TTL-4 as representative values in this paper.
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period before starting to make decisions about the
behavior of a neighbor.

if ðQT P > sQT Þ and ðQH P > 0Þ and

QHP
QHSP

< sconsumer

� �
then

peer P is considered as a consumer
endif

3.4.3. Dropper

A peer is identified as a dropper if the peer drops
others’ queries. Some peers might not forward pro-
tocol messages (Query, QueryHit, etc.) in order
to save their connection bandwidth.

In order to detect a dropper peer P, a monitoring
peer can count Query ðQRP Þ and QueryHit mes-
sages ðQHRP Þ forwarded by this neighbor. If the
sum of these two values is very low compared to
the number of Query messages sent toward the
neighbor ðQT P Þ, it can be assumed that either the
neighbor does not have enough connections (to
receive Query or QueryHit messages and forward
them), or it drops Query and/or QueryHit mes-
sages. Again we can use a threshold value, sdropper,
for the ratio.

if ðQT P > sQT Þ and QRPþQHRP
QT P

< sdropper

� �
then

peer P is considered as a dropper
endif

3.5. Counter-actions against free riders

When a peer identifies a controlled peer as a free
rider, the peer can start taking some actions against
it. Here, we will focus on some sample counter-
actions that can be implemented simply by modify-
ing the existing P2P protocols.

Our counter-actions are based on ignoring
Query messages submitted by free riders or reduc-
ing the scope of these queries. In this way, we reduce
the amount of service that free riders get from the
network. There are two main services that a peer
can get from a P2P network: (1) searching for files
by issuing Query messages; (2) downloading files
after getting answers to the queries. If we reduce
the amount of searching service that a free rider
gets, we also cause a reduction in the amount of
downloading service that it gets. Therefore, our
counter-actions aim to reduce the propagation of
Query messages submitted by free riders; then the
free riders will have less chance of getting Query-

Hit messages and will perform fewer downloads.
We propose two types of counter-action schemes:

(1) single counter-action schemes and (2) mixed
counter-action schemes. A single counter-action
applies the same action to all types of free riders.
A mixed counter-action scheme applies a different
counter-action for each type of free riding.

The proposed single counter-actions are
described in more detail below.
3.5.1. Modifying TTL value

When a peer receives a Query message from a
controlled peer, it first executes a search on local
files for a match, and then forwards the Query to
its other neighbors. Before the Query message is
forwarded, its TTL value is normally decreased by
one. However, the monitoring peer can play with
this TTL value, i.e. the monitoring peer can decre-
ment the TTL value by more than one before for-
warding it further. In this way, the search horizon
of the free riding peer is narrowed. This also reduces
the overhead imposed by Query messages on the
network. To observe the effect of this counter-action
at a finer granularity for different values of TTL
reduction, we propose to employ two different val-
ues, i.e., 2 and 4, for decreasing TTL.3 We call the
corresponding counter-actions TTL-2 and TTL-4,
respectively.
3.5.2. Dropping requests

As a sharper counter-action, the monitoring peer
can simply ignore all the search requests coming
from a neighbor identified as a free rider. Dropping
a Query message means not searching the local files
for a match and not forwarding the Query any fur-
ther; this is totally different from what happens in
the Modifying TTL counter-action. We call this
counter-action DROP.

Dropping the search requests of free riders or
narrowing down their search horizon by modifying
TTL not only punishes the free riders, but it also
significantly decreases the overhead of P2P control
messages over the underlying infrastructure. Uncon-
trolled query messages in a flooding-based P2P net-
work can become a significant portion of overall
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network traffic.4 We believe that decreasing the
number of queries submitted by free riders may help
improve the performance and scalability of both
P2P networks and the underlying Internet.

A monitoring peer that would like to execute a
mixed counter-action scheme can apply an appropri-
ate counter-action depending on the type of free rid-
ing. As mentioned earlier, a free riding peer can be
either a non-contributor, a dropper, or a consumer.
Thus, a possible mixed counter-action scheme may
dictate that counter-action TTL-2 is applied if the
free rider is a consumer, counter-action TTL-4 is
applied if the free rider is a non-contributor, and
counter-action DROP is applied if the free rider is
a dropper. In these settings, we aim to apply more
severe counter-actions to free riding types that will
cause more severe damage to the P2P network. A
neighbor that is not identified as a free rider will
not invite any counter-action.

