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ABSTRACT

SIMULATING GAZE BEHAVIOR OF VIRTUAL
CROWDS BY PREDICTING INTEREST POINTS

Umut Ağıl

M.S. in Computer Engineering

Advisor: Uğur Güdükbay

July 2016

Creating realistic crowd behavior is one of the major goals in crowd simula-

tions. Simulating gaze behavior and predicting interest points of virtual charac-

ters play a significant role in creating believable scenes, however this aspect has

not received much attention in the field. This study proposes a saliency model,

which enables virtual agents to produce gaze behavior. The model measures the

effects of distinct pre-defined saliency features that are implemented by examin-

ing the state-of-the-art perception studies. When predicting an agent’s interest

point, we compute the saliency scores by using a weighted sum function for other

agents and environment objects in the field of view of the agent for each frame.

Then we determine the most salient entity in the virtual scene according to the

viewer agent by comparing the scores. We execute this process for each agent in

the scene, thus agents gain a visual understanding about their environment. Be-

sides, our model introduces new aspects to crowd perception, such as perceiving

characters as groups of people, gaze copy phenomena and effects of agent velocity

on attention. For evaluation, we compare the resulting saliency gaze model with

real world crowd behavior in captured videos. In the experiments, we simulate

the gaze behavior in real crowds. The results show that the proposed approach

generates plausible gaze behaviors and is easily adaptable to varying scenarios

for virtual crowds.

Keywords: crowd simulation, saliency, gaze behavior, perception, interest point

detection, gaze copy.
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ÖZET

İLGİ NOKTALARINI TAHMİN EDEREK SANAL
KALABALIKLAR İÇİN BAKIŞ DAVRANIŞI

SİMÜLASYONU

Umut Ağıl

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Uğur Güdükbay

Temmuz 2016

Gerçekçi kalabalık insan grubu davranışı yaratmak kalabalık simülasyonlarının

en temel amaçlarından birisi olarak yer alır. Sanal karakterlerin bakış

davranışını simüle etmek ve ilgi çekici noktaları tahmin etmek inandırıcı sahneler

oluşturmada önemli rol oynamaktadır. Fakat bu yaklaşım bu zamana kadar bil-

gisayar grafiği alanında yeteri kadar ilgi çekmemiştir. Bu çalışma sanal karakter-

lerin bakış davranışı üretmesini sağlayan bir dikkat çekicilik modeli sunmaktadır.

Model algı üzerine yapılmış güncel çalışmaları ele alarak dikkat çekici unsurlar

belirler ve bu unsuların etkilerini ölçer. Bir karakterin ilgisini çeken noktayı tah-

min ederken sahnede karakterin görüş alanınında bulunan diğer karakterler ve

nesnelerin dikkat çekme skorları bir ağırlıklı toplam fonksiyonu ile hesaplanır.

Ardından bu skorlar karşılaştırılarak izleyici karaktere göre sahnedeki en dikkat

çekici varlık bulunur. Bu işlem sahnedeki her bir karakter için hesaplanır ve

böylece tüm karakterler çevreleri hakkında görsel bir algıya sahip olurlar. Bunun

yanında, modelimiz kalabalık algısına yeni bakış açıları da getirmektedir. Örnek

olarak, kalabalıkların gruplar halinde ele alınması, bakış kopyalama, hızın dikkate

etkisi verilebilir. Önerilen modelin değerlendirmesi için elde ettiğimiz dikkat

çekme modelini videolardan elde ettiğimiz gerçek dünya kalabalık davranış ve-

rileri ile karşılaştırdık. Hazırlanan senaryolarda, gerçek kalabalık davranışlarının

simülasyonunu yaptık. Elde edilen sonuçlar modelin gerçekçi bakış davranışı

sunan ve farklı senaryolara kolaylıkla uygulanabilir olduğunu göstermektedir.

Anahtar sözcükler : kalabalık simülasyonu, dikkat çekme, bakış davranışı, algı,

ilgi çekici noktaların tespit edilmesi, bakış kopyalama.
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Chapter 1

Introduction

Real-time crowd simulation has been a great interest since years and creating

highly realistic virtual crowds is a challenging topic in the area of computer

graphics. Both in industrial and academic research studies that are concerned

with virtual simulation and entertainment, generating more believable virtual

characters has always been an important issue. Currently, with the advance-

ment in computer science and technology, virtual scenes that contain hundreds

of agents acting in a crowd can be simulated in real-time. And behaviors of these

agents play a major role in improving the realism of the simulation. Most of the

studies about crowd behavior are related to path planning, collision avoidance,

autonomous agents, social interactions among groups, and personality models.

However, the simulation of gaze behavior, which can contribute to the realism of

virtual crowds, is still an area that needs further investigation.

The development of character behavior models that imitate humans in real-

life situations have obtained a great attention in video games and in special

effects for film, and most of the emphasis has been placed on path planning and

agent navigation algorithms. Characters move, walk, run, fight and interact more

realistically with evolving studies, however gaze behavior remains as a lacking

area in these simulations. Especially, in video-games, even in the most popular

ones, such as Assassin’s Creed, Elder Scrolls and Witcher series (cf. Figure 1.1),
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gaze behavior of non-playable-characters looks unrealistic. In animation movies

production, artists need to determine the interest points of virtual characters,

which is then adjusted frame by frame. In addition, working with crowds of large

size brings a trade-off between realism and computational costs. Despite these

problems, there are only a few studies dealing with the analysis and synthesis of

gaze behavior.

The purpose of this research is to bring out more emphasis on the mentioned

topic and to contribute to this area of computer graphics by providing a new gaze

behavior model for virtual crowds. The proposed approach focuses on crowd

simulation in virtual environments, preferably where characters are viewed in

close range in the final rendered scene. Our proposed model is implemented as a

module that can be attached to the Unity game engine.

1.1 Motivation

In simulating crowds having characters that are aware of their environment and

other characters has a significant impact on enhancing the realism. Navigation

and path planning algorithms can ensure this awareness up to a certain point

by ensuring that characters avoid collisions with each other or scene objects.

However, in the current literature most computer games simulating crowds neglect

the implementation of virtual characters’ gaze behavior or apply pre-adjusted gaze

animations to characters.

The lack of realism in gaze behavior can be observed in non-playable characters

(NPCs), which are controlled by AI mechanisms. In our observations on computer

games with crowd simulations, we observe two types of gaze behaviors applied to

NPCs. One approach is forcing characters to look at their forward direction and

implementing head movements via blended animations. In this way, characters

look like they continuously look at their environment. The other approach is

making NPCs be aware of the playable main character, which enables characters

to look at the player. Even though these methods can generate crowds with

2



gazing ability, resulting simulations still lack realism. NPCs either look at their

environment randomly without considering the saliency of surrounding entities

or they direct their gaze towards the player’s character for unrealistic durations.

Moreover, gaze interactions between NPCs are generally omitted, except for pre-

adjusted event animations, such as two characters stand for talking to each other.

Figure 1.1 shows examples of gaze behavior in three popular games where the

first two images (a, b) show characters that just look forward, the third image (c)

contains NPCs that look at the player agent continuously, and the fourth image

(d) shows a scene with pre-adjusted event and animations where passing agents

direct their gaze to the predetermined area.

(a) (b)

(c) (d)

Figure 1.1: Gaze behavior in popular computer games: Assassin’s Creed
( R©Ubisoft, 2014), Elder Scrolls Skyrim ( R©Bethesda, 2011), and Witcher 3 ( R©CD
Projekt RED, 2015). (a), (b) Agents look only forward or random directions. (c)
NPCs continuously look at the player character. (d) A scene where events, ani-
mations and gaze behavior are pre-adjusted.

