
Wireless ATA: A New Data Transport Protocol
for Wireless Storage

Serdar Ozler and Ibrahim Korpeoglu

Department of Computer Engineering, Bilkent University,
06800 Bilkent, Ankara, Turkey

{ozler, korpe}@cs.bilkent.edu.tr

Abstract. This paper introduces a new data transport architecture and
protocol for storage that is implemented on wireless devices and that
can be accessed through a short-range wireless access technology such as
Bluetooth or 802.11. We call the protocol WATA (Wireless ATA), as its
architecture is similar to current ATA and ATA-based technologies. In
this paper, we give basic technical details of the protocol and discuss its
main advantages and disadvantages over the current protocols, and talk
about our decisions to implement a prototype system to see an actual
implementation of the architecture.

1 Introduction

Mobility is one of the most important concerns on today’s technologies. People
started to use mobile devices everywhere and wireless communication is one key
technology that makes mobility easier than ever. Therefore, having a wireless
storage technology will also improve mobility when carrying data. For example,
people can use their mobile phones as their primary disks and thus even carry
their own home operating systems with their private documents and installed
software applications easily.

Currently, there exist several data transport protocols for storage devices on
the market. AT Attachment (ATA) [1] is one of the most well-known storage tech-
nologies in the world. However, both ATA and newly developed Serial ATA [2]
are designed primarily for inside-the-box storage. Actually, there is still ongoing
research on making SCSI [3] work on top of a network, but this research does not
focus on wireless networks. Wireless networks are not as stable and fast as wired
counterparts. Their performance depends on a number of factors including the
signal quality, distance, placement, and orientation of wireless devices. Similarly,
these factors sometimes cause disconnections making the network unstable.

Based on these problems, we designed a new data transport protocol, called
WATA, that mainly focuses on wireless storage devices. Its architecture is similar
to ATA and SATA, but the main difference is that the whole architecture of
WATA focuses on wireless connections such as Bluetooth [4].

The organization of the paper is as follows. In section 2, we briefly describe
some of the related work in this field. In section 3, we give an overview of



the features of WATA. Section 4 describes in detail the WATA architecture. In
section 5, we describe the WATA Disk Emulation interface. Finally, section 7
gives our conclusions.

2 Related Work

iSCSI [5] is a transport protocol for SCSI that works on a TCP/IP network.
Therefore, it provides an architecture which takes advantage of current networks
including Internet. Since iSCSI uses TCP/IP to establish connections, wireless
link technologies including Bluetooth can also be used as the physical medium.
However, iSCSI does not discuss wireless networks and thus wireless connection
problems.

HyperSCSI [6] is another transport protocol for SCSI that works on a net-
work. The protocol has multiple modes of operation. One of them works on a
TCP/IP network similar to iSCSI. On the other hand, the other mode bypasses
IP and puts the protocol directly onto Ethernet. Moreover, HyperSCSI discusses
the use of wireless networks and provides features for wireless storage. But it
does not discuss some wireless connection specific issues such as latency and
stability.

Network Block Device [7] is a Linux device driver, which allows the host to
use a remote system as one of its block devices. In other words, a file on a remote
Linux system acts as a block device on the local host. When a request comes to
the block device, the driver simply forwards the request using TCP/IP. However,
NBD also does not take wireless connection problems into account as in iSCSI.

3 Overview

There are mainly three components in an ATA system: ATA devices, ATA con-
troller, and the software. Software, which is a kernel-mode device driver of the
operating system in most cases, communicates with the controller to make re-
quests to devices. Then, the controller conducts the actual communication with
the devices. However, it should be noted that ATA specifies the bus interface
and the protocol only between ATA controller and ATA devices. The interface
between the software and the ATA controller is not standardized and thus does
not have to be same for different ATA controllers.

Similarly, WATA architecture includes a kernel-mode device driver, a con-
troller, and actual devices. However, as discussed in section 6, we decided to
implement the controller as a software application and hence eliminate the need
of a new hardware. As in the ATA specification, WATA only defines the proto-
col between the controller and WATA devices. The interface between the device
driver and the controller is up to the implementation.