The type of free riding is determined according to
the values of statistical counters maintained for a
neighbor in the log table of a monitoring peer.
When the values of the counters change, it may indi-
cate that the type of free riding practiced by the
neighbor has changed. For example, if the
ðQH P=QT P Þ ratio for a neighbor P is smaller than
the respective threshold (i.e., the neighbor is a
non-contributor), and later becomes greater than
that threshold, the neighbor is no longer a non-
contributor.
4. Performance evaluation

In this section, we first present our simulation
model and performance metrics. Then we provide
and discuss the results of the simulation experiments.
Table 3
Properties of peer types

Property Type A Type B Type C

Free riding type of the None None Mixed
4.1. Overview of the simulation model

We used a simulation-based approach to study
the model of a typical P2P network with free riding
and our framework incorporated; we used this
method because the model is very complex to study
analytically. We implemented our simulation model
including our framework on the GnuSim P2P net-
4 For example, as it is pointed out in [7], 18 bytes of search
string in a Query message may cause 90 megabytes of data to be
forwarded by the peers of a P2P network. As another example [5],
states that the total number of messages including the responses
triggered by a single Query message can be as large as 26240
(assuming four connections per peer).
work simulation tool that we had developed earlier
[23]. GnuSim was implemented as an event-driven
simulator using the CSIM 18 simulation library
[16] and C++ programming language on a Win-
dows platform. Interactions between peers and the
P2P network, such as searching, downloading, ping-
ing, etc. were implemented according to the Gnutel-
la protocol specification given in [17].

Our model simulates a P2P network of 4900 peer
nodes. The peers are inter-connected to form a mesh
topology at the beginning of a simulation run. Addi-
tionally, we use a Power-Law topology for experi-
ments reported in Section 4.3.3. We assume that
all peers stay connected in the same way until the
end of a simulation run.

We assume that there are three types of peers in
the simulated network: type A, type B, and type
C. Type A and type B peers are contributors. Type
C peers are free riders. Type C peers can be further
classified as a non-contributor, a dropper, or a con-
sumer. A type C peer is randomly and uniformly
assigned to one of these 3 types of free riding. The
properties of peer types are summarized in Table
3. The properties of each peer type include the pop-
ulation ratio, shared file ratio, maximum number of
simultaneous uploads possible, query generation
mean, and whether peers replicate the downloaded
files or not. The default values of each of these prop-
erties are set similar to the values reported in [1,9,
37–39].

At the beginning of each simulation run, peers
are created according to the setup explained above
and assigned to one of three main types (A, B, or
C). During simulation, peers interact with other
peers according to their assigned types. For exam-
ple, a dropper drops all the messages, a non-contrib-
utor does not share any file, etc.

There are 49000 distinct files, with four copies of
each, distributed to the peer nodes at the beginning
of each simulation run. These 196000 files are uni-
formly distributed to peer groups according to the
peers in the peer type
Population ratios of

each peer type
10% 20% 70%

Ratio of shared files of
each peer type to total files

87% 12% 1%

Peers replicate the files
they downloaded or not

True True False
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type of the groups and the file sharing ratios pre-
sented in Table 3. We do not distribute any files
to peers that are free riders of the non-contributor
or dropper type. We assume that each file is the
same size and can be downloaded in 60 units of sim-
ulation time. During a simulation run, peers ran-
domly select files to search and download, and
they submit search queries for them. The inter-arri-
val time between search requests generated by a peer
follows an exponential distribution with a mean of
60 time units. We assume that the query generation
rate of consumer peers is twice that of other free rid-
ing peers.

Each peer’s upload capacity (the number of
simultaneous uploads the peer can perform) is lim-
ited to 10. If a peer reaches upload capacity, a
new upload request is rejected by the peer. The
requesting peer can then try to download the file
from another peer, selected from a list of peers
obtained from the QueryHit message. We assume
that the requesting peer repeats the same request a
maximum of three times. After that, the peer gives
up the downloading attempt and records this as
an unsuccessful download. Then, it can initiate a
request for another file.

Each simulation experiment is run for 4000 units
of simulated time. A simulation experiment is
repeated 10 times and the results for that experiment
are an average of the 10 individual results.

4.2. Performance metrics

In order to measure the performance improve-
ment of our schemes, we first determined a number
of performance metrics. Below, we describe our
metrics in detail.

� Number of downloaded files: This is an important
metric indicating the number of downloads that
can be performed in a P2P system during a fixed
time interval. If peers can download more files
from the P2P network, then level of satisfaction
with the network will be higher.
� Number of unsuccessful downloads: The availabil-

ity of content and services in a P2P network is an
important issue. A network that is providing
good service should not reject many of the con-
tributing peers’ requests. Since the network
resources are limited, the upload capacity of
peers contributing to the network will also be
limited. If this limit is exceeded, the peers will
start refusing download requests.
� Number of uploads by contributors: This metric
indicates the load imposed on a peer. Contribu-
tors can become overloaded due to the excessive
number of search and download operations they
are involved in. Adapting free riding mechanisms
in a P2P system, decreases the load on contribu-
tor peers by reducing requests from free riders.
� Download cost: We define the download cost for a

peer as the ratio between the number of uploads
and the number of downloads (i.e. #uploads/
#downloads) performed by the peer. This ratio
indicates the load imposed on a peer compared
to the service the peer gets from the network.
The smaller the ratio is, the better it is from the
perspective of the peer.
� Number of P2P network protocol messages: This

metric shows the messaging overhead in the
P2P network and the underlying infrastructure.
Messaging overhead affects the scalability of a
system. In unstructured P2P networks particu-
larly, the messaging overhead may be high due
to the flooding approach used in querying. High
numbers of protocol messages sent over the net-
work also increase the level of congestion in the
network; congestion affects the performance of
several network services [15].
� Fairness: Fairness metric shows that the level of

service that can be used by a peer is proportional
to the level of contribution that is provided by
that peer. In other words, a peer contributing
more than what is needed to overcome the
thresholds is fairly compensated with more ser-
vices. Thus, the solution encourages peers to con-
tribute more and rewards peers based on the
extent of their contributions.