In development of animation movies, gaze behavior of characters are generally

manually adjusted by an animation artist, by setting the gaze direction in certain

frames. Certainly, artists can predict where the characters should look at, however

3



doing this process manually can be time consuming. Besides, a computational

model provides a realistic prediction for interest points, which can be used as a

baseline for gaze behavior.

We aim to increase the realism of crowd simulations by proposing a gaze behav-

ior model for the virtual characters in the scene. Especially, aiming to address

the mentioned problems, the proposed approach focuses on predicting interest

points and gaze duration for characters during run-time.

1.2 Research Questions

By taking into consideration the mentioned problems in the game and animation

industries, we aim to address the research questions that are outlined as follows:

• How does the characters in virtual crowds decide their interest points and

be aware of their environment?

• By using a computational behavior model, can we generate realistic scenes,

in which characters shift their gazes similar to real-life examples obtained

from videos?

1.3 Contributions

The contributions of the thesis are as follows:

• We develop a computational model that simulates interest point detection in

real-time crowd simulations with the state-of-the-art psychology, cognitive-

science and computer graphics studies.

• We introduce a group-based approach in interest point detection methods

4



in which all characters belong to a group even if they walk alone. This ap-

proach provides us performance improvement and realistic implementation

on perception of humans in groups [1].

• We incorporate the effects of characters’ personality to their gaze behavior.

Users can alter the gaze behavior of a character by adjusting the shyness

and curiosity parameters.

• We examine the human visual system and causes of attention shifts in

crowds and we shape our model accordingly. We apply ensemble encoding

mechanism [1, 2] and incorporate the impact of walking speed on gaze

behavior [3].

• We propose a model with adjustable parameters that allows designing scenes

with different crowd norms where each norm represent a distinct society. A

different crowd norm means that gaze behaviors and reactions of characters

change from crowds to crowds such that a salient entity in a scene may not

be that salient in another scene.

• We develop a gaze behavior framework that can be added as a plug-in to

game engines (e.g., Unity [4]).

• We design virtual environments that simulate real-life examples to evaluate

the proposed model.

• We show that by using our framework with just altering the parameters of

characters and crowd norms, human gaze behavior in real-life scenarios can

be simulated.

5



Chapter 2

Background and Related Works

2.1 Saliency in Computer Graphics

Human visual attention can simply be considered as the cognitive process to

concentrate on a visual object. It has been studied for a long time by psychologists

and cognitive scientists. The results obtained have been put to use in computer

graphics studies and applications to improve the quality of rendered images [5, 6]

and to simulate virtual human behaviors more realistically [7, 8].

When a person look at a scene, the brain cannot perceive the whole scene

and analyze it instantly, instead only the area within two degrees range from

the center point can be focused [9]. Next, the object identification stage starts

and attention is directed serially to each object in a display [10]. It is indicated

that the combination of two processes, which are bottom-up and top-down, forms

human visual attention mechanism [11]. The bottom-up process is a stimulus-

driven attention and depends on the properties of the objects. Human gaze

is involuntarily directed towards the salient area, which possibly have a higher

importance for that character. To give an example, the movement of a running

man in a pedestrian group with slow pace can be a sign of danger. It is simply a

difference of an area from its surroundings. The top-down process is a goal-driven
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process and can be thought as dependent on given tasks or the prior knowledge of

the viewer. It also takes role in determining longer-term cognitive strategies [12].

As one of the earliest methods, Itti et al. [13] apply bottom-up visual attention

model on 2D images to compute saliency. The result is called saliency map, in

which each pixel reflects a saliency value, i.e., how much the area possibly grabs

attention. Saliency maps can successfully predict attention scores of a scene at

a time from the viewer’s perspective. On the later studies, different features

such as flickering [11], motion [11] or depth [14] are included to saliency map

computations. On the other side, visual attention is not determined by just

incoming inattentive reflexes resulted from bottom-up process. The studies of

Longhurst et al. [15] and Cater et al. [9] are examples of different models that

simulate top-down processes.

Sundstedt et al. [16] point out that the pure bottom-up process is not sufficient

to compute a person’s gaze. They apply psychophysical experiments using a

computer game to show that saliency maps are weak in task-oriented scenarios.

Itti argues that the bottom-up and top-down processes are not mutually exclusive

and the features of one can be integrated to those of the other [17]. Judd et

al. [18] use face detection algorithms along with saliency maps. They use the

idea that the human visual system searches for faces initially when they look at

images. Another study [14] that combines these two processes, in which bottom-

up factors computed with saliency maps and top-down factors are computed by

spatial context of objects. When the object is close to the screen, it has a high

saliency score. They compute saliency scores of objects instead of regions, which

is what we use in our model.

2.2 Crowd Simulations and Crowd Models

Computer simulations study the masses and try to predict their behavior because

the computer graphics technologies make it possible to generate multiple virtual

characters. Reynold’s model with boids [19] is one of the earliest successful works
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in this area. Moreover, modeling of crowds improves progressively and differ-

ent aspects are studied in detail such as collision avoidance [20], autonomous

agents [21], behaviors [22], or personalities [23].

Our work is especially related to the behavior of crowds, so we need to mention

crowd models briefly. Alongside with physical crowds-people gathered in the same

place- our main concern is primarily related to psychological crowds, in which

individuals share a common social identity and their behavior can change with

the social norms [24].

According to Templeton et al. [24], state-of-the-art psychological crowd models

can be divided into two broad categories: mass approaches and small group

approaches. In mass crowd approaches, individuals are considered as part of a

large gathering. One subtype of this approach, “homogeneous mass”,assumes

that all entities in the crowd have the same properties and share the same goal.

The work of Fang et al. [25] is an example of homogeneous mass approach, which

simulates an egress situation and analyzes crowd densities. The other subtype is

“mass of individuals” where individuals carry different properties. For example,

Shie et al. [26] assign different attributes to individual agents to generate more

realistic simulations. The second category, the small group approach, basically

depends on the idea that crowds are formed by small groups and the model

represents inter-group relations. This approach has a significant impact on the

development of our study. The methods in this category can be divided into three

subtypes: non-perceptual groups, perceptual groups and cognitive groups.

To begin with, “non-perceptual groups” approach consider groups as homoge-

neous ensemble of individuals with identical properties. Entities that constitute

the group act together as they are a big single entity. Groups preexist and mem-

bers do not have intra-group interactions. In their work, Dogbe et al. [27] assume

that groups are formed with a small numbers of members who already know each

other and tend to move together. In “perceptional groups” approach, the main

difference is that group members are aware of other members of their own group.

Social norms are involved in determining group behavior and individuals may

change the group they belong, e.g., [28]. The last approach, “cognitive groups”,
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is similar to “perceptional groups”, with one difference: individuals that share

common properties are gathered in the same group. Moreover, these properties of

individuals can change during the simulation and this may result in new groups,

e.g., [29].

In addition to these grouping types, personalities of characters play an impor-

tant role in structuring the behavior of the crowd. By using Eysenck’s three-factor

personality model, Guy et al. [30] develop a mapping between personality de-

scriptors and simulation parameters to generate heterogeneous crowd behaviors.

Durupınar et al. [23] assign personalities to virtual characters with respect to the

OCEAN personality model [31]. Then, they examine how small groups and global

crowd behavior are influenced by changing the personality parameters. Both of

these works demonstrate the use of personality in crowd behavior. According

to Big Five personality traits, personality dimensions are defined as ‘openness

to experience’, ‘conscientiousness’, ‘extraversion’, ‘agreeableness’, and ‘neuroti-

cism’. In the proposed approach, two parameters-shyness and curiosity- are used

to reflect personality, which can be related to ‘extraversion’ and ‘neuroticism’ for

shyness and ‘openness to experience’ for curiosity.

