Mehmet Fatih Aktaş

Research Interests

Distributed Systems	Probabilistic Modeling	Performance Optimization	Reinforcement Learning
 Worked on both theory In particular on distributed storage, Most recently on schematical 	etical analysis and developn uted in-memory data storag and resource provisioning duling user requests across	nent (see github) of large scale s e, straggler mitigation in distribu in the Cloud. multiple edge computing cluste	torage and computing systems. uted computing, load balancing ers to minimize response time.
Education			
PhD in Electrical & Con <i>Rutgers University, Piscat</i> Dissertation: Performan Advisor: Prof. Emina So	nputer Engineering <i>away, NJ</i> ce evaluation of redundancy ljanin	y techniques for distributed stor	2015-2020 GPA: 4.0/4.0 rage and computing systems
Masters in Electrical & <i>Rutgers University, Piscat</i> Thesis: Scheduling and H Advisor: Prof. Manish P	Computer Engineering <i>away, NJ</i> flexible control of wide-area arashar	data transport services for end	2012-2015 <i>GPA: 4.0/4.0</i> -to-end application workflows
Bachelors in Electrical <i>& Bilkent University, Ankard</i>	& Electronics Engineering a, Turkey		2007-2012 GPA: 3.84/4.0
Experience			
Assistant Professor – Co – The goal of my researce	omputer Science, Bilkent U ch is to make distributed co	niversity mputing systems faster and mo	Since August 2021 re robust to runtime changes.
Postdoctoral Associate - Scheduling (e.g., image pro – Developed a distribute and demonstrated tha	- WINLAB, Rutgers Univer cocessing requests) across edge ed scheduling algorithm to t our policy is robust agains	r sity clusters for low-latency processing assign user requests across the e st fluctuating load and runtime	March – August 2021 edge clusters. Built a prototype changes in the system [P1].
Senior Software Engine Member of language execu	eer – MathWorks, Natick, N tion team	1A	March 2020 – March 2021
 Worked on the dynam first code coverage too 	nic compilation and execution of for Matlab.	on of Matlab. Acted as the lead	designer and developer of the
Research Intern – IBM An autonomic container si – Proposed a system to – Showed, with a cluster (memory) utilization i	Research, Yorktown Heigh <i>zing system for Kubernetes. (j</i> predict and refine the CPU trace driven analysis and si n the cluster from 10% (26%	ts, NY <i>ointly with Chen Wang, Alaa Yous</i> and Memory reservations of co mulation, that our proposed sys 6) to 54% (88%) [C6, P4].	Summer 2018 ssef) ntainers in Kubernetes. stem can raise the average CPU
Research Intern – Argo <i>Multi-layered intermediate</i> – Developed a multi-lay – Integrated Decaf with	nne National Laboratory, L e buffering for in-situ workflow rer data staging service with DataSpaces; a distributed i	emont, IL <i>is. (jointly with Tom Peterka)</i> in Decaf; a distributed workflo [,] n-memory data staging framew	Summer 2016 w execution framework. rork for HPC.
Research Assistant – Ru Funded by the university of	itgers University, Piscataw or NSF to do research during n	ay, NJ <i>1y Masters and PhD studies.</i>	Fall 2012 – Spring 2020
Key Research Pro	jects		
Straggler mitigation wi	th redundancy in distribut	ed computing	Spring 2017-present

- Extended the analysis for straggler relaunch and validated results using Google cluster data [C10].
- Developed a model that closely captures the effect of added redundancy on system response time and extended

Scheduling redundancy for Master-Slave compute clusters

What is the right strategy to schedule jobs of many tasks with redundancy?

- With Deep Q-learning, we learn the characteristics of "good" policies for scheduling jobs with redundancy.
- With Queueing Theory, we propose and analyze a policy that mimics the learned principles, and show that our model driven policy performs as good as the more complex policies learned by Deep-RL [C3, P2]

Redundancy for robust service in distributed storage

Can we build a distributed storage that is robust to skews in content popularity?

- Proved the robustness of binary simplex codes against the skews in content popularity [C11].
- Showed that in a system of *n* storage nodes, when each object is replicated in *d* nodes, system's load balancing ability increases multiplicatively with d as long as $d = o(\log(n))$, increases exponentially as soon as $d = \Theta(\log(n))$.
- Showed that using *r*-XOR's to implement *d* choices for each object rather than replication reduces storage overhead multiplicatively with r, while also reducing system's load balancing ability additively with r [C1, [1]. Fall 2016-present

Content download from coded distributed storage

Can we use the storage redundancy for fast content access?