4.3. Simulation results and analysis

In simulation experiments, we first tested the
effectiveness of our detection mechanism. After-
wards, we conducted experiments to observe
changes in the performance of a P2P network when
counter-action schemes are applied.

4.3.1. Evaluation of detection mechanism

The detection mechanism is a crucial part of the
framework. Therefore, we did extensive simulation
experiments to measure the performance of our
framework in detecting free riders and free riding
types. We used the following performance metrics
to evaluate our detection mechanism:
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� Success ratio: Ratio of peers correctly detected as
free riders to peers designated as free riders in the
beginning of each simulation run.
� Sensitivity ratio: Ratio of free riders whose free

riding type is correctly detected to the number
of peers who have been detected correctly as free
riders.
� False alarm ratio: Ratio of peers incorrectly

detected as free riders to the number of peers
detected as free riders.

A good detection mechanism should provide
high values for success and sensitivity ratios and
low value for false alarm ratio. The success ratio
is an important metric for both single and mixed
counter-action schemes; sensitivity ratio on the
other hand is an important metric for mixed coun-
ter-action schemes, since in those schemes the type
of free riding determines the counter-action to be
applied. The false alarm ratio is a metric that indi-
cates how many peers are incorrectly detected as
free riders. If the false alarm ratio is high, it means
that the framework applies counter-actions to con-
tributors; thus some contributors are negatively
affected by the incorporation of the framework into
the P2P network.

An important restriction on the success of the
detection mechanism is the behavior and ratio of
droppers. This is because free riders of the dropper
type usually cannot use our detection mechanism,
and hence can not apply any counter-action to their
neighbors. As they do not route other peers’ queries
to their neighbors, they may not satisfy the detec-
tion mechanism’s ‘‘routed query threshold ðsQT Þ”
condition only by the count of their own queries.
Therefore, in the overall detection results, droppers
may play a negative role and limit the detection
mechanism’s success.5 When the sQT threshold is
decreased, however, droppers have more chance of
satisfying the threshold value by recording only
their queries, and they may then detect free riders.
Thus, lowering the value of sQT increases the success
ratio in the presence of droppers, as shown in Table
5.

Fig. 1 shows the Success Ratio of the detection
mechanism for default values of simulation param-
5 For example, in our simulations we observed that the peers
about which droppers cannot make any decision constitute
around 20% of all the peers. This implies that our framework
cannot reach a success ratio better than 80% with the current
settings of the simulation parameters.
eters. The overall success ratio is about 76%. This
means that our detection mechanism is able to
detect 76% of peers designated as free riders at the
start of a simulation run. The false alarm ratio is
about 9%. That is, 9% of the detected free riders
were not really free riders. Their interactions with
their neighbors during the simulations led the detec-
tion mechanism to identify them as free riders.6

In Section 3.4, we use some threshold values for
identifying each free riding type. Table 4 shows
the default values of the thresholds. Default values
are based on the P2P network traffic observations
reported in [1,2,8,10]. As part of our simulations
we tried to observe the effect of different threshold
values.

In Table 5, we observe that when the sQT thresh-
old is set to lower values, the detection mechanism
begins to detect earlier and the success ratio
increases. However, the false alarm ratio also wors-
ens with low values of sQT because the system tries
to decide about a peer with less information avail-
able. There is therefore a trade-off between success
and false alarm ratios and this trade-off is effected
by the sQT threshold. Sensitivity is not greatly
affected by the value of the sQT threshold.

Another threshold used in the detection mecha-
nism is snon-contributor, which is used to decide if a peer
is a non-contributor. Table 6 shows the effect of this
threshold. Interestingly, for some large values such
as 0.1 and 0.01 the success ratio does not change
much, but the false alarm ratio changes and
becomes too high. This result suggests that high val-
ues not be used for this threshold. The success ratio
does not change much for different high values of
the threshold, because even the precision of the ratio
is different; the number of detected peers with 0.01 is
almost the same as with the value 0.1. That is, most
of the non-contributor peers have a QH P

QT P
ratio less

than 0.01. Therefore, the comparison leads to a sim-
ilar success ratio. In Table 6, we again observe that
the success ratio is (negatively) correlated with the
false alarm ratio.
4.3.2. Evaluation of counter-actions

In Section 3.5 we proposed two types of counter-
action schemes: single and mixed. We implemented
6 This level of false alarm ratio causes 9% of the peers detected
as free riders to face counter-actions; false alarms are a side effect
of the detection mechanism. However, the performance metrics
show that the performance is improved for contributors despite
the false alarms (see Section 4.3.2).