2.3 Attention Models and Applications on

Crowds

Simulating attention in virtual characters is a highly challenging task. There are

varying studies that aim to model attention behavior realistically. Chopra-Kullar

and Badler do one of the earliest works on this area (where to look), which

uses bottom-up features and computes gaze shifts with respect to them [32].

Later, Kim et al. [33] propose a model that uses both bottom-up and top-down

attention mechanisms. They use features of objects such as position, orientation,

and velocity to generate attention scores for the objects in the visual field of the

virtual agent. As a different approach, Itti et al. [34] and Sullivan et al. [35] use

saliency maps to reach the same goal.
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In a recent study, Oyekoya et al. [8] use four intrinsic saliency attributes, prox-

imity, eccentricity, orientation and velocity, to determine interests of characters in

scene objects. They compute and combine these four components in a summation

function to obtain a final saliency score, which is used to direct attention. Sim-

ply, the object with the highest score grabs attention. They compare their work

with random gaze model and gaze tracker data and observe that their method

generates results that are highly correlated to gaze-tracking outputs. However,

this model is only applicable for predicting the gaze behavior of users and avatars

they control, not for crowd simulations. It does not generate a realistic gaze be-

havior for a virtual character in a virtual crowd, since the user of the gaze tracker

is aware of that s/he is controlling an avatar in a simulation and s/he may not

act like a person in real-life. Also, being in a crowd or belonging to a group has

some psychological effects that can alter behaviors of characters, which is missing

in this model. Even though simulating crowds is not the goal of this study, it has

a considerable impact on our work, especially with its saliency scoring method.

Another study, and may be the one mostly inspires us in motivation and

development stages, belongs to Grillon and Thalmann [7]. They simulate gaze

behavior in crowd characters. Their approach runs as an extra layer to an existing

crowd simulation where the interest points of characters can be directed to static

objects or other characters in the scene. For static objects in the scene, they

assign meta-information that defines interestingness, and depending upon this

property, the objects attract attention. Along with it, they assign different levels

of interest to characters so that some of them attract more attention than others.

The field of view feature is also implemented, so only the entities that stay in this

field can be viewed by the agent. Although we use this study as a baseline, we

include additional features: (i) we assign personality traits to characters and (ii)

implement adjustable crowd norms. In this way, we can easily alter the criteria

for gaze shifts and obtain heterogeneous gaze behaviors.
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2.4 Human Visual System and Gaze Behavior

We briefly analyze some of the related studies about human visual system and

perception in human psychology. Ensemble coding concept suggests that brain

uses summary information to perceive the viewed scene. According to psycholog-

ical studies on perception [1, 2], humans perceive a group of people as a whole

single entity by inspecting the abstract features of group’s appearance, which

grants a faster and more precise inspection than inspecting each character one

by one. With ensemble encoding, to obtain perception of a group, detailed infor-

mation of individuals is sacrificed [36, 37]. Moreover, ensemble encoding-getting

visual information of a group by averaging the features of members- provides

surprisingly high sensitivity [38].

2.5 Discussion

We examine related works in four aspects: saliency computation methods, behav-

ioral crowd simulations, gaze point detection in virtual environments, and human

visual system.

Both of the approaches proposed by Grillon and Thallmann [7] and Oyekoya et

al. [8] do not include personalities to their computational models, which can cause

significant differences on the behavior of characters such that a shy person tries

to avoid looking at other pedestrians while a not-shy person moves his/her gaze

through other characters more frequently. We admit that there are discussions

on how shyness is related to personality traits; a shy person is not necessarily

introvert. It is either related to low extraversion [39] or neuroticism [40]. We

choose shyness instead of introversion or neuroticism and apply it to change

gaze behavior. When the proposed framework is used with a crowd model with

personality traits, the shyness parameter can be associated with extraversion or

neuroticism levels of the character. Next, when simulating the behavior of crowds,

including societal effects has a positive impact for more realistic results [24]. As
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an example, crowd norms can alter the decisions of characters, thus different

norms cause different gaze behavior.

In our work, although we simulate gaze behavior of crowd, the proposed model

is inspired by both non-perceptual groups and perceptual groups approaches [24],

therefore it can be considered a hybrid model. In real life examples, it is uncom-

mon to observe crowd characteristics where all the agents walk as a single entity

in the environment [41, 42, 43]. Observations on crowds suggest that up to 70% of

people in the street prefer to walk in groups [44]. Hence, we assume that groups in

the crowd are preexisted, i.e., they are friends or family members, and attracted

to move together unless the group size is 1. In addition to this, social norms of

the scene, which are pre-adjusted, have an impact on interest point decisions of

characters.
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Chapter 3

Simulating Interest Point

Detection and Gaze Behavior

In this chapter, we explain the details of the proposed approach. The motiva-

tion of our proposed approach is to increase the realism of crowd simulations by

implementing a gaze behavior model.

From the industrial perspective, even the latest video-games do not use a

proper gaze behavior model for the virtual characters and the movie industry

needs observations of artists for this purpose. When we look from the academic

perspective, there is still not much work on this field of computer graphics [8, 7].

The existing approaches are either not applicable to crowds or omit social aspects

of crowds. We believe that creating a framework and an example pipeline for

gaze behavior of virtual characters will have a great impact on behavioral crowd

realism and increase the interest in this area.

The proposed approach, which runs as an extra layer on Unity game-engine,

aims to serve this purpose. It consists of two main steps: interest point detection

and applying gaze shifts to characters. In Step 1, the process is completed in

three stages. First, the user needs to adjust the parameters of entities in the

scene. Second, we compute the properties that will be used in saliency scoring.
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In the third stage, we compute the saliency scores and predict interest points for

each character. Step 2 has two stages. The first stage calculates the gaze states

of characters using the predicted interest points and the second stage generates

head animations depending on the gaze duration factor. We provide the details

of these two steps and describe the algorithm for computing saliency score in the

sequel.

3.1 Interest Point Detection

This part of the thesis deals with the properties that are used in saliency compu-

tation and real time prediction of interest points. Before going into details, we

need to clarify the crowd organization and group behavior that we used.

Group organization of crowd: Observations on crowds suggest that up to 70% of

people in the street prefer to walk in groups [44]. Based on this, our simulated

crowds consist of individual pedestrian agents each of which belongs to a group.

Since our target is simulating the crowd in street on a normal day, we use the

word group for characters that have sociological relations between them, i.e., they

know each other and do not stay together incidentally. The group size ranges from

one to five in the current implementation of the framework. Even when an agent

is walking alone, we consider it as a member of a group, whose member count is

one.

Perception of group by virtual characters: Along with the small groups approach

for crowd organization, we adopt the ensemble encoding concept [1, 2]. This

concept claims that humans perceive a group of people as a whole single entity

by inspecting the abstract features of group’s appearance. By implementing this

feature, virtual characters perceive only groups, not the individuals who belong

to them. Moreover, properties of groups are determined by averaging the values

of members’ properties.

Determining field of view for characters: Because the individuals in the same
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group stay together willingly, we assume that characters in the same group have

the same speed and direction vectors; hence their view angles, view directions

and distances to other objects are similar. With this assumption, viewed entities

in the environment will be same for every member of a group. However, each

character determines its own interest point independently because personalities

of characters can be different from each other.

