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Abstract—In graph theory, k-core is a key metric used to identify subgraphs of high cohesion, also known as the ‘dense’

regions of a graph. As the real world graphs such as social network graphs grow in size, the contents get richer and the

topologies change dynamically, we are challenged not only to materialize k-core subgraphs for one time but also to maintain

them in order to keep up with continuous updates. Adding to the challenge is that real world data sets are outgrowing the

capacity of a single server and its main memory. These challenges inspired us to propose a new set of distributed algorithms

for k-core view construction and maintenance on a horizontally scaling storage and computing platform. Our algorithms execute

against the partitioned graph data in parallel and take advantage of k-core properties to aggressively prune unnecessary

computation. Experimental evaluation results demonstrated orders of magnitude speedup and advantages of maintaining k-core

incrementally and in batch windows over complete reconstruction. Our algorithms thus enable practitioners to create and

maintain many k-core views on different topics in rich social network content simultaneously.

Index Terms—k-core, graph theory, distributed computing, dynamic social networks
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1 INTRODUCTION

AN ACM computing surveys article in 1984 began its
introduction in the following words: Graph theory is

widely applied to problems in science and engineering. Practical
graph problems often require large amounts of computer time [1].
In today’s graph applications, not only the graph size is
larger, but also the data characterizing vertices and edges
are richer and increasingly more dynamic, enabling new
hybrid content and graph analysis. One key challenge to
understanding large graph data is the identification of sub-
graphs of high cohesion, also known as “dense” regions.

This paper proposes scalable, distributed algorithms for
k-core graph construction as well as its incremental and
batch maintenance as dynamic changes are made to the
graph. One critical aspect to understand large graph data is
through the identification of “dense” areas in the graph
which represent higher inter-vertex connectivity (or inter-
actions in the case of a social network). In the literature,
there is a growing list of subgraph density measures that
may be suited in different application context. Examples
include cliques, quasi-cliques [2], k-core, k-edge-connectiv-
ity [3], etc. Among these graph density measures, k-core
stands out to be the least computationally expensive one
that is still giving reasonable results. An OðnÞ algorithm is

known to compute k-core decomposition in a graph with n
edges [4], where other measures have complexity growing
super-linearly or NP-hard.

For practical considerations, our focus is to identify and
maintain k-core with fixed, large k values in particular. In
contrast, a full k-core decomposition assigns a core number
to every vertex in the graph. To understand “dense” areas
in a graph, vertices with low core numbers do not contrib-
ute much and thus the computational expense of a full
decomposition is not justified. Fig. 1 illustrates the degree
distribution of nine published graph data sets, where partly
due to their nature of power-law distribution, a significant
percentage of graph vertices have low degrees and thus low
core numbers. In addition to reduced cost in constructing
k-core, it is also computationally less expensive to maintain
it, compared to maintaining core numbers for large num-
bers of low degree vertices.

Real world graph data is not just about relationship
topology but also the associated metadata attributes and
possibly unstructured content. For example, a call graph
contains not just the phone numbers, but also the duration,
time of the day, geolocation, etc. In many practical applica-
tions graph data is stored in a distributed data store via
sharded SQL or NoSQL technologies. This improves reli-
ability, availability and performance. The data store contin-
uously receives updates and may have other non-graph
analytics executed along with graph analytics such as
k-core. In addition, there are likely many projected graphs
based on the metadata or content topic with snapshot or
temporal evolution. There are various studies in the litera-
ture dealing with k-core construction in the presence of
metadata. Giatsidis et al. in [5], [6] use co-authorship as
edge weight in the graph. In [7], Wei and Ram consider
organization of social bookmarking tags using k-core with
tag weight as a metric. Chun et al. in [8] consider friends
and their bidirectional relations on a graph. The paper
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compares k-core of friendships and k-core of bidirectional
activity relationships. As opposed to these studies, our
proposed solution addresses the needs to maintain many
k-cores without keeping them all on a single server or in
memory.1

Our contributions in this paper can be summarized as
follows:

� We developed and accelerated a distributed k-core
construction algorithm through aggressive pruning of
the graph that will not be in the final k-core subgraph.

� We developed a new k-core maintenance algorithm
to keep the previously materialized subgraph up to
date with incremental changes to the underlying
graph. We developed pruning techniques to limit
the scope of k-core updates in the face of edge inser-
tions and deletions.

� We further improved the maintenance algorithm
with batch window updates for practical applica-
tions. Batch update maintenance allows more expen-
sive graph traversal steps to be aggregated for
additional computational efficiency.

� We presented a robust implementation of our algo-
rithms on top of Apache HBase, a horizontally scal-
ing distributed storage platform through its
coprocessor computing framework [9]. Our system
built on HBase stores graph data, including metadata
and unstructured content, in the HBase tables. Our
scalable algorithms read and write to these tables in
a distributed, parallel manner for persistence and
robustness. Since distributed graph processing asso-
ciates with a certain overhead, we designed our algo-
rithms carefully to minimize such overhead.