Table 4
Threshold values for detection mechanism

Threshold Description Default Range

sQT Threshold value for the number of routed queries toward a controlled peer to begin the
detection

50 25–100

snon-contributor Threshold value for formula QH P
QT P

to decide if peer P is a non-contributor 0.001 0.1–0.0001

sconsumer Threshold value for formula QH P
QHSP

to decide if peer P is a consumer 0.1 0.05–0.5

sdropper Threshold value for formula QRPþQHRP
QT P

to decide if peer P is a dropper 0.1 0.05–0.5

Table 5
Effect of sQT threshold values on the detection mechanism

sQT Success (%) Sensitivity (%) False alarm (%)

25 95.39 66.98 13.82
50 75.73 66.84 9.73

100 75.38 66.82 9.70

Table 6
Effect of snon-contributor threshold values on the detection mechanism

snon-contributor Success (%) Sensitivity (%) False alarm (%)

0.1 76.54 66.12 42.87
0.01 76.54 66.12 29.45
0.001 75.73 66.84 9.73
0.0001 73.03 69.27 5.24

Fig. 1. Success Ratio of detection mechanism in detecting free riders and identifying their free riding types.

Fig. 2. Decrease in free riding peers’ downloads when different
counter-actions are applied.
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three different single counter-action schemes:
DROP, TTL-4, and TTL-2. We also implemented
a mixed counter-action. This section evaluates the
effectiveness of these schemes. The metrics we used
in our evaluation are described in Section 4.2.

� Downloads of free riders: As Fig. 2 shows, the
number of downloads by free riders drops when
mechanisms against free riding are applied.
Counter-actions against free riders decrease the
reach of the Query messages sent by peers
detected as free riders; this reduces the chance
of getting a hit to one of these queries. In this
way, the average number of downloads by free
riders is reduced. For example, the DROP coun-
ter-action causes a 95% reduction in the number
of downloads by free riders. The least successful
counter-action is the TTL-2 single counter-
action, which achieves a 20% reduction. But even
the least successful counter-action scheme leads
to fewer free rider downloads than not using
any counter-action at all.



Fig. 3. Increase in contributors’ downloads when different
counter-actions are applied.

Fig. 4. Decrease in P2P messages of free riding peers when
different counter-actions are applied.
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The success of the DROP counter-action is
expected, since when all the queries submitted
by free riders are dropped, those peers cannot
get QueryHit messages back, and therefore they
cannot download files. They can only download
until they are detected. The other schemes are
able to reduce the search horizon of the queries
submitted by free riders, but the free riders still
have the chance to get QueryHit messages
and perform downloads. The mixed counter-
action scheme yields the second-best result. We
believe that this approach has important conse-
quences compared to single action schemes. Con-
sidering the potential false alarms that can be
given by the detection mechanism, applying a dif-
ferent counter-action depending on the severity
of free riding helps us to better deal with false
alarms as discussed below.
� Downloads of contributors: It is desirable to

increase the number of downloads for contribu-
tors. Since peers’ upload capacity is limited, the
download requests of contributors can some-
times be rejected. The rate of rejection is higher
when there are many free riders in the system.
Hence eliminating the effects of free riders on
the P2P network will help to increase the number
of downloads that contributors can make. This is
indeed shown by Fig. 3; applying our schemes
achieves an increase in downloads done by con-
tributors as much as 10%.
Fig. 3 shows an important point; improvement in
downloads is greater with a mixed counter-action
than with any single counter-action. While the
mixed counter-action scheme produces about a
10% improvement, the two single counter-
actions, TTL-2 and TTL-4, can produce about
8% and 5% improvements, respectively. The
DROP counter-action scheme actually reduces
the number of downloads by contributors. We
think this is due to false alarms in detection mech-
anisms. When we apply strict counter-actions
such as DROP, the number of misdetected peers
that are negatively affected is significant. On the
other hand, a mixed scheme handles false alarms
better by applying different counter-actions to dif-
ferent types of free riders, and therefore can pro-
vide different levels of punishment, from light to
severe, to peers suspected as free riders.
� Amount of P2P protocol messages: The number of

P2P protocol messages transmitted in the net-
work is an important factor affecting the scalabil-
ity of the P2P network. Counter-actions against
free riders result in a reduction of up to 83% in
the number of transmitted P2P protocol mes-
sages (Query and QueryHit) originating from
and destined for the free riders (Fig. 4).
When we compare the reductions in transmitted
P2P control messages for different counter-
actions, we see that the DROP single counter-
action again gives the best results (83%). The
mixed counter-action scheme, on the other hand,
reduces the control traffic due to free riders by
about 73%.
If we evaluate the counter-actions with respect to
their effect on reducing the total P2P control traf-
fic in the network (i.e., the control traffic due to
the free riders plus the contributors), we see that
the DROP single counter-action scheme leads to
a reduction of about 77%, whereas the mixed
counter-action scheme leads to a reduction of
about 65% (Fig. 5). The least successful coun-
ter-action is TTL-2; it leads to a reduction of
40%. All these results show that applying the pro-
posed framework helps a P2P network handle
more peers with less control messaging overhead
and the system becomes more scalable with
respect to the peer population.