In addition to realism concerns, “small groups”approach brings computational

performance improvement to the framework. The number of entities to look at

decreases from number of individual characters to number of groups. In our

framework, we know that each group contains at least one character in it, so we

can assume that the number of comparisons for an individual character to detect

interest point will decrease in general.

3.1.1 Attributes of Characters and Objects

To determine interest points, we need to assign certain attributes to entities

in the scene so that we can make comparisons to find the most salient point.

These assigned attributes are displayed in a parametric form and need to be

adjusted by the user before running the program. Also, this process facilitates

the generation of heterogeneous crowd behavior (e.g., some characters walk faster

than others). The attributes assigned to characters and non-human objects differ

by their definition or usage. However, as a common trait they all range between

0 and 1.

Characters in the model have both physical and psychological attributes. Phys-

ical attributes, which are height, speed and attractiveness, result in behavioral

and physical variety in the crowd. Moreover, their other purpose is to allow

the model to compute relative saliency parameters such as proximity and veloc-

ity. On the other hand, psychological attributes; shyness, curiosity have a direct

effect on characters’ gaze decisions. We use them as threshold values for char-

acters to determine whether it should look at a salient point or not. Adjustable

attributes of non-human objects are speed, attractiveness and type. From these
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parameters, we compute a single parameter; distinctiveness, and use it in saliency

comparisons.

3.1.2 Saliency Score Computation Parameters

Because characters and non-human objects have different properties and roles

in the scene, we compute their saliency scores in distinct processes. In these

processes, we compute individual scores that are necessary for computing the

total score that represents saliency of an entity.

3.1.2.1 Agent-Group Saliency Parameters

Characters perceive groups as single entities; hence we use the term agent-group

instead of agent-agent. The parameters used are proximity, periphery, velocity,

orientation and attractiveness. The studies of Grillon et al. [7] and Oyekoya et

al. [8] and our observations on real-world crowd video examples motivated our

choice of these five criteria as parameters to the scoring function.

Proximity: For an agent, as the distance to an object or another agent de-

creases, the tendency for the agent to look at them increases. Due to the func-

tionality of human visual system, closer objects seem larger than the ones that

are far away. Also, objects behind the closer one are occluded and are hard to

see.

Periphery: Human visual system is more active for the motions occurring in

peripheral vision area than the ones occurring out of this area. The attention is

maximum when the object is entering periphery.

Orientation: An agent will be more attentive to objects that come through to

it because in subsequent time steps the object will be closer than the ones that

are far away.
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Velocity: Difference in velocity values grabs attention of an agent. Generally

speaking, objects with high velocity are salient, however, if the speed of the crowd

norm is high then a slowly moving object may be salient.

Attractiveness: Different than the above four criteria, attractiveness is a top-

down saliency feature. As attractiveness of a character increases, the chances

that it grabs attention gets higher. Again, the crowd norm is an important factor

in the resulting score.

Height: We choose this criteria because height is one of the most obvious

physical properties that we can detect in a crowd. We consider an agent with a

height value different than the norms of the crowd as salient.

3.1.2.2 Agent-Object Saliency Parameters

We use the parameters proximity, orientation, velocity and distinctiveness in

agent-object saliency computation. As being the only parameter different than

the agent-group saliency parameters, distinctiveness reflects the center-surround

mechanism used in saliency map computations. As the object becomes different

than the neighboring objects, it grabs more attention.

3.1.3 Saliency Scoring

This module uses character groups and non-human objects in the scene as input

and returns the most salient entity in the scene. The steps of this process is as

follows: determining entities that stay in the agent’s field of view, computing

individual saliency scores (e.g., proximity, orientation), and computing the total

saliency score. The pseudo-code for computing the total saliency scores is given

in Algorithm 1.
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Algorithm 1 Saliency Model Interest Point Computation

Require: viewedGroups ← groups agent can see
Require: viewedObjects ← objects agent can see
1: for eachframe do
2: pa ← compute agent’s position in world coordinates
3: da ← compute agent’s direction in world coordinates
4: va ← compute agent’s velocity
5: ∆TGaze← elapsed time since the beginning of current gaze motion
6: if ∆TGaze ≥ minDur then
7: for each group in viewedGroups do
8: Sp ← compute proximity score . Eqn. 3.1
9: So ← compute orientation score . Eqn. 3.3
10: Sper ← compute periphery score . Eqn. 3.4
11: Sv ← compute velocity score . Eqn. 3.2
12: Sa ← compute attractiveness score . Eqn. 3.5
13: Sh ← compute height score . Eqn. 3.6
14: S ← compute total score . Eqn. 3.7
15: end for
16: for each object in viewedObjects do
17: Sp ← compute proximity score . Eqn. 3.1
18: So ← compute orientation score . Eqn. 3.8
19: Sv ← compute velocity score . Eqn. 3.2
20: Sd ← compute distinctiveness score . Eqn. 3.10
21: S ← compute total score . Eqn. 3.11
22: end for
23: Smax ← highest saliency score
24: DecideGazeState(Smax) . Algorithm 3
25: if can copy gaze then
26: GazeCopy() . Algorithm 4
27: end if
28: pt ← compute gaze target position
29: ApplyGazeAnimation(pt)
30: Update attention coefficients of entities . Algorithm 5
31: end if
32: end for
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dm Maximum distance that an agent can see

dag Euclidean distance between agent a and group g

Smax Maximum pedestrian speed in crowd

Smin Minimum pedestrian speed in crowd

Sn Speed value of crowd norm

pa 3D position of agent a

pg Average 3D position of group g

pe 3D position of entity e (can be group or object)

pt Target gaze position

fda Forward direction of agent a

fdg Average forward direction of group g

α the angle between fda and the vector pg − pa
β the angle between fda and fdg
Cs coefficient to simulate impact of speed on gaze behavior

Table 3.1: Parameters for saliency scoring.

3.1.3.1 Determining Viewed Groups and Objects

Because of the nature of human visual system, only the entities that are located

inside the field of view can visually attract the viewer. We have two lists for

each character group, ‘viewedGroups ’ and ‘viewedObjects ’, that store groups and

objects, respectively, in its field of view at time stamp t. The viewed groups

and objects are determined by doing three culling processes, which are proximity,

orientation and occlusion culling. Because comparing all of them in scoring

process would cause unnecessary computations, they are eliminated beforehand.

The following culling processes are applied as described in Algorithm 2:

Proximity culling: For a group, only the groups that stays in a distance are

accepted and others are eliminated. We determine this distance by ‘maxViewDis-

tance’parameter, which we set as 15 meters in our framework, meaning that

agents cannot direct their gaze to other agents which are farther than 15 meters.

Orientation culling: Here, entities that passed proximity elimination are taken

as input. We eliminate the ones that stay out of the average visual angle of a

group. We choose the angle as 80◦.

19



Occlusion culling: For the remaining viewed entities, we perform visibility

tests for each agent to find out if these entities are occluded by another entity

at the current time-stamp. We do this by ray casting from agents to the viewed

entities. If the hit distance is shorter than the distance between agent and the

tested entity then, it is occluded by another object, which means the agent cannot

see the target entity. For this reason, we remove that group from the viewed

groups list of the agent.

By doing these culling processes, we define a realistic field of view area for

agents and improve computational performance with reduced number of compar-

isons. Even though there are more than one hundred groups in the scene, an

agent usually compare four or five groups at maximum in a single step.