We recognize that depending on the specific k value, it is
plausible that some may be more conveniently kept central-
ized, independent of other applications. In practice, how-
ever the k-core subgraph, once identified, can also be added
as additional metadata to the vertices and edges of the dis-
tributed raw data. Such metadata is useful in conjunction
with other analytics to weigh the k-core labeled vertices and
edges differently or cross correlate k-core subgraphs from
multiple topics. Our proposed implementation can accom-
modate both centralized and distributed maintenance by
taking advantage of the flexible scale-out data store.

The rest of the paper is structured as follows. We first
review the large body of prior work on k-core and paral-
lel graph processing in Section 2. We next introduce our
distributed graph computing framework implemented on
top of Apache HBase and its coprocessor feature to set
the context of algorithm presentation in Section 3. We for-
mally define and introduce key k-core properties in Sec-
tion 4. Section 5 describes our distributed k-core
construction algorithms in na€ıve implementation and
pruning techniques. Section 6 details our incremental
maintenance algorithms for edge insertions and deletions.
Section 7 makes further improvement for maintenance
over batch window updates. Experimental results are
reported and discussed in Section 8. Finally, Section 9
concludes the paper and discusses future work.

2 RELATED WORK

k-core decomposition on a single machine. Extracting dense
regions in large graphs has been a critical problem in many
applications. Among the solutions proposed, k-core
decomposition became a very popular one and many stud-
ies have been conducted on k-core decomposition on
graphs efficiently [10], [11], [12], [13], [14]. k-core decompo-
sition has been used in many applications such as network
visualization [15], [16], [17], [18], [19], [20], internet topol-
ogy analysis [21], [22], [23], social networks [24], [25], and
biological networks [26], [27], [28]. The notion of k-core is
first introduced in [15] for measuring group cohesion in
social networks. The approach introduced generates sub-
graphs iteratively that has higher cohesion. This approach
has been very popular for characterizing and comparing
network structures. Although the concept of k-core is first
introduced in [15] a well known algorithm for computing
k-core decomposition is first proposed by Batagelj and
Zaversnik (BZ) [4]. The BZ algorithm first sorts the vertices
in the increasing order of degrees and starts deleting the
vertices with degree less than k. At each iteration, it needs
to sort the vertices list to keep the vertices list ordered. Due
to high random accesses to the graph, the algorithm can
run efficiently if the entire graph fits in main memory of a
single machine. To tackle this problem Cheng et al. in [29]
proposed an external-memory solution which can spill into
disk when the graph is too large to fit into main memory.
The proposed algorithm however does not consider any
distributed scenario where the graph resides on large clus-
ter of machines.

Distributed k-core decomposition: A distributed k-core
decomposition algorithm is introduced in [30] targeting a
different computing platform. In this paper it is assumed

1. The readers are encouraged to read Appendix A, which can
be found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2013.2297918, for the
detailed motivation behind our algorithms.

Fig. 1. Degree distribution of vertices in nine social network data sets on
the log scale.
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that each graph vertex is located on a different computing
node similar to P2P networks or sensor networks. In our
case, however, we horizontally partition a large graph and
keep each large partition on a different computing node.
Each of these nodes may store millions or billions of edges.
Therefore we never make an assumption that each graph
partition will fit into main memories of computing nodes
and we keep them on disks. As opposed to our algorithms,
in [30], it is assumed that everything is held in thememories
in computing nodes. The third important point is that in
[30], only the number of iterations required to compute k-
core decomposition is reported but not real execution times.
In this paper however, we provide real execution times for
our experiments conducted on large real graphs.

None of the papers mentioned so far targets k-core main-
tenance in dynamic graphs where the data does not fit into
main memories of computing nodes.

k-core decomposition in dynamic graphs: k-core decomposi-
tion in dynamic graphs was first studied in [31] and an
improved alternative was introduced by Li and Yu in [32].
In [31], Miorandi and De Pellegrini provide a statistical
model for contacts among vertices and compute k-core
decomposition as a tool to understand the spreaders’ influ-
ence in diffusion of epidemics. k-core decomposition was
recomputed at given time intervals using the BZ algorithm.
The largest graph in those experiments had 300 vertices and
20K edges. This approach is not feasible for large dynamic
networks where k-core recomputation likely will take a
long time. In [32], Li and Yu addressed the problem of effi-
ciently computing the k-core decomposition in dynamic
graphs. The main idea is that when a dynamic graph is
updated, instead of recomputing k-core decomposition over
the whole graph, their algorithm tries to determine a mini-
mal subgraph for which k-core decomposition might get
changed. The proposed coloring based algorithm keeps
track of core number for each vertex and upon an update
provides the subgraph for which k-core decomposition
needs to be updated. This approach was reported for single
server in-memory processing only and a straightforward
extension of the algorithm for distributed processing is far
more costly. Also, in this paper we propose algorithms for
batch window updates which could provide greater perfor-
mance improvement compared to performing updates step
by step. To our knowledge, our work is the first one propos-
ing algorithms for performing batch window updates for
the maintenance of k-core subgraphs.