Fig. 5. Decrease in P2P messages of all peers when different
counter-actions are applied.

Fig. 7. Decrease in contributors’ download cost when counter-
actions are applied.
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� Uploads of contributors: A metric that can indi-
cate the load on a peer is the number of uploads
done by the peer in a given time period. With our
framework we want to achieve a reduction of the
load on contributors. We expect that if we reduce
the downloads of free riders, we can also reduce
uploads, since a large portion of these uploads
are done to free riders. In simulation experi-
ments, we observed a significant reduction in
the number of uploads done by contributors
when a counter-action scheme is applied. As
Fig. 6 shows, the scheme that gives the best result
is again the DROP single counter-action scheme,
causing a reduction of about 81%. The mixed
counter-action scheme causes a reduction of
about 40%.
� Download cost: The load on a contributor can

also be defined as a normalized load, i.e. as the
ratio of uploads to downloads. The results of
our experiments show that our framework also
causes a reduction in the download cost of con-
tributors. As it can be derived from Fig. 7, the
framework achieves a 70% reduction in the con-
Fig. 6. Decrease in contributors’ uploads when counter-actions
are applied.
tributors’ download cost when the DROP single
counter-action is applied. The framework
achieves a 46% reduction when a mixed coun-
ter-action scheme is applied.
� Unsuccessful downloads: We also looked at the

improvement achieved in the number of unsuc-
cessful downloads when the proposed counter-
action schemes are used. As Fig. 8 shows, the
DROP single counter-action achieves the best
improvement; the number of unsuccessful down-
loads is reduced by 98%. The mixed counter-
action scheme, on the other hand, reduces the
number by about 91%. The decrease in the num-
ber of unsuccessful downloads means that con-
tributors can better access the network resources
when the proposed mechanisms are used. Free
riders’ requests and downloads may prevent
non-free rider peers from accessing files and other
resources. When the traffic due to free riders is
reduced, the contributors start reaching to the
resources more easily and get better satisfied with
P2P network services.
Fig. 8. Decrease in contributors’ unsuccessful downloads when
counter-actions are applied.



Fig. 9. Increasing utility values for increasing number of files
shared by a probe node.

Fig. 10. Increase in contributors’ downloads when a Power-Law
Random Graph is simulated.
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� Fairness: To observe the fairness of our mecha-
nisms, we conducted several simulation experi-
ments. In one of these experiments, we
randomly chose a probe peer and assigned to it
different number of files to share. As seen in
Fig. 9, we assigned to the probe peer none (0),
25, 50, 100, and 200 files, and observed the
Download/Query ratio (number of downloads/
number of submitted queries) as an indication
of peer’s utility from the system.
As the figure shows, although the probe peer sub-
mits nearly the same number of queries, it can
download different number of files depending
on how much files it shares. Because, when it
shares less files while requesting the same amount
of service, it will face counter-actions, and this
will limit the number of downloads it will be able
to get. On the other hand, when it shares more
files, monitoring peers will not apply any coun-
ter-action, thus it will be able to reach more peers
and download more files. Therefore, if two peers
have similar query patterns but provide different
levels of service to the system, they will get differ-
ent levels of utility from the system as well. Thus,
the proposed mechanisms are fair. In other
words, a peer contributing more than what is
needed to overcome the threshold is fairly com-
pensated. Hence, the proposed mechanisms not
only encourage peers to provide enough services
to overcome the threshold barrier, but also
encourage them to contribute more to get better
service.
7 In our P2P network model, links between peers are
bi-directional connections which constitute both the in-degree
and out-degree connections of a peer. Hence, modelling peer
connections with a power-law distribution implies that both the
number of in-degree and out-degree connections of the peers
follow a power-law distribution.
4.3.3. Effect of different parameter values

We also executed sensitivity experiments to
observe how our framework performs for different
values of some important parameters: number of
peers, number of shared files, level of free riding,
and different network topologies. We observed that
the performance results for different parameter set-
tings are consistent and similar with the ones
reporte d in this paper. Therefore, due to similarity
and also space limitation, we do not provide all the
results of these additional experiments here. We just
report the results for a different network topology.