Algorithm 2 Culling

1: function CullEntities(allEntitiesList)
2: viewedEntities ← allEntitiesList
3: for all entity E in viewedEntities do
4: if distance(pg, pe) ≥ maxViewDistance then
5: viewedEntities.remove(e)
6: else if Angle(fdg, (pe − pg)) ≥ 80 then
7: viewedEntities.remove(e)
8: else if RayCast(pg, pe).hit 6= e then
9: viewedEntities.remove(e)

10: end if
11: end for
12: end function

3.1.3.2 Agent-Group Saliency Scoring

In this step, we compute the total saliency scores of the viewed groups of agent

a and choose the most salient one as ‘salientGroup’. To obtain the total saliency

score, we first need to compute the individual scores of all saliency criteria, which

are proximity, orientation, periphery, velocity, attractiveness and height.

1. Given the agent’s position pa, and the group’s position pg, we compute the

proximity score, Sp, as
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Sp(t) =
dm − dag
dm

, (3.1)

where dag is Euclidean distance between two position vectors pa and pg,

and dm represents the maximum distance that agent a will stop looking

after. Subtracting dag from dm ensures that the closer agents to have higher

proximity scores. We divide the score by dm to normalize the value to the

range [0, 1].

2. The velocity score, Sv, is based on the relative velocity of the group’s walk-

ing speed with respect to the crowd norm’s speed, and we compute it as

Sv(t) =
‖vg − va‖ − sn

max ((Smax − sn), (sn − Smin))
. (3.2)

The difference between the velocity of the viewed group (vg) and the velocity

of the agent (va) gives the relative velocity. We compute the velocity score

by subtracting the speed of the crowd norm from the magnitude of the

relative velocity. We normalize the velocity score by dividing it to the

maximum of (Smax − sn) and (sn − Smin) (cf. Table 3.1).

3. The orientation score, So, is the relative direction of the group with respect

to the agent, and we compute it as

So(t) =
(π

2
− α

)
β. (3.3)

For an agent, groups that have opposite directions will produce higher scores

than those having similar directions. As the angle α increases, the orien-

tation score decreases, since the target is at the edge of periphery. To

normalize So(t) to the range [0, 1], we divide the score by (π × π
2
) and

take its square root. π and π
2

are the maximum values β and α can take

because the orientation culling process eliminates groups that are located

behind the agent (cf. Table 3.1).

4. We compute the periphery score, Spe, for evaluating groups that enter pe-

ripheral view cone as
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Spe(t) =
(π

2
− β

)
α. (3.4)

The minimum value of β together with the maximum value of α reflect the

case where group g enters the periphery of agent a. The normalization of

Spe(t) is the same as the normalization of So.

5. We compute the attractiveness score, Sa, as

Sa(t) =


ag−an
1−an , if ag ≥ an

0, otherwise
(3.5)

where ag is the average attractiveness of group g and an is the attractiveness

value of the crowd norm. Sa represents the relative attractiveness of the

target group with respect to the crowd norm. The attractiveness property

is in the range of [0,1].

6. We compute the height score, Sh, as

Sh(t) =
hg − hn

4σ
, (3.6)

where hg is the average height of the group, hn is the height of the crowd

norm, and σ is the standard deviation of the height in the crowd. We

assume that the height value is normally distributed. Sh is z-score of hg

divided by 4σ, which indicates how much hg is different than hn [45]. The

resulting value is in the range [0,1].

Total Saliency Score: To be able to compare different entities, we combine the

individual scores as a single scalar value for each entity. The weighted sum

function takes the individual saliency scores and generates a total saliency score,

which is in the range [0, 1]:

S(t) = Ca(WpSp +WvSv +WoSo +WpeSpe+WaSa +WhSh), (3.7)
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where Wp,Wv,Wo,Wpe,Wa,Wh represent the pre-defined weights of six saliency

criteria, which are proximity, velocity, orientation, periphery, attractiveness and

height, respectively. The weights of each sub-score can be set by the user or

set randomly as long as the sum of them is equal to 1. Ca is a coefficient that

correspond to factors that affect the gaze behavior of agent a, which are are speed

and losing interest.

3.1.3.3 Agent-Object Saliency Scoring

Since non-human objects have different properties than agent groups, comput-

ing saliency scores of objects requires scoring of distinct criteria. However, the

process is similar to agent-group saliency scoring. The criteria are proximity,

velocity, orientation, and distinctiveness. The computations of proximity and ve-

locity scores are the same as the ones for the agent-group saliency scoring process

(cf. Eqns. 3.1, and 3.2, respectively).

1. The orientation score So is computed as:

So(t) =
π

2
− α. (3.8)

The reason for omitting β angle in Eqn. 3.8 is that the direction vector of

an object is not meaningful when the object is static in the scene. Thus,

the relative position of object o with respect to agent a determines the

orientation score. We divide the score by the maximum α angle, π
2
, to

normalize it.

2. To compute the distinctiveness score Sd, we compute the unnormalized

distinctiveness score, S ′, first.

S ′ =

∑n
i=1 xi
xj

, (3.9)

where n is the number of different object types that exist in the decided

radius of object o, xi are the numbers of objects of each type and xj is the
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number of objects of object o’s type. This distinctiveness score is inversely

proportional to the frequency of the object type, i.e., the less frequent an

object, the higher score it gets. We normalize the distinctiveness score

dividing this value to the sum of the scores:

Sd =
S ′∑n
i=1 S

′
i

(3.10)

Total Saliency Score: We compute the total agent-object saliency score as

S(t) = Ca(WpSp +WvSv +WoSo +WdSd), (3.11)

where Wp,Wv,Wo,Wd represent pre-defined weights of the four saliency crite-

ria, which are proximity, velocity, orientation and distinctiveness, respectively.

Similar to agent-group process, the sum of weights needs to be equal to one and

Ca is a coefficient that correspond to factors that affect the gaze behavior of

agent a.

3.1.3.4 Applying the Behavioral Effects of Agent’s Properties

In this section, we explain the coefficients that are involved in Ca (Ca = Cs ·Ci).
The first coefficient, Cs, represents the impact of walking speed on gaze behavior.

We use the second one, Ci, to determine how fast an agent loses her/his interest

on the salient entity.

According to the study [3] and our observations on videos of real crowds, the

walking speed of an agent is inversely proportional with her/his motivation to

look at. As an example, running pedestrians look at the environment much less

than slowly walking pedestrians. We compute this effect as
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Cs(t) =


1− 0.4

√
va
vm
, if va ≥ 1

1, if va = 1

1.25, otherwise

(3.12)

where va is the velocity of agent a, vm is the maximum velocity value defined in

crowd norm. When the agent is walking with maximum velocity, his/her gaze

decreases to 60%. Also, as an agent walks with 1m/s, Cs is 0, so it has no effect

on scores. When an agent stands (i.e., velocity = 0), Cs becomes 1.25, which in-

creases her/his attention duration and frequency. Fontana et al. [3] suggest that

the attention frequency and duration decreases with increasing walking speed.

The minimum and maximum coefficient values are determined with the observa-

tions on real world crowd videos, which are used in evaluation. Ci is used as a

coefficient to determine the total score by including the agent’s interest. While

the agent a is actively looking at an entity e, we decrease the score of e relative

to a as the agent loses her/his interest (cf. Algorithm 5).