Other parallel graph algorithms: Early studies in parallel
graph algorithms targeted static graphs [1], [33]. In the
recent years studies in this field gained momentum again
due to the growing popularity of social media tools. By for-
mulating common graph algorithms as iterations of matrix-
vector multiplications, coupled with compression, [34] and
[35] demonstrated significant speedup and storage savings,
although such formulation would prevent the inclusion of
metadata and content as part of the analysis. The iterative
nature of graph algorithms soon prompted many to realize
that static data is needlessly shuffled between MapReduce
tasks [36], [37]. In Pregel [38], vertices are assigned to dis-
tributed machines and only messages about their states are
passed back and forth. In our work, we achieved the same
objective through coprocessors. Recently, the Trinity graph

engine was introduced for distributed in-memory graph
processing [39]. Its capability is more suited for one-time
batch processing while lacking the support for incremental
updates and rich metadata.

3 ALGORITHM IMPLEMENTATION ON APACHE

HBASE

We model interactions between pairs of objects, including
structured metadata and rich, unstructured textual con-
tent, in the graph representation materialized as adja-
cency list known as edge table. An edge table is stored
and managed as an ordered collection of row records in
an HTable by Apache HBase [9]. Since Apache HBase is
relatively new to the research community, we included
descriptions about its architecture and the Coprocessor
computing framework in Fig. 2 and Appendix C, avail-
able in the online supplemental material.

Apache HBase is a non-relational, distributed data
management system modeled after Google’s BigTable
[40]. Written in Java, HBase is developed as a part of the
Apache Hadoop project and runs on top of Hadoop Dis-
tributed File System (HDFS). Unlike conventional
Hadoop whose saved data becomes read-only, HBase
supports random, fast insert, update and delete (IUD)
access at the granularity of row records, mimicking trans-
actional databases. Prominent HBase partitioners include
Facebook [41] and many others [42].

Fig. 2a depicts a simplified architectural diagram of
HBase with several key components relevant to this paper.

(a)

(b)

Fig. 2. An HBase cluster consists of one or multiple master servers and
region servers, each of which manages range partitioned regions of
HBase tables. Coprocessors are user-deployed programs running in the
region servers. They read and process data from local HRegion and can
access remote data by remote calls to other region servers.
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An HBase cluster consists of master servers, which maintain
HBase metadata, and region servers, which perform data
operations. An HBase table, or HTable, may grow large and
get split into multiple HRegions to be distributed across
region servers. In the example of Fig. 2a, HTable 1 has four
regions managed by region servers 4, 7 and 10 respectively
while HTable 2 has three regions stored in region servers 4
and 10. After consulting with the master server, an HBase
client can directly communicate with region servers to read
and write data.

An HRegion is a single logical block of record data,
which is physically materialized into multiple HFiles stored
in HDFS for availability. Within each HRegion, row records
are organized with their keys sorted in alphanumeric order.
This sorted order is always preserved after new row inser-
tions. Each HRegion thus has a start (the lowest) key and an
end (the highest) key. Our algorithms take advantage of
range partitioning to reduce the amount of data shuffling.

We map the rich graph representation G ¼ fV;E;M;Cg
defined in Section 4 to an HTable. We first format the vertex
identifier v 2 V into a fixed length string padðvÞ. Extra bytes
are padded to make up for identifiers whose length is
shorter than the fixed length format. The padding aims to
preserve the natural representation of the id’s for other
applications and avoids id remapping.

The row key of a vertex v is its padded id padðvÞ. The row
key of an edge e ¼ fu; vg 2 E is encoded as the concatena-
tion of the fixed length formatted strings of the source ver-
tex padðuÞ, and the target vertex padðvÞ. The encoded row
key thus will also be a fixed length string padðuÞ þ padðvÞ.
This encoding convention guarantees a vertex’s row always
immediately proceeds the rows of its outbound edges in an
HTable. Our graph algorithms exploit the strict ordering to
join ranges of two tables. Respective metadata M½V;E� and
content C½V;E� are stored in the columns. Fig. 2b includes a
simple example of encoded graph table, whose partitioned
HRegions are shown across three servers. In this table, a ver-
tex is encoded as a string of three characters such as ‘A10’,
‘B13’, ‘B25’, ‘A21’, etc. A row key encoded like ‘A10B13’
represents a graph edge from vertex ‘A10’, with fanout of
four, to another vertex ‘B13’. This layout retains minimal
clustering, only a vertex and its immediate outbound edges
are stored consecutively. Our current work does not attempt
to partition or cluster the graph data, although we can adopt
partitioning techniques such as [43]. Note that, we use the
terms partition and region interchangeably.

k-core algorithms in the paper are implemented as sev-
eral HBase coprocessors to achieve maximal parallelism.
Take degree computation as an example. Multiple instances
of coprocessors scan the graph data table’s local partitions
in parallel and then insert vertices’ degrees into another
HBase table for subsequent computing. When an edge
needs to be deleted, a coprocessor instance issues the row
delete message to a possibly remote HBase region server,
which holds the current row. Our algorithms are optimized
to minimize the messaging exchanges by achieving as much
processing in the local partition as possible.