Recent studies investigating P2P topologies show
that P2P networks exhibit small-world properties
and a power-law distribution of node degrees [5,6].
To simulate such network topologies we imple-
mented a Power-Law Random Graph of 1600 peers
as suggested in [40]. Power-Law Random Graph is a
topology in which the node degrees follow a power-
law distribution. That is, if all peers from the most
connected to the least connected is ordered, then
the ith most connected peer would have x

ia neighbors,
where x is a constant. After determining the peer
degrees, we connected the peers randomly.7

We have executed several simulations for differ-
ent values of x and a. The results given here are
obtained when x is set 100 and a is set 0.7. We
observed that our framework performs well in the
Power-Law Random Graph too. This is due to the
fact that the detection and counter-action mecha-
nisms require only local interactions between neigh-
bors. For example, Fig. 10 displays the performance
in terms of the number of downloads by contribu-
tors. As shown in the figure, the increase in the num-
ber of downloads of contributors is around 50–60%



Table 7
New protocol descriptor

Descriptor Description Content

Notify Used to report a suspected
peer that refused to upload
the file it provided in
QueryHit descriptor in
respond to a given Query

Query Descriptor Id;
Suspected peer IP;
File index
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for all counter-actions. As another example, Fig. 11
displays the decrease of the total P2P control traffic
in the network (i.e., the control traffic due to the free
riders plus the contributors). We observe that the
DROP single counter-action scheme leads to a
reduction of about 76%, whereas the mixed coun-
ter-action scheme leads to a reduction of about 72%.
descriptor
5. Possible attacks to the framework and counter-

measures

In this section, we describe a list of possible coun-
ter attacks against our free riding prevention mech-
anisms. We also discuss how our framework would
react and how we can defend against those kinds of
attacks.
5.1. Fake QueryHit messages

A free rider can cheat its neighbors (monitoring
peers) by replying to some queries with QueryHit

messages fraudulently as if it has the requested file.
When the requesting peer asks for the file, it may
just refuse uploading it. In this way it may pretend
as it is serving well, since controlled peers may not
be aware of unsuccessful download and cheating.
In the log tables of its neighbors, the malicious peer
may seem to be a non-free rider because of its Que-
ryHit replies.

Given the descriptors in Gnutella protocol [17], it
may not be possible for a controlled peer to observe
and perceive this kind of fake messages. Because,
download occurs between two peers outside the
P2P network and there is no feedback mechanism
for downloads in unstructured P2P networks. To
handle this kind of fake QueryHit messages, we
propose to use a new descriptor: Notify (see Table
7). This descriptor is used to report about a mali-
Fig. 11. Decrease in P2P messages of all peers when a Power-
Law Random Graph is simulated.
cious peer to its neighbor. When a querying peer
is refused by a responding malicious peer during a
download attempt, the querying peer may send a
Notify descriptor through the P2P network to
reach the monitoring neighbor of the malicious
peer. To avoid an increase in the network traffic,
the querying peer does not broadcast the descriptor
message. Instead, it forwards the descriptor only to
the neighbor which has delivered the QueryHit

message, containing the IP address of the denying
peer. Any intermediate peer on the way to the deny-
ing peer forwards the Notify message to only one
of its neighbors based on the message ID (GUID) of
the Query message stored in its query routing
table.8 The monitoring peer on the path to the deny-
ing peer is the neighbor of the denying peer. After
processing the Notify message, the last peer logs
this message, and takes the necessary action against
the malicious peer.

There could be some side effects of the proposed
Notify descriptor. A malicious peer can initiate an
application-layer Denial of Service (DoS) attack
using the Notify messages. However, almost every
message type in P2P protocol (Query, QueryHit,
Push, Ping, and Pong) can be exploited in order to
launch denial of service attacks [27–30]. Some pro-
posals exist in the literature aiming to counter the
application-layer DoS attacks [30–32]. We think
that we can also use some schemes to deal with
DoS attacks using the Notify message. One scheme
can be based on the comparison of the number of
Notify messages routed by each controlled peer. If
a monitoring peer detects a big difference among
the number of Notify messages routed by its con-
trolled peers, it can begin to filter (delete/drop)
Notify messages coming from that controlled peers
8 Since, as a requirement of Gnutella P2P Protocol, the Query
messages are stored in the routing table of each peer for some
time to route back the possible QueryHit messages, we do not
need to store extra state information that can be used to route the
Notify message on intermediate peers.



Table 8
Results of free rider malicious TTL attack

Metric Standard
TTL

Malicious
TTL

Change

(%)
# Downloads of FRs 2992 2019 �32.50
# Downloads of non-FRs 2543 2489 �2.12
# P2P Messages of FRs 11974199 9013018 �24.73
# P2P Messages of all peers 20613217 17361929 �15.77
# Uploads of non-FRs 5473 4471 �18.31
# Unsuccessful Downloads of

non-FRs
168 58 �65.48

Mixed counter-action applied.
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(similar to what is proposed in [30]). Since the dan-
ger of DoS attack exists for all P2P protocol mes-
sages, we think that the precautions taken for
other P2P messages can be applied for Notify mes-
sage as well. Prevention of DoS attacks is out of the
scope of our current work, however, it can be inter-
esting to investigate the applicability and effective-
ness of the two simple schemes described above as
a future work.

5.2. Fake files

Free riders could also share dummy files with
popular names in order to cheat querying peers.
These files can be very small in size to reduce upload
overhead. In that way, free rider peers can conceal
themselves. This situation however, can also be pre-
vented by using the Notify descriptor proposed
above.