3.2 Adjusting Gaze

We repeat saliency score computation process for all groups and objects viewed

by the agent. After computing the total saliency scores, we determine the entity

with the highest combined saliency score as the interest point. The entity can be

a group or a non-human object. When there exists only one entity e in the visual

area of agent a, entity e gets the maximum saliency score. However, if e is not

salient enough, agent a should not direct her/his gaze through e. To determine

if an agent would look at an entity, we use two personality traits shyness and

curiosity for the agent. The user needs to specify these values for each agent

within the range [0, 1]. Shyness is simply the threshold value for an agent to

look at other agents. An agent with high shyness value (introvert) looks at other

groups much less than the agent with low shyness value (extrovert). The use

of the curiosity parameter is similar; it determines whether an agent finds the
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salient object interesting or not (cf. Algorithm 3):

Algorithm 3 Decide Gaze State and Target Position

1: function DecideGaze(Smax)
2: pe ← position of Smax entity
3: if Smax ≥ threshold then
4: pt ← pe
5: else
6: pt ← ComputeDefaultGaze()
7: end if
8: end function

We execute gaze shifting with respect to the decided gaze state. The decision

mechanism have four different states:

State 0: Look at front: In this state, the agent looks forward. We compute the

target position as the summation of two vectors:

pt = pa + fda.

State 1: Look through direction of group: In this state, the agent looks in front

of the group’s center of mass.

pt = pg + fdg.

State 2: Look at a salient group: The target position is the average position of

the salient agent group.

State 3: Look at a salient object: The target position is the position of the salient

object.

We consider State 0 and State 1 as default (idle) gaze behavior because the

agents are not interested in the environment. When we decide the default gaze

behavior, we select one of these two states randomly with the probabilities of

State 0 and State 1 are 0.7 and 0.3, respectively. State 2 and State 3 are active

gaze behaviors, in which some entities in the environment grab attention. After
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deciding the gaze state, we apply gaze animation to the agent. Table 3.2 describes

the parameters for gaze adjustment.

Ci coefficient to simulate the agent to lose her/his interest

minDur
the minimum duration that an agent has to look after
starting a gaze process

maxDur
the maximum duration that an agent can hold its gaze
on the same target

∆Time
the duration between current frame and the previous
frame

Se
Salient entity that the agent will direct her/his gaze
through

pat the vector from pa to pt
rotAngle the angle to rotate head of agent in y axis

Table 3.2: Parameters for gaze adjustment.

3.2.1 Gaze Copy

When deciding the gaze of agents, another important process, gaze copying, takes

place. Gaze copying is result of the group behavior of crowds. When an agent

is staring at an object in the scene, the other agents that see her/him have

an intention to look at that object. According to Gallup et al. [46], 26.9% of

passersby adopts the gaze direction of the pedestrians who are already staring.

We include this feature in the model as intra-group gaze copying mechanism

(cf Algorithm 4). The members of the same group are affected by each others’

staring behavior. We determine this case randomly with a probability of 0.3.

However, in the case where multiple agents are staring at multiple entities,

the decision gets complicated. To solve this problem, we choose the entity that

is stared by more agents as the staredOne entity. For example, in a group of

four pedestrians, two of them are staring at object o1, one of them is staring at

object o2. Then remaining agent, if s/he will copy the gaze, starts looking at o1.

Besides, in the case where the staring member counts are equal, we choose the

target entity randomly.
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Algorithm 4 Gaze Copy

Require: agent.group.staredOnesList ← list of entities members are staring
1: for each agent a in group g do
2: if IsStaring(a) then . looking at the same entity more than 1 sec
3: g.StareList.add(a)
4: end if
5: end for
6: . Gaze Decision Part
7: for each agent a in group g do
8: if g.StareList.Length > 0 and random() < 0.3 then
9: staredOne gets most stared entity
10: a.Se ← staredOne
11: end if
12: end for

3.2.2 Gaze Shifting Animation

The process is simply computing the required rotation angle and rotating the

head object until it faces the target position.

rotAngle = 6 ( ~fda, ~pat),

where ~fda is the forward direction of agent a, ~pat is the vector from pt (target

position) and pa is the position of agent a). After this step, agent a starts to look

at tp and gaze shifting is completed. Because we compute saliency scores and

perform gaze shifting comparisons at every frame, characters automatically shift

their gazes without delay.

3.2.3 Gaze Duration

After an agent starts to look at another agent, if it does not stop looking after

some time then the model would generate unrealistic behavior. On the contrary,

if an agent changes its gaze frequently, e.g., in every 3-4 frames, again this would

generate unlikely motions. We specify the minimum and maximum gaze durations
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to solve this problem.

Minimum gaze duration (minDur): This is the amount of time that agent a

must hold its gaze before shifting it to another object. We set the value of this

parameter to 0.5 sec to generate realistic gaze shift behaviors.

Maximum gaze duration (maxDur): This is the amount of time that agent a

can hold its gaze before it loses its interest for the current salient entity. We set

the parameter to approximately six seconds. However, losing interest does not

occur instantly, instead characters lose their interest slowly in time. So, maxDur

parameter does not work as minDur, which changes gaze state sharply. We use

another parameter, Ci, to simulate losing interest, which decreases at every time

step, to be multiplied with the saliency scores (cf. Eqns. 3.7 and 3.11).

Algorithm 5 Adjust Interest Coefficients

1: function UpdateInterestCoeffs()
2: for all score in agent.scoresList do
3: if score belongs to salient agent then
4: score.Ci ← score.Ci −∆Time× 0.15
5: else
6: score.Ci ← score.Ci + ∆Time× 0.01
7: end if
8: end for
9: end function

Algorithm 5 depicts the adjustment of interest coefficients for determining the

gaze duration. When agent a looks at an entity e, Ci of e with respect to a

decreases while those of other entities increase. After some time, the score of

e will be lower than the thresholds of a (shyness/curiosity) or another entity’s

score, which causes a to automatically shift its gaze.
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Chapter 4

Implementation of the

Framework

This chapter describes the implementation of the proposed model and the con-

struction of virtual scenes that are used in evaluation. Graphics models, gaze

animation, navigation of characters and architecture of the framework are ex-

plained in detail.

4.1 Graphics Models

We use character and environment models to generate virtual scenes. We use

environment models to represent the market area of Middle East Technical Uni-

versity (METU) and design character models that are similar to the characters

in videos that we recorded. We model characters used in simulations by using

Adobe Fuse toolkit [47], which enables non-artists to model human characters

easily. After modeling the characters, we rig 3D models of characters and an-

imate them with another application Mixamo [48], which can be connected to

Fuse. We choose these tools due to their simplicity and compatibility with the

Unity game engine. To construct a scene in which virtual crowd moves and gaze
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behavior of characters can be displayed, we prepare virtual scenarios in Unity

Game Engine [4] with respect to the videos that we shot in METU campus mar-

ket area. Because the crowd and the area are highly suitable to be used in a

gaze behavior simulation, we choose this area as the test scene. Besides, the

crowd in METU campus can be considered as a closed group, compatible with

the requirement for “crowd norm” property used in the proposed model.

4.2 Animation

We prepare animations using Unity and Mixamo animation packages, which store

motion capture animations. We place the skeletons with Mixamo tool to make

them ready for applying animations. Because the main goal of the proposed model

is to predict interest points, we animate gaze by just rotating the character’s

head. We compute the rotation angle and apply the rotation to the head of the

character. To simulate steering behavior and path finding, we use a free unity

package Locomotion System and Unity’s navigation mesh agent component. The

locomotion system blends the motion-captured walking and running cycles and

adjusts the skeleton to provide a plausible moving animation.

To achieve path finding, we assign NavMesh agent component to virtual char-

acters. With the help of this component, agents can avoid each other and other

moving or static obstacles while walking towards their target. As a required

preprocessing for this component, we bake the scene for navigation meshes, i.e.,

walkable/non-walkable areas of the scene are determined and mapped.