Note that, k-core view maintenance algorithms depend
on raw graph and possibly metadata, hence keeping a
small k-core view result in a centralized location would
still require working with the raw graph on each update.

On the other hand, if the view is stored as additional
metadata as part of the raw graph data, the improved
affinity helps not only incremental maintenance but also
the consumption by other analytics that weights the input
of k-core. A concrete example of a distributed social
graph with metadata is provided at Appendix B, avail-
able in the online supplemental material.

4 PRELIMINARIES

We define a rich graph representation G

G ¼ fV;E;M½V;E�; C½V;E�g; (1)

where V is the set of vertices, E is the set of edges, M½V; E�
is the structured metadata associated with a vertex or an
edge, and C½V; E� is the unstructured context respectively.
We simplified the description in this paper by including
all vertices in the k-core computation while in practice,
our system is used to construct and maintain multiple
k-core subgraphs projected over different metadata and
context simultaneously.

The problem of k-core subgraph identification is formally
defined as follows:

Definition 1. A subgraph Gk ¼ fVk; Ekg induced from G where
Vk � V , Ek � E, is a k-core if and only if 8v 2 Vk, its degree,
dGk

ðvÞ to the other vertices in Gk is greater than or equal to k.
Gk is the maximum subgraph in G with this property.

Definition 2. The core number of a vertex, v, is the maximum k
where v 2 Vk and v =2 Vkþ1.

From the definitions, we can deduce the following lem-
mas, which are used extensively in our algorithms to prune
the search space.

Lemma 1. 8v 2 Vk, dGðvÞ � k.

Proof. By definition, dGk
ðvÞ � k. Since v 2 Gk � G, dGðvÞ �

dGk
ðvÞ. Thus, dGðvÞ � k. tu

We further define Nk
GðvÞ as the number of neighbors of

the vertex v in G, whose degree is greater than or equal to k,
i.e., Nk

GðvÞ ¼ jfwjðw; vÞ 2 E; dGðwÞ � kgj. In later sections,
we sometimes refer to Nk

GðvÞ as qualifying neighbor count
(qnc) or shorthand as qnckðvÞ.
Lemma 2. 8v 2 Vk, Nk

GðvÞ � k.

Proof. By Lemma 1, we know that every vertex in Vk has
degree greater than or equal to k. Since by definition, a
vertex in Vk has at least k neighbors, we thus deduct that
it must have at least k neighbors whose degree is greater
than or equal to k, i.e., Nk

GðvÞ � k. tu
See Appendix D.1.1, available in the online supplemental

material, for an illustration on the relationship between a
vertex’s core number, its degree in the entire graph.

5 DISTRIBUTED kkk-CORE CONSTRUCTION

In this section, we first describe a na€ıve distributed algorithm
that constructs a k-core subgraph by progressively removing
edges in parallel with the help of remote calls running on
server nodes. As indicated earlier, the given graph data is
partitioned to server nodes, hence the computed k-core sub-
graph will also be partitioned. Next, we describe how to
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improve the base algorithmwith an early pruning technique.
The proposed improvement reduces the message traffic
between the computing nodes dramatically and yields sig-
nificant speedup as we demonstrate with the experiments.

Our k-core construction algorithms alter the BZ algo-
rithm [4] by leaping to the fixed k value directly in a dis-
tributed computing environment where graph data is
partitioned and remote references are expensive. As
described in Section 3, edges are sorted and clustered by
their source vertex ids. The degree of a vertex thus can be
computed locally by node. Nodes request edges stored on
remote servers by sending messages. Table 1 summarizes
notations used in our pseudocodes.

5.1 Base Algorithm

The base algorithm, as described in Algorithms 1 and 2, runs
at server nodes and the client coordinates the execution of
these remote servers. Each node scans its own partition and
deletes those edges incident to the vertices with degrees
lower than k. Unlike the BZ algorithmwhere the vertices can
be immediately sorted by their degrees in memory, our dis-
tributed algorithm relies on iterations until all remote calls
run out of work. The remaining graph is the k-core subgraph
with all its vertices having core number no less than k.

For high k values, one would expect to have fewer verti-
ces qualifying for k-core subgraph. Thus the algorithm
described above would incur a large number of edge dele-
tions in its first iteration. This can be improved with an early
pruning technique described next.

5.2 Early Pruning

The insight leads us to have nodes check for a given edge
fu; vg, if dGðuÞ and dGðvÞ are both greater than or equal to k.
In addition, the degrees of neighboring vertices must be
greater than or equal to k, i.e., Nk

GðuÞ � k and Nk
GðvÞ � k. A

pruned edge list is populated by those edges passing this
minimum requirement. The pruned graph is the same as
the remaining graph after the first iteration of the base algo-
rithm. For a large k, if the iteration reduces the graph size
by 90 percent, applying the base algorithm will delete
90 percent of the edges, while applying the early pruning
technique will insert 10 percent of the edges. In practice, we
observed significant speedup due to the dramatic messag-
ing and I/O reduction.