WATA has some features that make it usable for wireless storage. So, most
important ones are listed below:



1. As we stated before, the most important feature of WATA is that it takes
performance and stability problems of wireless connections into account. It
provides a journaling and buffering subsystem to improve the efficiency of
wireless storage.

2. Unlike other data transport protocols, WATA does not specify any physical
medium to be used to transport data. Physical layer defines only the mini-
mum requirements so that Bluetooth or any other wireless medium can be
used.

3. WATA allows virtual disks. That is, a PDA or even a mobile phone can be
used as a storage device through WATA. If someone wants to use his mobile
device as a virtual disk, he may use the WATA Disk Emulation interface
implemented for that device.

4. Any user can access to a wireless device that is within the range of that user.
So, it is obvious that this will cause security problems. To overcome such
problems, WATA provides encryption and decryption mechanisms over data
flowing through the network and data stored in WATA storage devices.

4 Architecture

Any system that implements WATA must follow the specifications given in the
architecture and satisfy the minimum requirements to be able to access WATA-
enabled devices.

4.1 Layered Model

Application Layer

Transport Layer

Buffering Layer

Crypto Layer

Link Layer

Physical Layer

Fig. 1. WATA Protocol Layers

WATA has several layers for different parts of the protocol. In other words,
there are several layers on the system, and each of them has its own duties
throughout the WATA protocol. Each layer interacts only with two other layers:
the one above it and the one below it. The layered architecture is similar to the
architecture in Serial ATA, but with more layers as in Fig. 1.

1. Physical Layer: WATA does not specify the wireless physical layer (air
interface) to be used to transport the data. Hence, it is possible to use any
type of wireless physical layer to use WATA as long as a Link Layer using



this physical layer is developed. For example, it is possible to use Bluetooth
if there is a Link Layer implementation that converts WATA packets to
Bluetooth packets and vice versa.

2. Link Layer: Link Layer is responsible of being a bridge between the wire-
less physical layer and upper layers. WATA does not know which physical
layer is used to transport the data at all. Therefore, its data and packets is
prepared to be wireless physical layer independent. These packets are con-
verted to real wireless physical connection packets in Link Layer. Moreover,
if the underlying physical layer does not provide a reliable connection, Link
Layer is responsible for the reliability. That is, it has to handle error detec-
tion, correction, fragmentation, and retransmission if the wireless physical
connections do not have such features.

3. Crypto Layer: It is obvious that wireless connections are insecure due to
the characteristics of wireless medium. Secondly, any user can access to a
wireless device that is within the range of that user. Therefore, we designed
an encryption and decryption mechanism to overcome both of these prob-
lems. We give details of the layer that incorporates these mechanisms in
section 4.3.

4. Buffering Layer: Wireless connections are both slower and more instable
than wired connections. Therefore, we designed a subsystem to overcome the
adverse effects of these disadvantages as much as possible. It is similar to
journaling technology [8] used in some file systems. We give details of this
layer in section 4.2.

5. Transport Layer: The data cannot be sent through the network without
a header, as it does not mean anything to the receivers. Hence, this layer
makes the conversion between real data and the WATA protocol packets
that will flow through the network. WATA packets include some headers to
describe the data to be sent. We give details of WATA protocol packets in
sections 4.5 and 4.6.

6. Application Layer: This layer is where the applications using WATA are
implemented. Actually, file system device drivers or caching mechanisms of
operating systems run on this layer, since they are the only applications
that can use WATA protocol directly. They provide file systems to users by
accessing disks through WATA.

4.2 Buffering and Journaling

As stated in section 4.1, WATA provides a buffering mechanism to hide the
stability and performance problems of wireless connections from the user. The
mechanism is somewhat similar to the journaling feature used in advanced file
systems such as NTFS [9] and ReiserFS [10].