In test scenario scenes, the number of destination points ranges from one to

five. The user specify the speed and destination points of the crowd. After

specifying these parameters, agents determine their paths automatically through

their target.
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Figure 4.1: The relationships between agent components.

4.3 Architecture of the Simulation

We determine the behaviors of agents with pre-defined rules and scoring functions

as a result of the interaction with the environment and other agents. Figure 4.1

shows the relationships between agent components. Figure 4.2 depicts the gaze

behavior decision logic of an agent as a flowchart. In the diagram, ‘Start’ rep-

resents the idle state where the agent stands before starting to a new action or

after finishing the previous action. We first check the group component that the

agent belongs to find out whether there exist any entities in the field of view of

the agent’s group. If there exist no entities, the agent’s gaze enters the default

gaze state, in which s/he looks in front or through the forward direction of the

belonging group. However, if there are scene entities in the field of view area of

the agent, then we compute the saliency scores of these entities. We compare

the maximum score with the threshold values, shyness for groups and curiosity

for objects. If the score passes the threshold, then the agent starts to look at

the salient entity. Otherwise, s/he enters the default gaze state. For both cases

where the agent looks forward or looks at the salient entity during the minimum

gaze duration, agent preserve her/his state. However, when the duration ends,

the end state is reached.

We implement the framework on top of the Unity Game Engine and use C#

as the programming language. We code the program flow by following Unity’s

scripting procedures. We mainly implement seven classes, in which four of them

are controller scripts:
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Figure 4.2: Gaze decision logic.
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GroupController script is attached to group objects, which are abstract objects

that hold agents as children. It updates the group properties by averag-

ing the properties of child agents. We store group properties as a field of

GroupProperties class. Also, we compute the field of view of the group and

determine viewedGroups and viewedObjects in this script.

CharacterController is the main script that computes interest points and decides

gaze states. After getting the list of viewed entities, it computes saliency

scores and finds the most salient entity for the agent. It decides where the

agent will look at, or which agent’s gaze will be copied. Along with these,

we use Unity’s Time class in this script to determine the gaze duration.

Each virtual agent has its own instance of this script.

ObjectController script is used for scoring non-human objects. It holds Object-

Properties instance as a field and keeps these properties updated.

GazeController script is used for rotating agent’s head with the given target

position input. CharacterController script calls gaze controller methods.

Each agent has its own instance of this script.

GroupProperties class is inherited from CharacterProperties class, so it stores

the same parameters. However, we update its parameters with the average

of the group members’ properties at every frame.

CharacterProperties class is instanced and used as a field in CharacterController.

Its main functionality is to hold agent’s properties, which are updated by

CharacterController at every frame.

ObjectProperties class stores non-human objects’ properties and computes the

distinctiveness of the object with respect to neighboring objects.
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Chapter 5

Evaluation and Results

Chapter 5 explains the evaluation of the model and the framework. To manage

this, we record videos of people and analyze their gaze behavior. Along with the

videos, we construct a virtual scene using Unity 3D game engine and simulate

test scenarios in this virtual scene. We execute the navigation process of virtual

agents with the nav-mesh agent component of Unity and generate animations

with the Unity locomotion package.

5.1 Scenario Simulations

To verify the interest point detection and gaze behavior of virtual crowds, we

perform a series of simulations for pre-determined scenarios. The purpose of

these simulations is to validate the proposed gaze behaviors by comparing them

with the gaze behavior of people appearing in the real videos.

In the proposed model, mainly ten different features have impact on the gaze

behavior of agents. We test each of these features in different scenarios and

compare with the corresponding videos to demonstrate their effects on attention.

We record the videos used in the experiments in the same place in two different

days. We record Scenarios 1-7 in Day-1 and Scenarios 8-9 in Day-2. In all
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simulations, crowd norm settings are fixed. In this way, we demonstrate that

the crowd norm feature is appropriate to use with the crowds located in similar

regions.

5.1.1 Scenario 1

We use this scenario to examine the effects of proximity and periphery features.

In the video, walking female agent grabs attention for two reasons: she got closer

to the male agents and she enters peripheral view of them. Our implementation

simulates this scenario with similar gaze behavior (cf. Figure 5.1). Male agents

look at the female agent when she got closer and entered their periphery. To test

the effects of these parameters, we set the weights of proximity and periphery

parameters to zero in the second run of the simulation. As expected, none of the

agents direct their gaze towards the female agent with this change.

(a) (b) (c)

Figure 5.1: Effects of proximity and periphery: (a) video, (b) simulation, and
(c) simulation (weight=0).

5.1.2 Scenario 2

We use this scenario to examine the effects of agent velocity. In the video, a

female agent with high velocity runs from left side to right side of the scene.

Within all the agents, the running female agent is the most salient entity. Most

of the other agents look at her while she runs without performing any gaze shifts.

With the implementation of the proposed model, we obtain gaze behavior similar
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to the real video. In the simulation, three of the pedestrian agents look at the

running female agent while she is running. Because velocity decreases agent’s

gaze intention, the female agent looks only at her front. To demonstrate the

effect of velocity, we run the simulation with velocityWeight parameter set to

zero. In this case, the running female agent cannot not grab attention from the

crowd (cf. Figure 5.2).

(a) (b) (c)

Figure 5.2: Effects of agent velocity: (a) video, (b) simulation, and (c) simulation
(weight=0).

5.1.3 Scenario 3

This scenario aims to show the effects of attractiveness parameter. In the third

video, an attractive female agent walks through the left side of the scene, and a

male agent directs his gaze towards her. In the virtual scene, we set the female

agent’s attractiveness parameter to 0.8, which is a quite high value. In this

condition, due to attractiveness score of the female agent, she grabs attention.

However, when we decrease the attractiveness parameter to 0.4, which is still

above crowd norms for this scenario, the female agent cannot grab attention

(cf. Figure 5.3).

5.1.4 Scenario 4

This scenario consists a relatively complicated scene, in which the effects of char-

acter height and distinctiveness of non-human object can be examined. In the
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(a) (b) (c)

Figure 5.3: Effects of agent attractiveness: (a) video, (b) simulation, and (c) sim-
ulation (agent’s attractiveness=0.4).

video, the dog is the most salient entity and the small female child is the second

most salient entity. Two walking agents mostly look at the dog and when the

walking male agent come closer to the female child, he directs his gaze towards

her for a short period of time. The other agent group (the female agent and the

child) also look at the dog. We simulate this scene by means of distinctiveness,

height, attractiveness and curiosity parameters. The reason that make the dog

salient is that both it is a distinct object (no other object of the type animal

exists) and it has a high attractiveness value. We specify high curiosity values for

all agents, which increases the duration of their gazes through the dog. Besides,

the height of the female child, which is way lower than the crowd norm’s height

value, make the group that the female child agent belong salient. The average

height of the group that contains the female child become low and this affects

the group’s saliency score (cf. Figure 5.4).

For testing the effects of these parameters, we execute three simulations. First,

we set the weight of distinctiveness parameter to zero, and as a result, no agent

looks at the dog through the simulation. Second, we set the curiosity parameter

of agents to zero. Because none of the agents are curious enough, the dog cannot

grab attention. Third, we set the height parameter of the female child agent to

1.65, which is the average crowd norm. This time, walking male agent does not

direct his gaze towards the female child agent’s group and he continues to look

at the dog.
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(a) (b) (c)

(d) (e)

Figure 5.4: Effects of distinctiveness, curiosity and height: (a) video, (b) simula-
tion, (c) distinctiveness = 0, (d) curiosity=0, and (e) child height = 1.65.