The algorithm is described in Algorithms 3 and 4 for cli-
ent and node part, respectively. It simply first computes
degrees, then computes qnc values and then filters out
qualified edges into a new table, and finally calls the basic
algorithm over this new table.

TABLE 1
Notations Used in Algorithms
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6 INCREMENTAL k-CORE MAINTENANCE

We formulate incremental k-core maintenance as a series of
edge insertions and deletions to the graph. In case a vertex
is deleted, the action to delete its edges is serialized and
maintained as if the edges were deleted one at a time. We
first describe edge insertion and then edge deletion logic.

6.1 Inserting an Edge

With graphG ¼ fV;Eg and its materialized k-core subgraph
Gk ¼ fVk; Ekg, we give the following edge insertion theorem.

Theorem 1. Given a graph G ¼ fV;Eg and its k-core subgraph
Gk ¼ fVk; Ekg, and an edge fu; vg is inserted to G,

� If both u; v 2 Vk, then Gk does not change.

� If u or v or both =2 Vk, then the subgraph consisting of
vertices in fwjw 2 V; dGðwÞ � k;Nk

GðwÞ � kg, where
every vertex is reachable from u or v, may need to be
updated to include additional vertices into Gk.

To prove the theorem,we first prove the following lemma.

Lemma 3. If the vertex q is included in the k-core after the edge
fu; vg is inserted, then there exists at least one path originating
from either u or v connecting to q on which every vertex also
has a core number greater than or equal to k after the insertion
of the new edge.

Proof. Since q was not in Vk and is in ~Vk after the edge inser-
tion, its core numbermust have been increased from k� 1
to k. The increase of q’s core number is due to one or more
of its neighboring vertices whose core numbers increased
to k as well. The same logic applies to those neighbors and
leads to one or more connected paths to the vertices u or v,
where the graph topology is changed. tu
Using the above lemma, we now prove the edge insertion

theorem by contradiction.

Proof. Case 1: If u; v 2 Vk, the new edge fu; vg is inserted
to Ek and there is no change to Vk.

Case 2: We prove by contradiction that a vertex
q in G cannot be in the k-core, unless q 2 fwjw 2 V;
dGðwÞ � k;Nk

GðwÞ � kg where all the vertices in the set
are reachable by either u or v. Suppose q is in the k-core
but q =2 fwjw 2 V; dGðwÞ � k;Nk

GðwÞ � kg where all
the vertices in the set are reachable by either u or v. The
above lemma states that there exists at least one path
originating from either u or v connecting to q on which
every vertex also has a core number greater than or equal
to k. By definition of k-core in Section 4, the vertices on
the path must have dG � k and Nk

G � k. Therefore, the

vertices on the path to q and including q must have
dG � k and Nk

G � k as well. Therefore, q must be in the
subgraph expanded from u and v. tu

Algorithms 5 and 6 implement the edge insertion theorem.
The algorithm maintains two auxiliary information for
every vertex in the graph, 8v 2 V , its degree dðvÞ and its
qnc, qnckðvÞ for the given k.

The algorithm starts by updating the auxiliary values
of u and v and their direct neighbors, since a new edge is
inserted. Next, if the vertices u and v are already part of
the existing k-core subgraph, then the algorithm termi-
nates after inserting this edge into k-core subgraph.
When the degree of either u or v is less than k, then the
algorithm terminates. Otherwise, Find Possible Edges to
Insert subroutine, which is described in Algorithm 7,
returns a set of candidate edges in C that may be part of
the k-core. Then another subroutine Partial KCore, which
is described in Algorithm 8, filters out the edges in C that
are not part of the k-core. The remaining edges are
returned to be inserted into the updated k-core subgraph.
Perform Insert Traversals subroutine provides the same
functionality utilizing parallel search in case parallel exe-
cution is preferred. For practical reasons sequential search
can over-perform parallel search when available resour-
ces are limited (e.g., single core available to program), or
parallelism cost, i.e., thread related overhead, is high
with respect to paralleled operation cost. Hence, we pro-
vide both sequential and parallel algorithms.

6.2 Deleting an Edge

We first give the following edge delete theorem.

Theorem 2. Given a graph G ¼ fV;Eg and its k-core subgraph
Gk ¼ fVk; Ekg, and an edge fu; vg is deleted from G,

� If fu; vg =2 Ek, then Gk does not change.

� If fu; vg 2 Ek, then the subgraph consisting of vertices
in fwjw 2 V; dGðwÞ � k;Nk

GðwÞ � kg, where every
vertex is reachable from u or v, may need to be updated
to delete additional vertices from Gk.
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The logic of its proof is similar to that of the edge inser-
tion theorem and thus needs not be repeated here. The
k-core subgraph is only updated when one of its edges is
deleted. One can easily construct an extreme example where
a single edge delete removes the entire k-core.

Algorithm 9 implements the theorem on the server side.
After auxiliary data updates, if the deleted edge fu; vg was
not in the k-core subgraph Gk, per theorem, the k-core does
not change. Otherwise, the edge is deleted from Gk and the
updated ~Gk is recomputed by the k-core construction algo-
rithm. We further improve this basic version by checking the
in-core degrees dGk

ðuÞ, and dGk
ðvÞ of u and v, respectively. If

their in-core degrees remain above k after the edge deletion,
the current k-core subgraph does not change. Otherwise, the
Delete Edges Cascaded subroutine is invoked to traverseGk and
update the portion of the k-core subgraph that needs update.