5.3. Hiding query ownership

In our free riding detection mechanism, the mon-
itoring peers exploit the TTL field value of the
incoming Query messages to decide if the con-
trolled peer is the owner of the message or not. If
the TTL value of the Query message is equal to
the max TTL value, then the Query message is
assumed to be originated at the neighbor.

If a free rider wants to prevent monitoring peers
applying the counter-actions against its queries, it
may try to hide its ownership of the queries by set-
ting the TTL field to a value different than the stan-
dard maximum TTL value. Then the originator of
the Query will not be identified correctly by a mon-
itoring peer. If the free rider sets the TTL to a value
greater than the allowed maximum value, this can
easily be detected by the monitoring peer. If the free
rider sets the TTL to a value less than the allowed
maximum, then the free rider harms itself by reduc-
ing the search horizon of the Query. In this case we
think that there is no need to take an extra action,
since we expect that a free rider will not decrease
its search horizon voluntarily.9
9 This is because using an initial TTL value even one less than
the allowed maximum decreases the search horizon dramatically.
For example, if a free rider submits a Query message with an
initial TTL value of 6 in a network where the maximum allowed
value is 7, then the free rider loses about 67% of its reach (search
horizon) compared to submitting the Query with a TTL value of
7.
We observed the effects of this kind of malicious
action in our simulations, and Table 8 provides the
results.10 During the experiments, we assumed that
all free riders act maliciously with regard to the ini-
tial TTL value setting in Query messages. This is
the worst case for our framework. We argue that
although free riders may prevent the monitoring
peers from applying counter-actions by using mali-
cious TTL values, their level of benefits from the
system and their negative effects on the system will
also decrease considerably if they set the TTL value
maliciously. When they cheat on the TTL, they
actually reduce the reach of their own queries, and
hence the quality of the results they get. As Table
8 shows, when a malicious TTL value is used, the
amount of downloads of free riders decreases. The
number of P2P messages observed in the network
due to free riders also decreases. Hence, acting mali-
ciously on the TTL value does not help to the free
riders. Therefore, we do not see an urgent need to
develop a solution against this kind of TTL attack.
5.4. Insufficient cooperation against free riding

Some peers may be reluctant to use the proposed
mechanisms against free riding or malicious peers
may collude with their neighbors to hide each
other’s ‘‘free riding status”. Thus, free riders may
attack the system by disabling the proposed frame-
work. As a result, we may observe low level of coop-
eration against free riding due to the high
population of free riders. We have simulated such
an environment by applying the worst scenario (all
free riders collude) and observed the results. We
have compared the case when our framework is
10 We have used the mixed counter scheme while performing
simulation experiments for evaluating the effects of attacks to the
framework.



Table 9
Results of insufficient cooperation attack

Metric None of
the Peers

Only
Non-FRs

Change
(%)

# Downloads of FRs 7041 6243 �11.3
# Downloads of non-FRs 2293 2332 1.7
# P2P Messages of FRs 44403153 32773645 �26.2
# P2P Messages of all peers 60076872 45494519 �24.3
# Uploads of non-FRs 9148 8411 �8.1
# Unsuccessful Downloads of

non-FRs
2040 1467 �28.1

Mixed counter-action applied. Fig. 12. The Success of the detection mechanism in the first 200
simulation time.

11 If the P2P network traffic becomes higher (i.e. more queries
are forwarded), the time required to exceed the sQT threshold will
be sooner and free riders will be detected faster.

M. Karakaya et al. / Computer Networks 52 (2008) 675–694 691
applied by only contributors with the case when our
framework is not applied. In Table 9, we provide the
results for both cases.

As Table 9 shows, even though only 30% of peers
apply the mechanisms (they are contributors), the
number of downloads of free riders is decreased,
the messaging overhead is reduced, and the load
on contributors is decreased compared to the case
when our framework is not applied. This implies
that our mechanisms are quite robust against the
type of attack where some peers disable the pro-
posed mechanisms by either collusion or modifying
their client software.

5.5. Constantly changing neighbors

A free riding peer may attack the framework by
constantly changing its neighbors, and thus it may
keep utilizing the services without ever being identi-
fied as a free rider.

As discussed in Section 3.2, the P2P network traf-
fic observations [8–10] show that peers tend to stay
connected quite long periods of time. One of the
reasons for that is the practical difficulty of discon-
necting and re-connecting again. Another reason is
that a peer does not get query hit messages immedi-
ately after it has submitted a query. A peer should
not change its neighbors for the time period between
submission of a query and the arrival of the respec-
tive query hits (name it search-QueryHit cycle dura-

tion). If the peer breaks the existing links too fast, it
will not get a reply. Therefore, the peer should stay
connected for at least a certain time interval which
should be longer than the search-QueryHit cycle
duration.