5.1.5 Scenario 5

In this scenario, we highlight the effects of the shyness parameter. The related

video contains an extrovert male agent that looks at nearly all of the character

groups around him while walking. In the simulation, we implement this condition

by assigning low shyness value of 0.25 to the agent. The virtual agent acts

similar to the real agent appearing in the video. To test the effect of the shyness

parameter, we set it to 0.7. By doing so, the agent does not look at any other

character during the simulation (cf. Figure 5.5).
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(a)

(b)

(c)

Figure 5.5: Still frames showing the effect of agent shyness: (a) video frames,
(b) shyness = 0.25, (c) shyness = 0.7.
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5.1.6 Scenario 6

This scenario aims to indicate the impact of distinctiveness parameter of non-

human objects. In the video, the bicycle is the most salient entity in the scene and

so the passing-by agent directs his gaze towards the bicycle. We generate a similar

gaze behavior in the simulation with the use of the distinctiveness parameter

(cf. Figure 5.6). In the neighborhood of the bicycle object, it is the only object

with type vehicle. Other than the bicycle, there are ATM machines and trees,

whose types are building and vegetable, respectively. Being a rare type of object

in the neighborhood results in a high distinctiveness score for the bicycle, which

make it the most salient entity for the agent. In the second run, we set the weight

of distinctiveness parameter to zero, and as a result, the agent does not look at

the bicycle.

(a) (b) (c)

Figure 5.6: Effects of object distinctiveness: (a) video, (b) simulation, and (c) sim-
ulation (weight=0).

5.1.7 Scenario 7

Scenario 7 demonstrates the gaze copy phenomena between agents. In the video,

we can observe the gaze copy behavior on the sitting couple. First, the male

agent looks at one of the passing agents, then the female agent sitting next to

him copies this behavior and starts to look at the same passing agents. In the

simulation, we generate the gaze copying phenomenon by setting the male agent’s

shyness parameter to 0.3 and the female agent’s shyness parameter to 0.7. This

settings result in a situation where the male agent is more attentive than the
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female agent. Because they are in the same group, the female agent copies the

gaze behavior of her group member, as seen in Figure 5.7.

(a)

(b)

Figure 5.7: Still frames showing the effects of gaze copy: (a) video frames and
(b) simulation frames.

5.1.8 Scenarios 8

This scenario shows the effect of the periphery feature. In Fig. 5.8, the first

row shows frames from the real video and the second row shows frames from the

simulation results.
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Figure 5.8: Effects of periphery: first row: the real video, second row: the simu-
lation result.

5.1.9 Scenarios 9

This scenario demonstrates the combined effect of proximity, periphery, attrac-

tiveness and height parameters. We also observe the effect of low speed by looking

at sitting female agents; they change their gaze more frequently than the moving

agents. In Fig. 5.9, the images on the left column belong to the captured video

frames and the images on the right column belong to the simulation frames.

5.2 Performance

To test the performance of the framework, we run simulations containing 50,

100 and 200 agents on a PC with Intel Core(TM) i5-4590 3.30GHz CPU, 8GB

RAM, and Nvidia GeForce GTX 970 graphics processor. Figure 5.11 shows a

simulation with 100 agents where we disable gaze copy behavior scripts in part

(a) and enable them in part (b).

Tables 5.1 and 5.2 depict the frame computation times and frame rates (frames
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Figure 5.9: Still frames from a 40 second video: left column: the real video, right
column: the simulation result.
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per second) with increasing number of agents in simulations where gaze behavior

scripts are disabled and then enabled, respectively. Figure 5.10 shows charts

for the comparison of (a) frame computation times and (b) frame rates (frames

per second). These results demonstrate that the frame rates are considerably

close. When the provided increase in realism is considered, the performance of

the framework is promising.

Number of
agents

Minimum frame
time (msec)

Maximum frame
time (msec)

Average frame
rate (fps)

50 13.8 9.8 87
100 23.7 16.9 50.5
200 61.2 47.8 18.5

Table 5.1: Simulation performance measurements where gaze behavior scripts are
disabled.

Number of
agents

Minimum frame
time (msec)

Maximum frame
time (msec)

Average frame
rate (fps)

50 15.3 9.8 83.5
100 24.8 18.5 47
200 67.3 53.4 17

Table 5.2: Simulation performance measurements where gaze behavior scripts are
enabled.
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(a)

(b)

Figure 5.10: Graphs depicting (a) maximum frame computation times (msecs)
and (b) frame rates (frames per second) for different number of agents.
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(a)

(b)

Figure 5.11: A crowd simulation with 100 agents. Gaze behavior scripts are
(a) disabled and (b) enabled. When the gaze behavior script is enabled, the
agents on the bottom left look at the salient object, bicycle. The agents on the
top left either look at the teddy bear or look at each other depending on the
proximity and periphery scores of teddy bear. The ones on the middle mostly
look at the teddy bear.
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Chapter 6

Conclusion

We present a computational model for simulating gaze behavior of virtual crowds

through predicting interest points at each time stamp. The proposed model aims

to provide a realistic gaze simulation by utilizing state-of-the-art psychological

studies about grouping of agents, perception of crowds, and personality. The

resulting framework is easy to implement and can be added as a plug-in to game

engines.

In the literature, there are not many studies about simulating gaze behav-

ior of virtual crowds. And existing studies take only bottom-up approach into

consideration and overlook the personalities of agents. Our approach provides a

saliency scoring algorithm suitable for perceiving groups of characters, additional

top-down saliency criteria, characters with personality, and the implementation

of the gaze copy phenomena.

In the experiments, we simulate the gaze behavior of people in captured videos

by modifying various parameters and obtain results that are similar to the real

videos. Moreover, we highlight the effects of each parameter to validate their

impacts on the model. Hence, the evaluation of these scenarios show that the

proposed framework is appropriate for generating realistic gaze behavior in virtual

crowd simulations.
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Nevertheless, this study can be considered as an initial step in the research

questions addressed in this study and further efforts are needed to generate more

realistic gaze behavior. Some the topics for future extensions are as follows:

• Additional properties can be assigned to both characters and non-human

entities (e.g., effects of gender on gaze behavior can be implemented).

• Level-of-Detail (LOD) can be used to give different scores to entities with

different proximity.

• Inter-group gaze copying can be included alongside with intra-group gaze

copying.

• Effects of group size on gaze behavior can be examined and included in the

model.

• More realistic gaze animations can be added. Here we focused only on

interest point detection.

• Gaze shift animations and timings can be improved by making characters

turn their eyes, head and upper body more realistically. The studies made

by Grillon et al. [7] and Oyekoya et al. [8] are good examples of gaze ani-

mation.

• Gaze behavior can be combined with steering behavior of agents and may

affect their paths.

• The framework can be optimized to handle large crowd simulations.
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[44] M. Moussäıd, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz, “The

Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd

Dynamics,” PLoS ONE, vol. 5, pp. 1–7, 04 2010.

[45] E. Kreyszig, Applied Mathematics. Hoboken, NJ, USA: John Wiley & Sons,

1979.

54



[46] A. C. Gallup, J. J. Hale, D. J. T. Sumpter, S. Garnier, A. Kacelnik, J. R.

Krebs, and I. D. Couzin, “Visual Attention and the Acquisition of Informa-

tion in Human Crowds,” Proceedings of the National Academy of Sciences,

vol. 109, no. 19, pp. 7245–7250, 2012.

[47] Adobe, Inc., “Adobe Fuse CC,” 2016. [Online; accessed 28-June-2016].

[48] Adobe, Inc., “Mixamo,” 2016. [Online; accessed 28-June-2016].

55