Delete Edges Cascaded algorithm described in Algorithm 10
first starts with a vertex with in-core-degree less than k,
deletes all its edges, and then updates its neighbors’ in-core-
degree counts accordingly. Then it recursively traverses the
neighbors whose in-core-degrees are now below k. The
algorithm accelerates k-core re-computing by knowing, at
each iteration, which vertices have changed their in-core
degrees. Therefore, it can avoid recomputing all the in-core
degrees for all the vertices in the k-core. For the average
case where an edge deletion impacts a small fraction of ver-
tices in the k-core, we have found this improved algorithm
to be very effective. Perform Delete Traversals algorithm pro-
vides parallel version of Delete Edges Cascaded algorithm for
the case parallel algorithm is preferred.

7 BATCH kkk-CORE MAINTENANCE

In update-heavy workload, k-core does not need to be kept
in lock steps with data updates and thus presents the oppor-
tunity to periodically maintain k-core in batch windows.
Accumulating data updates and refreshing k-core in a batch
bundles up expensive graph traversals and thus speeds up
maintenance time, compared to maintaining each update
incrementally. Batch maintenance mitigate the cost of BFS
overhead dramatically.

In such batch maintenance scenario, edge insertion or
deletion incurs immediate updates to the auxiliary infor-
mation, degree and qnc, while updates to the k-core
subgraph are deferred. The system maintains a list of
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updates and flushes them based on update count or
clocked window. As described in Algorithm 11, when
the list is flushed, updates that cancel each other are
first removed from the list. Edge deletions, which typi-
cally incur shorter graph traversal, are then treated next
followed by edge insertions, which may include longer
traversal. Regardless of the processing order, the net
effect is the same.

Algorithm 12, run at client side, presents the batch edge
deletions in more detail. Edges in the deletion list deleteList
are grouped and sent to respective partition’s node, where
each remote call returns a list of cascaded deletion requests.
The client then regroups the requests.

Algorithm 14 presents batch edge insertion mainte-
nance in detail. In essence, the independently launched
graph traversal in each incremental maintenance is now
aggregated into a single parallel graph traversal launched
simultaneously from all the new edges. It first takes the
list of edges insertTraversals, and traverses them in par-
allel. Once the parallel traversal is done, candidate list C
will be processed by Partial KCore algorithm to compute
k-core over traversed graph.

The PrunedTraversal algorithm described in Algorithm
15 runs on the node side and performs a single BFS iteration
for the vertices in the insertTraversals list.

8 PERFORMANCE EVALUATION

Our experiments consist of three parts. In the first part, we
evaluate the performance of running distributed k-core con-
struction algorithms. The experiments show that the k-core
construction algorithm with early pruning provides signifi-
cant speedup compared to the base algorithm. In the second
part, we evaluate the performance of the incremental k-core
maintenance algorithms on dynamic graphs. We show that
recomputing the whole k-core subgraph is much costlier
than incrementally maintaining it. In the third part, we
show that maintaining the k-core subgraph with batch
updates provides further speedup compared to applying
the updates one by one. Thus we can keep the recency of
the results with much lower cost compared to reconstruc-
tion of the k-core.

8.1 Implementation on HBase

The server side of the algorithms were implemented as
HBase coprocessors to take advantage of distributed par-
allelism. Table 2 describes the mapping from the graph
construct in Table 1 to physically materialized tables,
table regions and coprocessors in HBase. While we
instantiate and quantify the benefits of our algorithms
through HBase, alternative implementation of the same
algorithms may also be developed for other distributed
processing platforms.

TABLE 2
Mapping of Graph Notations in Table 1

to Implementation in HBase
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8.2 System Setup

The experiment cluster consists of one master server and 13
slave servers, each of which is an Intel CPU based blade
running Linux connected by a 10-gigabit Ethernet. We use
vanilla HBase environment running Hadoop 1.0.3 and
HBase 0.94 with data nodes and region servers co-located
on the slave servers. The Hadoop File System (HDFS) repli-
cation factor is set at the default three replicas.

8.3 Data Sets

The data sets we used in the experiments were made avail-
able by Milove et al. [44] and the Stanford Network Analysis
Project [45]. We appreciate their generous offer to make the
data openly available for research. For details, please see
the references and we only briefly recap the key characteris-
tics of the data in Table 3. Different from traditional graph
processing approach, vertices and edges are stored in a dis-
tributed manner with large attribute data associated. Thus,
total graph size is much larger than topology-only graphs in
matrix or adjacency list form with possible edge weights.