Incoming requests from the upper layers can basically be divided into two:
reading and writing. The approaches we have used for these two request cate-
gories are different.

Read requests must be handled in one of two ways. If the requested blocks are
already stored in the buffer, they can be immediately given to the upper layer.



However, if not, there is no other way than going to the real device, reading the
blocks, and then giving them to the upper layer. Therefore, read requests are
more dependent to the connection and thus require a more stable connection.
However, buffering mechanism in WATA implements the Least Recently Used
[11] algorithm and thus tries to make as few requests to the real device as
possible.

On the other hand, write requests must not be sent to the real device im-
mediately. They can be stored in the local buffer and wait there for a while.
Actually, Linux operating system uses floppy disks in a similar manner. One can
write to a floppy on Linux and see that the floppy drive light does not turn on
until you unmount the floppy device. To implement this, WATA uses a queue for
write requests. When a write request comes to the system, it stores the request
in the buffer queue. Then the system tries to write the accumulated requests to
the real device whenever possible. This design also allows better usage of the
wireless connection, as for example the read requests, which require immediate
action, can be performed before actual writing.

4.3 Security and Authentication

Wireless connections are insecure due to their characteristics of the wireless
medium. The carrying medium, which is the air, allows everyone to listen to the
data flowing through it. Therefore, data transferred in plain text is readable by
everyone. There are some already implemented wireless encryption mechanisms,
but we need a design beyond them. That is, besides using current wireless en-
cryption mechanisms to increase the security on wireless connections, we need
the data stored in WATA devices to be encrypted as well.

We need to store the data in a WATA device in an encrypted form, because
the WATA storage devices are not physically secured unlike current ATA or SCSI
devices. A mobile phone is an example to a WATA storage device and it is obvious
that it can easily be used by someone else other than its owner. Therefore, we
also designed a security subsystem as part of the WATA architecture.

WATA uses AES-256-CTR [12] [13] encryption algorithm. That is, it encrypts
block numbers using AES-256 and then XORs them with the data. 256-bit key
of AES-256 encryption is generated by using SHA-256 [14] algorithm on a user-
entered password. Keeping the password used as input to SHA-256 secure is the
responsibility of the user.

Moreover, the password used to generate the key and the key used to encrypt
the block numbers are never transmitted through the wireless connection. All
encryption and decryption are done locally on the host and the device used as
storage does not know the password or the key at all.

There is no need for an extra authentication mechanism in WATA protocol.
First of all, reading from a WATA device requires the password, as the host can-
not decrypt the data without having the password. On the other hand, writing
does not require having the password, since a user can create a new key using
a different password and format the device. It seems that there is a need for
an authentication mechanism for such a case. However, if someone else has the



device on his hands, he can physically erase the data. So, our aim is to protect
the content, not the device. Therefore, we did not design an extra authentication
mechanism.

4.4 Master and Slave Devices

In current ATA systems, there are generally two channels on the board and each
channel can be used to connect two ATA devices. If two devices are connected
to a channel, one of them is the master device and the other one is the slave
device. Although most users think that slave device depends on master device
for its operation, it is certainly not. These names are just to identify devices
on the same channel. When a request comes from the channel, the device just
compares its name to the name on the request and acts accordingly.

On the other hand, WATA design includes an actual master/slave relation-
ship between devices. One of the characteristics of wireless connections is the
range. A wireless connection cannot transport data to a farther location than
it is able to. It is actually similar to wired connections. For example, a wired
connection cannot transport data to 15m if the wire is 10m long.

In WATA protocol, the devices that are within the range of the host are
master devices. They can communicate with the host directly, in other words,
without the need for another device. Moreover, unlike ATA, number of master
devices are not limited within the design of WATA. On the other hand, there
obviously will be a limit because of the operating system, wireless connection
medium, etc.