- Analyzed the performance of download with redundant requests in storage systems which employ availability codes [C8, [2].
- Analyzed download time in MDS coded storage with minimal parallelism [C5].

Anonymity vs. Delay tradeoff in Mix networks

What is the delay penalty of anonymizing senders at the network switches?

- Extended an approximate method for analyzing assembly-like queues to study the delay in batch mixes.
- Proposed a randomized batch scheme that improves the delay exponentially at the cost of giving up on the strict anonymity guarantees of the deterministic batch mix [C2].
- Currently trying to answer the question: How long does it take to deanonymize ToR users with intersection attacks? [P3].

Wide-area data staging and sharing

Can we build a wide-area scale big memory abstraction?

- Developed WA-DataSpaces; a big shared memory abstraction for applications distributed across the globe.
- Our framework was used in a showcase entry titled "InfiniCortex" at SC'14 and SC'15.
- Demonstrated the effectiveness of probabilistic prefetchers for on-time data locality in scientific applications [C7]. Fall 2012-Fall 2014

Opportunistic in-transit data processing and staging

Can SDN technology enable just-in-time end-to-end data delivery?

- Designed and developed a Network OS prototype for intermediate data staging and processing [C12].
- Demonstrated that scheduling of intermediate resources with a disciplined convex optimization program can enable just-in-time end-to-end data delivery [J4].

Graduate Courses Taken

Stochastic Processes	Queueing Theory	Computer Networks
Error Control Coding	Science of System Resilience	Linear System Analysis
Convex Optimization	Detection and Estimation Theory	Machine Learning
Parallel and Distributed Computing	Advanced Computer Architecture	Software Engineering

Courses Taught

Probability and Random Processes (as Instructor, TA) **Programming Methodology** Parallel and Distributed Programming (Graduate level) Computer Networks (as Professor) Introduction to Algorithms and Programming **Computer Architecture**

Software Skills

Programming: Fluent in Python and C++.

Algorithms: Numpy, Scipy, Statsmodels, Mpmath, NetworkX, Matplotlib, TensorFlow, C++/Boost.

Systems: Docker containers, Kubernetes, Terraform, Envoy, Flask, MPI, Simpy (for system simulations).

Spring 2018-present

Fall 2017-present

Summer 2017-present

Spring 2015-Spring 2016

Parallelism: OpenMP, POSIX threads, Python3-Concurrency (threading, asyncio), Boost (thread, asio).

Networking: Python3 (socket, socketserver), RDMA IB Verbs, POX, FlowVisor, Open vSwitch, Mininet.

Visualization: Grafana, Kibana, Elastic stack (used them to search and monitor container resource usage metrics).

Predictive analytics: Knowledgeable in Markov models, time-series prediction (e.g. ARIMA) and neural networks.

Awards

Academic achievement award from Rutgers University

Full scholarship from Bilkent University

Journal Papers

Published

- [J1] Mehmet F. Aktaş, Amir Behrouzi Far, Emina Soljanin, and Philip Whiting. "Evaluating Load Balancing Performance in Distributed Storage with Redundancy". In: *IEEE Transactions on Information Theory* (2021). DOI: 10.1109/TIT.2021.3054385. arXiv:1910.05791.
- [J2] Mehmet F. Aktaş, Swanand Kadhe, Emina Soljanin, and Alex Sprintson. "Download Time Analysis for Distributed Storage Codes with Locality and Availability". In: *IEEE Transactions on Communications* (Sept. 2020). arXiv:1912.09765.
- [J3] Mehmet F. Aktaş and Emina Soljanin. "Straggler Mitigation at Scale". In: IEEE/ACM Transactions on Networking 27 (Oct. 2019), pp. 2266–2279. arXiv:1906.10664.
- [J4] Mehmet F. Aktaş, Georgiana Haldeman, and Manish Parashar. "Scheduling and flexible control of bandwidth and in-transit services for end-to-end application workflows". In: *Future Generation Computer Systems* 56 (Mar. 2016), pp. 284–294. Elsevier.