8.4 kkk-Core Construction Experiments

In Section 5 we provided two algorithms for distributed
k-core construction. The first algorithm we proposed,
which is referred to as Base k-core algorithm, is described in
Algorithms 1 and 2 in Section 5. The second algorithm,
which is referred to as Pruned k-core algorithm, is an
improved version of the first algorithm and is described in

Algorithms 3 and 4. We implemented both of these distrib-
uted algorithms on HBase and compared their execution
times of building a k-core subgraph for different k values.
These k values are determined based on the degree distri-
butions in our data sets. A vast majority of the vertices in
these graphs have very low degrees as can be seen in the
degree-distribution plot given in Fig. 1. As we want to iden-
tify the dense subgraphs with high cohesion in these real
world data sets, we selected the k values based on the per-
centage of vertices with top degrees. We selected three dif-
ferent k values so that 4, 8 and 16 percent of the vertices in
the data sets have a degree of at least k. See Appendix D.1.2,
available in the online supplemental material, for more
details on chosen k values.

Fig. 3 compares the execution times between the base
and pruned algorithms for nine different data sets and three
different k values. The execution time is shown in log-scale.
The speedup factor of the pruned algorithm compared to
the base algorithm is shown on the top of each bar corre-
sponding to the pruned algorithm. As can be seen, pruned
algorithm dramatically reduces the execution time, hence
provides dramatic speedup. One key observation is that as
the data set size gets bigger, the speedup also increases due
to the significant reduction in messaging I/O among com-
puting nodes. For the largest graphs such as Orkut, almost
an order of magnitude improvement is observed. The paral-
lel execution was well balanced as monitored through Gan-
glia [46] reported in Appendix D.1.4, available in the online
supplemental material. Further experiments showed the
k-core construction time decreases with an increasing num-
ber of servers as expected.

In Section 6, we presented distributed insertion and dele-
tion algorithms to maintain k-core subgraph when edges
are inserted into or deleted from the graph. Here, we evalu-
ate the performance of these algorithms. We compare the
maintenance time of each update with reconstruction time
of the k-core subgraph every time an edge is inserted or
deleted. Below are three update scenarios we consider on
the given graph. For each scenario we measured the

TABLE 3
Key Characteristics of Data Sets in the Experiments

Fig. 3. k-core construction times for Base and Pruned k-core construction algorithms are shown for each data set with three chosen k values.
Relative speedup achievement of Pruned algorithm over Base algorithm is provided above each bar.
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performance of the system to maintain the previously mate-
rialized k-core subgraph:

1. In Extending Window scenario, a constant number of
edges are continuously inserted into the original
graph. We randomly choose 1,000 edges and insert
them into the graph. Those random edges are
selected from the graph and deleted before material-
ized k-core graph is constructed.

2. In Shrinking Window scenario, a constant number of
edges are continuously deleted from the original
graph. We first construct the k-core subgraph. Later,
we randomly choose 1,000 edges from the graph to
delete them one by one while maintaining the k-core
subgraph.

3. In Moving Window (Mix) scenario, Extending and
Shrinking scenarios are run simultaneously where
one insertion is followed by one deletion.

We repeat these three scenarios with each data set and
measure their execution times. The largest k value chosen
for each data set is used in the experiments. Fig. 4 plots the
speedup through our incremental maintenance algorithms
over recomputing k-core from scratch, for 9 different data
sets. The y-axis shows the speedup in log-scale. For each
data set and scenario, the figure gives the speedup of incre-
mental update approach with respect to two versions of
from-scratch construction, base construction algorithm and
pruned construction algorithm. As the figure shows, three
to four orders of magnitude speedup can be expected when
the only updates are edge insertions (extending window
scenario). Similar speedup factors can be observed for
mixed edge insertions and deletions with one to one ratio
(moving window-mix-scenario). Higher speedup, up to six
orders of magnitude can be expected when the only updates
are edge deletions (shrinking window scenario).

During our experiments, even though we measured the
individual latencies for the three scenarios, we are not
reporting them here due to space limitations. We observed

that in the Shrinking Windowworkload, the average latencies
are much smaller than those in the Extending Window work-
load. This is expected since in k-core maintenance, random
edge deletes rarely incur the overhead of graph traversal
and partial k-core recomputation. See Appendix D.1.3,
available in the online supplemental material, for more
details on update latency in milliseconds and its standard
deviation.

Another notable observation is that few edge insertions
take much longer time than average update latency. The
main rationale behind this observation is the long traver-
sals of the graph performed by calling the procedure
described in Algorithm 7. Fig. 5 illustrates the latency mea-
sured over 1,000 random edge inserts. While the majority
of inserts took 20 msec or less, a couple of inserts took lon-
ger than 10 seconds, which skewed the average and stan-
dard deviation. We observed as the graph gets larger, long
graph traversals over the distributed servers are costly.

We further break down the update latency of k-core
maintenance in Fig. 6 into three components: the first com-
ponent is the normal update latency in HBase; the second

Fig. 4. k-core maintenance speedups for each data set with insertion, deletion, mix workload combinations. Maintenance algorithm speedup for both
base and pruned construction algorithms is shown in the plot. Relative speedups are also provided above the bars.