A WATA device, which is not within the range of the host, but is within
the range of a master WATA device can connect to the host as a slave device.
However, there are some limitations of this design. First of all, the system does
not allow third level devices. That is, a device cannot connect to the host through
a slave device. It must connect through a master device. Therefore, there are
not slaves of slaves. Besides this limitation, the system also does not allow more
than one slave device to connect to the host through the same master device. All
these limitations are because of the problems in disconnection handling. When a
master device disconnects from the host, a slave device dependent to this master
device will also be disconnected. Therefore, more slave devices will cause more
instability problems.

4.5 Packet Structure

WATA packet structure looks like ATA register set. Each request and reply
packet is 56 bits in total. Only the reading reply and writing request packets
will be followed by data streams, whose size will be given in the packet. You can
see the structure of request packet in Fig. 2 and the structure of reply packet in
Fig. 3.

Descriptions of fields in request and reply packets are:

1. Features: Parameters for the command



Field 7 6 5 4 3 2 1 0

Features

Sector Count

LBA Low

LBA Mid

LBA High

Device

Command Command Code

Fig. 2. Request Packet

Field 7 6 5 4 3 2 1 0

Error

Sector Count

LBA Low

LBA Mid

LBA High

Device

Status

Fig. 3. Reply Packet

2. Sector Count: Number of sectors that will be used
3. LBA: Logical Block Address of the starting sector that will be used
4. Device: Device selection and additional bits for LBA
5. Command: Command code
6. Error: Bits indicating different errors
7. Status: Bits indicating status of the action

Features, Error, and Status fields can be different for each command or not
applicable for some commands. Device field includes 4 additional bits for LBA
field. Therefore, LBA fields are 28 bits in total. Device field includes a bit for
master/slave device selection. Remaining bits are reserved for future use. Com-
mand codes are given for each command in section 4.6.

Sector Count field is the number of sectors that will be used in this command.
For example, a read request must include the number of sectors that should be
read in this field. The reply packet will be followed by a data stream composed
of (Sector Count * 512) bytes.

4.6 Command Set

The command set is constructed with the help of ATAPI specification. ATAPI
specification includes mandatory command set for devices. The command set
in WATA actually is a small subset of this command set and includes only the
basic required functions for WATA protocol.



Control Commands:

FLUSH-CACHE: This command is used to force the device to flush its cache. If
there is any data that needs to be written physically, the device should perform
the writing of the data. This cache is nothing to do with the buffering mechanism
of WATA protocol. The cache is device specific and thus any device that do not
have an inner cache must reply to this command by saying that it is successfully
completed.

IDENTIFY-DEVICE: This command is used to gather information from the
device. Features field in the request packet is used to specify the type of infor-
mation requested. If the information cannot be returned within the Status field
of reply packet, a string for example, a data stream should be returned after the
packet and the size of the data must be given in the Sector Count field of the
reply packet.

SET-FEATURES: This command is used to modify device parameters. Features
field in the request packet is used to specify the parameter that will be modified.
Similarly, Sector Count and LBA fields are used to specify the value of that
parameter.

Data Commands:

READ-SECTORS: This command is used to read one or more sectors from the
device. After the reply packet, the device must send the data sector by sector as
a stream. Size of the data stream can be calculated from the Sector Count field.

WRITE-SECTORS: This command is used to write one or more sectors to the
device. After the request packet, the host must send the data sector by sector as
a stream. Size of the data stream can be calculated from the Sector Count field.

5 Disk Emulation

One of the most important features that WATA protocol provides is usage of
virtual disks. There are many mobile devices such as mobile phones and PDAs
that can be used as storage devices. WATA Disk Emulation feature allows the
users to use their mobile devices as WATA storage disks.

Any device that has a file system, the ability to create a local file on its file
system, and provides a way of developing third-party applications involving wire-
less communication can implement WATA Disk Emulation interface. Examples
to such mobile devices are almost all PDAs that have wireless connection capa-
bilities and advanced mobile phones that have wireless connection capabilities
and are able to run J2ME applications.

A device that implements WATA Disk Emulation interface must create a
local file on its storage subsystem. This local file will be mapped to a disk.