Accepted

[S1] Mehmet F. Aktaş, Gauri Joshi, Swanand Kadhe, Fatemeh Kazemi, and Emina Soljanin. "Service Rate Region: A New Aspect of Coded Distributed System Design". In: *IEEE Transactions on Information Theory* (Sept. 2021). arXiv:2009.01598.

In preparation.....

- [P1] Mehmet F. Aktaş and Dipankar Raychaudhuri. "Distributed client-side scheduling for edge computing". In: ... (2021).
- [P2] Mehmet F. Aktaş and Emina Soljanin. "Optimizing Redundancy Levels in Master-Worker Compute Clusters for Straggler Mitigation". In: ... (2021). arXiv:1906.05345.
- [P3] Mehmet F. Aktaş, Mansi Sood, Allison Beemer, and Emina Soljanin. "How long does it take to deanonymize ToR users with intersection attack?" In: ... (2021).
- [P4] Mehmet F. Aktaş, Chen Wang, Alaa Youssef, and Malgorzata (Gosia) Steinder. "kAdvisor: An autonomic container sizing system for Kubernetes". In: *IEEE Transactions on Cloud Computing* (2021).

Refereed Conference Papers

- [C1] Mehmet F. Aktaş, Amir Behrouzi-Far, and Emina Soljanin. "Load Balancing Performance in Distributed Storage with Regular Balanced Redundancy". In: *Redundancy 2019: International Symposium on Problems of Redundancy in Information and Control Systems*. IEEE. 2019.
- [C2] Mehmet F. Aktaş and Emina Soljanin. "Anonymity Mixes as (Partial) Assembly Queues: Modeling and Analysis". In: *Information Theory Workshop*. IEEE. 2019. arXiv:1907.11603.
- [C3] Mehmet F. Aktaş and Emina Soljanin. "Learning Effective Straggler Mitigation from Experience and Modeling". In: *CodML Workshop of ICML*. ACM. 2019.
- [C4] Gala Yadgar, Oleg Kolosov, Mehmet F. Aktaş, and Emina Soljanin. "Modeling The Edge: Peer-to-Peer Reincarnated". In: USENIX Workshop on Hot Topics in Edge Computing. USENIX. 2019.
- [C5] Mehmet F. Aktaş and Emina Soljanin. "Heuristics for Analyzing Download Time in MDS Coded Storage Systems". In: 2018 IEEE International Symposium on Information Theory (ISIT). IEEE. 2018.
- [C6] Mehmet F. Aktaş, Chen Wang, Alaa Youssef, and Malgorzata (Gosia) Steinder. "Resource Profile Advisor for Containers in Cognitive Platform". In: *Symposium on Cloud Computing*. ACM. 2018.

- [C7] Mehmet F. Aktaş, Javier Diaz-Montes, Ivan Rodero, and Manish Parashar. "WA-Dataspaces: Exploring the Data Staging Abstractions for Wide-Area Distributed Scientific Workflows". In: *Proceedings of the 46th International Conference on Parallel Processing*. ACM. 2017.
- [C8] Mehmet F. Aktaş, Elie Najm, and Emina Soljanin. "Simplex Queues for Hot-Data Download". In: *Proceedings* of the SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems. ACM. 2017.
- [C9] Mehmet F. Aktaş, Pei Peng, and Emina Soljanin. "Effective Straggler Mitigation: Which Clones Should Attack and When?" In: *MAMA Workshop of Sigmetrics*. ACM. 2017. arXiv:1710.00748.
- [C10] Mehmet F. Aktaş, Pei Peng, and Emina Soljanin. "Straggler Mitigation by Delayed Relaunch of Tasks". In: *Proceedings of the IFIP WG 7.3 Performance*. ACM. 2017. arXiv:1710.00414.
- [C11] Mehmet F. Aktaş et al. "On the Service Capacity Region of Accessing Erasure Coded Content". In: 55th Annual Allerton Conference on Communication, Control, and Computing. 2017. arXiv:1710.03376.
- [C12] Mehmet F. Aktaş, Georgiana Haldeman, and Manish Parashar. "Flexible Scheduling and Control of Bandwidth and in-transit Services for end-to-end Application Workflows". In: *Proceedings of the Fourth International Workshop on Network-Aware Data Management of Supercomputing Conference*. IEEE Press. 2014.