Fig. 5. Insert latency over 1,000 random edges to the LiveJournal
data set.
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component is the time spent in updating the vertex degree
and qnc; and the third component is the time in traversing
the neighboring subgraph and partial k-core update. The
first component stays mostly constant, while edge insertions
contribute the most update latency due to graph traversal,
when they occur. By performing batch updates our goal is
to merge these costly traversals as much as possible as we
discuss the batch maintenance experiments in the next
section.

8.5 Batch Maintenance Experiments

To evaluate our batch update approach for maintaining the
k-core subgraph, we run experiments to investigate

� to what extent batch processing provides speedup
for different data sets,

� how batch size affects the mean update time, and

� how large batch size can grow before batch update
gets slower than constructing k-core subgraph from
scratch.

To measure the performance improvement of batch proc-
essing approach compared to individual updates, we set up
experiments for each data set for the update scenarios
described in Section 8.5. For each scenario we use 10K batch
size. Fig. 7 shows batch processing speedup versus individ-
ual processing in k-core maintenance for three different
update scenarios and for nine different data sets. The
speedup is shown in the y-axis in log-scale. For each
speedup bar, we also indicate on top of the bar the speedup
factor explicitly. Each subfigure also illustrates the size of
the respective data set in the secondary y-axes using a curve
of crosses.

For extending window scenario, we get greater perfor-
mance improvement, up to three orders of magnitude
speedup particularly for large graphs. Results indicate a
strong correlation between data set size and speedup from
batch approach. As the data sets get bigger we get better
performance improvement which is quite promising in
terms of scalability of the proposed algorithms. On the other
hand, for the data sets with less than 10M edges we
observed a performance loss as opposed to having faster
maintenance. This is mainly caused by the fact that, batch

processing traversals are strictly parallelized and this
results in many coprocessor calls. When a graph is small,
the work performed by the coprocessors become quite neg-
ligible and therefore coprocessor call overhead outweighs
the benefit it provides. For the shrinking window scenario,
the batch processing approach does not provide significant
speedup, as the deletion cost in individual processing is
already minimal, i.e., close to auxiliary maintenance cost
plus base HBase update times. The moving window case
provides speedups in between extending and shrinking
window cases, which is as expected considering that it is a
mixture of insertion and deletion operations.

We also conducted experiments to evaluate the relation-
ship between batch size and mean update time of the k-core
subgraph. For illustrative purposes, we reported results
from the Flickr data set. By changing the batch size, we mea-
sured the average update time for each of the three update
scenarios. Fig. 8 shows that the average update time gets
smaller as the batch size increases. This is because a large
batch size incurs more traversals to run in parallel and join
together in case search space overlap. Thus, for larger batch

Fig. 6. k-core maintenance times for each data set-scenario where time
slices for Base HBase insert/delete operation, auxiliary information
maintenance and graph traversals are illustrated.

Fig. 7. 10K sized batch maintenance speedups for Extending window,
Shrinking window and Moving window scenarios.
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sizes, average update time decreases and the traversal time
no longer constitutes a significant cost for the updates.
Instead auxiliary maintenance and base HBase updates
become the main contributors of the overall cost. This is par-
ticularly valid for batch sizes greater than 10K-20K.

Lastly, we studied the break even point before
exhausting the benefit of batch maintenance compared to
simply reconstructing k-core. Fig. 9 shows the total
update time of each batch processing and reconstruction
time of k-core. As expected, when the batch size
increases, the total update time increases for all insertion,
deletion and mix updates as more edges need to be proc-
essed for larger batches. For the Flickr graph, batch main-
tenance cost crosses the cost of the pruned construction
algorithm around 12K-40K updates and crosses the cost
of the base construction algorithm around 290K-320K
updates. Application requirements dictate the tradeoff
between data recency and maintenance cost.

9 CONCLUSIONS

To the best of our knowledge, this paper is the first to pro-
pose a horizontally scaling solution for the k-core view
materialization and maintenance of large, dynamic graphs
that do not fit into memory. Our proposed set of algorithms
aggressively prune the search space to minimize messaging
among computing nodes holding partitioned data. Our
experimental results demonstrated orders of magnitude
speedup with the aggressive pruning and fairly low mainte-
nance overhead in the majority of graph updates at rela-
tively high k-valued cores.

For the simplicity of the presentation, we left out the
metadata and content associated with graph vertices and
edges. In practice, a k-core subgraph is often associated
with application context and semantic meaning. Our effi-
cient maintenance algorithms now enable many practical
applications to keep many k-core materialized views up to
date and ready for user exploration.

We provided a distributed implementation of the algo-
rithms on top of Apache HBase, leveraging its horizontal
scaling, range-based data partitioning, and the newly intro-
duced coprocessor framework. Our implementation fully
took advantage of distributed, parallel processing of the
HBase coprocessors. Building the graph data store and
processing on HBase also benefits from the robustness of
the platform and its future improvements.

We observed opportunities to further optimize for effi-
ciency when two or more k-core views for the same raw
graph share overlaps. This may be resulted from semantic
hierarchies such as “technology”, “computer”, and “IBM”
or simply different k values on the same topic, say “IBM”.
Our current algorithms serve as the foundation to pursue
these optimization opportunities.
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