That is, all reading and writing requests coming to the disk will be executed on
that file. So, the device must handle incoming WATA requests and executes the
necessary operations on the file.

6 Implementation and Performance

We first implemented a Windows kernel-mode device driver to identify disk
access patterns of a standard user and used standard office and commonly used
applications to generate random patterns. Unfortunately, we saw that disk access
patterns of different file systems are mostly different. Furthermore, patterns are
different under different working conditions even with only one file system. One
example to such conditions is multitasking. Under heavy multitasking, it is very
hard to predict the operating system’s behavior to access to the disk. Moreover,
disk fragmentation also affects the disk access, because reading a contiguous file
does not mean reading consecutive disk blocks under fragmentation. Finally, we
decided that it is not feasible to implement a pre-fetch algorithm that uses the
idle connection to retrieve disk blocks that may be used next.

The prototype implementation consists of three different parts: device driver,
controller, and disk emulator. As described in section 3, the controller is an appli-
cation software that runs in user-mode and is responsible for most of the WATA
functionality. We will implement the disk emulator on Windows Mobile environ-
ment to be able to use PDAs and mobile phones as WATA disks. Therefore, we
do not need any type of new hardware to implement the prototype system.

Performance is mostly dependent to the physical medium as expected. It
is impossible to retrieve disk blocks faster than the physical medium allows.
However, by using buffering techniques, the actual user experience will be close
to a regular disk drive usage when using a standard office application that does
not require heavy disk read access.

7 Conclusion

In this paper, we describe a new wireless storage access architecture and pro-
tocol for wireless devices. The proposal takes the inherent problems of wireless
connections into account. Furthermore, we designed the proposed system so that
it does not require a specific wireless air interface. Moreover, it is as portable as
possible so that it can be implemented on almost all operating systems. Finally,
the system also supports encryption to provide security of data stored in WATA
devices.

References

1. Technical Committee T13: AT Attachment - 7 with Packet Interface, Volume 1
Revision 4b. http://www.t13.org/ (2004).

2. Serial ATA Working Group: Serial ATA: High Speed Serialized AT Attachment,
Revision 1.0a. http://www.serialata.org/ (2003).



3. Technical Committee T10: SCSI Architecture Model - 3 (SAM-3), Revision 13.
http://www.t10.org/ (2004).

4. Bluetooth Special Interest Group: Specification of the Bluetooth System, Volume 1
Version 1.1. http://www.bluetooth.com/ (2001).

5. IP Storage Working Group: Internet Small Computer Systems Interface (iSCSI)
(RFC 3720). http://www.ietf.org/html.charters/ips-charter.html (2003).

6. Khoo, P. B. T., Wang, W. Y. H.: Introducing A Flexible Data Transport Protocol for
Network Storage Applications. 10th NASA Mass Storage Systems and Technologies
Conference / 19th IEEE Symposium on Mass Storage Systems (2002).

7. Machek, P.: Network Block Device. http://nbd.sourceforget.net/ (1997).
8. Hagmann, R.: Reimplementing the Cedar File System Using Logging and Group

Commit. 11th ACM Symposium on Operating Systems Principles (1987).
9. Microsoft Corporation: Microsoft Windows NT from a Unix Point of View. Business

Systems Technology Series (1995).
10. The Naming System Venture: ReiserFS. http://www.namesys.com/ (1998).
11. Tanenbaum, A. S.: Modern Operating Systems, Second Edition. Prentice Hall, Inc.

New Jersey (2001).
12. U.S. National Institute of Standards and Technology: Specification for the Ad-

vanced Encryption Standard (AES). NIST Federal Information Processing Stan-
dards Publication 197 (2001).

13. U.S. National Institute of Standards and Technology: Recommendation for Block
Cipher Modes of Operation. NIST Special Publication 800-38A (2001).

14. U.S. National Institute of Standards and Technology: Specifications for the Secure
Hash Standard. NIST Federal Information Processing Standards Publication 180-2
(2002).