Hence, if our scheme can detect a free rider and
apply a counter-action against it in a time interval
that is less than the search-QueryHit cycle duration,
then the attack will not work and it will not make
much sense for a free rider to try this. Therefore it
is important to know how long it takes to get query
hits back and how long it takes to detect the free rid-
ers. These concerns depend on several factors. The
success ratio (the ratio of free riders that are detected
correctly) can give us a clue about the speed of our
detection mechanism. Fig. 12 plots the success ratio
versus simulation time. At the beginning of a simula-
tion run, the success ratio will be zero since there is
no free rider detected yet. Towards the end of the
simulation run, however, the success ratio will have
a value that can be close to 1 in ideal case.

In Fig. 12, we observe that, with the default set-
tings of simulation parameters, at time 90, 40% of
free riders are detected successfully. At time 150,
60% of free riders are detected successfully.11 From
the figure we can see that free riders start becoming
detected after 50 time units. Therefore, if a free rider
peer would like to avoid detection, it should change
its neighbors every 50 time units, with the default
parameter settings. If it changes its neighbors at a
rate slower than this, let us say every 100 time units,
the chance to be detected and to face counter-
actions becomes increased. The probability of detec-
tion becomes around 45% for 100 time units.

To investigate the effectiveness of the potential
attack, we modified our simulation code to simulate
this attack, and conducted several sets of new exper-
iments. In these experiments, we first randomly
selected a probe peer to act as a free rider applying
the attack. During a simulation run, the probe peer
changes its neighbors periodically using a fixed time
period between changes. We measured the utility
the probe peer gets from the P2P network at the



Fig. 14. The results for the Probe peer, when the attack is applied
by all the FR peers.

692 M. Karakaya et al. / Computer Networks 52 (2008) 675–694
end of a simulation run. The utility is expressed as
the ratio of the number of downloads the probe peer
performs to the number of queries it submits. We
obtained results for two different time intervals
between changes of neighbors: 50 and 100 time
units. The results are displayed in Fig. 13. In the fig-
ure, we also included two other utility values. One is
the utility value that a contributor peer can get and
the other is the utility value that a free rider who is
not trying the attack (i.e., not changing connections)
can get.

As can be seen in Fig. 13, the probe peer suc-
ceeded to increase its utility by changing its neigh-
bors constantly. We can observe that the length of
the time period between changes has an effect on
the service the probe peer receives, as we have dis-
cussed above. If this period is longer, the probability
of detection gets increased and the probe peer will
more likely face counter-actions; and this will
reduce the service it will get.

However, the first experiment we describe above
cannot reflect a real-life scenario where lots of peers
would like to apply the attack at the same time.
Therefore we also conducted experiments for the
scenario where all free riders in the network apply
the attack expecting to increase the utility they
get. The results are displayed in Fig. 14. As seen
in the figure, the probe node acting as a free rider
and applying the attack is negatively affected in this
case when all free riders in the network apply the
attack. This is because, one of the side effects of
the suggested attack is that when all free rider peers
change their neighbors, their previous neighbors
lose the connection via these peers and they would
lose the possible incoming QueryHit messages as
well. Since the QueryHit messages in unstructured
P2P networks are routed back through the same
Fig. 13. The results for the Probe peer, when the attack is only
applied by the probe FR peer.
route of the received Query messages, when an
intermediate peer tries to route a QueryHit which
is routed by a free rider peer, it could not route it
anymore, due to the changed neighbors. So, some
of the QueryHit messages would be dropped with-
out reaching to the destined peers. As observed in
the figure, this side effect is not negligible. The probe
peer loses its advantage considerably when all other
free riders also apply the same attack.

Therefore, we can conclude that although the
attack seems to increase the utility of an individual
free rider, in a more general and real situation, when
all or most of the free riders apply the attack, the
utility that a free rider gets is not increased to a level
to justify the practical difficulties of applying the
attack. The free rider will not reach to a level of util-
ity comparable to that of a contributor peer.
6. Conclusion

In this work we have proposed a distributed
framework to reduce the degree of free riding in
unstructured P2P networks. The framework is sim-
ple to implement, has low-overhead to run, fully
complies with the concepts and protocols of
unstructured P2P networks, and is decentralized to
operate efficiently.

We first specified possible free riding types that
could be encountered in a P2P network. We then
proposed some mechanisms to detect free riders of
these types. We also proposed some possible coun-
ter-actions to apply against peers detected as free
riders. By reducing the amount of free riding in a
P2P network, we aim to increase the quality of ser-
vice that peers can get from the network, the avail-
ability of content and services, the robustness of the
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system, the balance of the load on peers, and the
scalability of the network. As the performance
results of simulation experiments indicate, the
mechanisms do reduce the level of free riding and
its adverse effects on P2P networks; the performance
of the P2P network is considerably improved.

In general, the DROP single counter-action
against all kind of detected free riders results in
the largest improvement for all performance metrics
except the number of downloads by contributors;
latter result arises from false detection in determin-
ing free riders. To increase performance for contrib-
utors, we suggest using a mixed counter-action
scheme as it is the best counter-action if we also
include increasing downloads.
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